1
|
Yang Y, Zhang LJ, Wang XL, Wang R, Zhao YX, He SG, Zang SQ. Consecutive C-C Coupling of CH 4 and CO 2 Mediated by Heteronuclear Metal Cations CuTa . J Am Chem Soc 2025; 147:362-371. [PMID: 39723468 DOI: 10.1021/jacs.4c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The conversion of methane and carbon dioxide to form C2 products is of great interest but presents a long-standing grand challenge due to the significant obstacle of activating the inert C-H and C═O bonds as well as forming the C-C bonds. Herein, the consecutive C-C coupling of CH4 and CO2 was realized by using heteronuclear metal cations CuTa+, and the desorption of H2C═C═O molecules was evidenced by state-of-the-art mass spectrometry. The CuTa+ reaction system is significantly different from the homonuclear metal systems of Cu2+ and Ta2+. On the basis of density functional theory calculations, we identified that Cu can modulate the charge distribution and reduce the energy difference of crucial orbitals for the C-C coupling of CH2 and CO units that are from the activation of CH4 and CO2, respectively. The crucial role of the Cu atom is of substantial importance to understand the process of the C-C coupling reaction in Cu-based heterogeneous catalytic systems. This study not only provides a promising paradigm for the design of non-noble metal species in direct conversion of CH4 and CO2 under mild conditions but also reveals a new molecular-level mechanism of consecutive C-C coupling for the production of H2C═C═O, a crucial intermediate during carbonylation reactions.
Collapse
Affiliation(s)
- Yuan Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Jiao Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Li Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Siegele F, Tschurl M, Schooss D, Heiz U. Activation of CH 4, NH 3, and N 2 by Tantalum Ions, Clusters and Their Oxides: What Can Be Learnt from Studies of Ions in the Gas Phase. Chemphyschem 2024:e202400513. [PMID: 39611594 DOI: 10.1002/cphc.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 11/30/2024]
Abstract
The emission control of harmful compounds and greenhouse gases and the development of alternative, sustainable fuel sources is a major focus in current research. A solution for this problem lies in the development of efficient catalytic materials. Here, gas phase model systems represent prominent examples for obtaining fundamental insights on reaction properties of prospective catalytic systems. In this work, we review results from studies of tantalum clusters and their oxides in the gas phase and discuss insights with a potential relevance for applied systems. We focus on reactions that are essential for sustainable chemistry in the future. In detail, we address the activation of methane, which may enable the transformation of a greenhouse gas to a chemical feedstock, and we discuss the activation of NH3, which may function as an alternative energy carrier whose unwanted emission needs to be curbed in future applications. Finally, we consider the activation of N2 as a third reaction, since reducing the high energy demand of ammonia synthesis still bears significant challenges. While tantalum may be an interesting catalytic material, the discussed studies may also serve as benchmark for investigations of other materials.
Collapse
Affiliation(s)
- Flora Siegele
- Lehrstuhl für Physikalische Chemie I, Technische Universität München, School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie I, Technische Universität München, School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Detlef Schooss
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie I, Technische Universität München, School of Natural Sciences, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
3
|
Zhao XG, Zhao YX, Liu QY, He SG. Dry Reforming of Methane to Syngas Mediated by Rhodium-Cobalt Oxide Cluster Anions Rh 2CoO . J Phys Chem Lett 2024; 15:9167-9174. [PMID: 39213481 DOI: 10.1021/acs.jpclett.4c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Dry reforming of methane (DRM) to syngas is an important route to co-convert CH4 and CO2. However, the highly endothermic nature of DRM induces the thermocatalysis to commonly operate at high temperatures that inevitably causes coke deposition through pyrolysis of methane. Herein, benefiting from the mass spectrometric experiments complemented with quantum chemical calculations, we have discovered that the bimetallic oxide cluster Rh2CoO- can mediate the co-conversion of CH4 and CO2 at room temperature giving rise to two free H2 molecules and two adsorbed CO molecules (COads). The only elementary step requiring the input of external energy (e.g., high temperature) is desorption of COads from the reaction intermediate Rh2CoOC2O2-. The doping effect of Co has also been clarified that the Co could tune the charge distribution and orbital energy of the active metal Rh, enabling the enhancement of cluster reactivity toward C-H activation, which is essential to facilitating the DRM to syngas. This work not only underlines the importance of temperature control over elementary steps in practical thermocatalysis but also identifies a promising active species containing the late 3d transition metal to drive DRM to syngas. The findings could provide novel insights into design of bimetallic catalysts for co-conversion of CH4 and CO2 at low temperatures.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
4
|
Hu YZ, Wei GP, Zhao YX, Liu QY, He SG. Experimental Reactivity of (MoO 3) NO - ( N = 1-21) Cluster Anions with C 1-C 4 Alkanes: A Simple Model to Predict the Reactivity with Methane. J Phys Chem A 2024; 128:5253-5259. [PMID: 38937133 DOI: 10.1021/acs.jpca.4c01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Metal oxide clusters with atomic oxygen radical anions are important model systems to study the mechanisms of activating and transforming very stable alkane molecules under ambient conditions. It is extremely challenging to characterize the activation and conversion of methane, the most stable alkane molecule, by metal oxide cluster anions due to the low reactivity of the anionic species. In this study, using a ship-lock type reactor that could be run at relatively high pressure conditions to provide a high number of collisions in ion-molecule reactions, the rate constants of the reactions between (MoO3)NO- (N = 1-21) cluster anions and the light alkanes (C1-C4) were measured under thermal collision conditions. The relationships among the reaction rates of different alkanes were obtained to establish a model to predict the low rate constants with methane from the high rate constants with C2-C4 alkanes. The model was tested by using available experimental results in literature. This study provides a new method to estimate the relatively low reactivity of atomic oxygen radical anions with methane on metal oxide clusters.
Collapse
Affiliation(s)
- Yu-Zhe Hu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Li Q, Liu QY, Zhao YX, He SG. Conversion of Methane at Room Temperature Mediated by the Ta-Ta σ-Bond. JACS AU 2024; 4:1824-1832. [PMID: 38818048 PMCID: PMC11134373 DOI: 10.1021/jacsau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/01/2024]
Abstract
Metal-metal bonds constitute an important type of reactive centers for chemical transformation; however, the availability of active metal-metal bonds being capable of converting methane under mild conditions, the holy grail in catalysis, remains a serious challenge. Herein, benefiting from the systematic investigation of 36 metal clusters of tantalum by using mass spectrometric experiments complemented with quantum chemical calculations, the dehydrogenation of methane at room temperature was successfully achieved by 18 cluster species featuring σ-bonding electrons localized in single naked Ta-Ta centers. In sharp contrast, the other 18 remaining clusters, either without naked Ta-Ta σ-bond or with σ-bonding electrons delocalized over multiple Ta-Ta centers only exhibit molecular CH4-adsorption reactivity or inertness. Mechanistic studies revealed that changing cluster geometric configurations and tuning the number of simple inorganic ligands (e.g., oxygen) could flexibly manipulate the presence or absence of such a reactive Ta-Ta σ-bond. The discovery of Ta-Ta σ-type bond being able to exhibit outstanding activity toward methane conversion not only overturns the traditional recognition that only the metal-metal π- or δ-bonds of early transition metals could participate in bond activation but also opens up a new access to design of promising metal catalysts with dual-atom as reactive sites for chemical transformations.
Collapse
Affiliation(s)
- Qian Li
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, PR China
| | - Qing-Yu Liu
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, PR China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, PR China
| | - Yan-Xia Zhao
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, PR China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, PR China
| | - Sheng-Gui He
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy
of Sciences, Beijing 100190, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, PR China
| |
Collapse
|
6
|
Hu S, Hu K, Zhang Y, Shah SA, Zhao Z, Zuo Z, Lu S, Tang S, Zhu W, Fang L, Song F. Oxidation behavior and atomic structural transition of size-selected coalescence-resistant tantalum nanoclusters. NANOTECHNOLOGY 2024; 35:315603. [PMID: 38688256 DOI: 10.1088/1361-6528/ad4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Herein a series of size-selected TaN(N = 147, 309, 561, 923, 1415, 2057, 6525, 10 000, 20 000) clusters are generated using a gas-phase condensation cluster beam source equipped with a lateral time-of-flight mass-selector. Aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging reveals good thermal stability of TaNclusters in this study. The oxidation-induced amorphization is observed from AC-STEM imaging and further demonstrated through x-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The oxidized Ta predominantly exists in the +5 oxidation state and the maximum spontaneous oxidation depth of the Ta cluster is observed to be 5 nm under prolonged atmosphere exposure. Furthermore, the size-dependent sintering and crystallization processes of oxidized TaNclusters are observed with anin situheating technique, and eventually, ordered structures are restored. As the temperature reaches 1300 °C, a fraction of oxidized Ta309clusters exhibit decahedral and icosahedral structures. However, the five-fold symmetry structures are absent in larger clusters, instead, these clusters exhibit ordered structures resembling those of the crystalline Ta2O5films. Notably, the sintering and crystallization process occurs at temperatures significantly lower than the melting point of Ta and Ta2O5, and the ordered structures resulting from annealing remain well-preserved after six months of exposure to ambient conditions.
Collapse
Affiliation(s)
- Shengyong Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Kuojuei Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Yongxin Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Syed Adil Shah
- School of Biomedical Engineering, Health Science Centre, Shenzhen University Shenzhen, Guangdong 518060, People's Republic of China
| | - Zixiang Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Zewen Zuo
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Siqi Lu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Sichen Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Wuwen Zhu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Liu Fang
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
- Institute of Atom Manufacturing Suzhou Campus, Department, Nanjing University, Nanjing 215163, People's Republic of China
| |
Collapse
|
7
|
Zhou H, Ruan M, Liu QY, Zhao YX, Wang RY, Yang Y, He SG. Size-dependent reactivity of V nO + ( n = 1-9) clusters with ethane. Phys Chem Chem Phys 2024; 26:14186-14193. [PMID: 38713092 DOI: 10.1039/d4cp00857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.
Collapse
Affiliation(s)
- Hang Zhou
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Rui-Yong Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yuan Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Sun CM, Wei GP, Yang Y, Zhao YX. Thermal Reactions of NiAl 3O 6+ and Al 4O 6+ with Methane: Reactivity Enhancement by Doping. J Phys Chem A 2024; 128:1218-1225. [PMID: 38340065 DOI: 10.1021/acs.jpca.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Investigation of the reactivity of heteronuclear metal oxide clusters is an important way to uncover the molecular-level mechanisms of the doping effect. Herein, we performed a comparative study on the reactions of CH4 with NiAl3O6+ and Al4O6+ cluster cations at room temperature to understand the role of Ni during the activation and transformation of methane. Mass spectrometric experiments identify that both NiAl3O6+ and Al4O6+ could bring about hydrogen atom abstraction reaction to generate CH3• radical; however, only NiAl3O6+ has the potential to stabilize [CH3] moiety and then transform [CH3] to CH2O. Density functional theory calculations demonstrate that the terminal oxygen radicals (Ot-•) bound to Al act as the reactive sites for the two clusters to activate the first C-H bond. Although the Ni atom cannot directly participate in methane activation, it can manipulate the electronic environment of the surrounding bridging oxygen atoms (Ob) and enable such Ob to function as an electron reservoir to help Ot-• oxidize CH4 to [H-O-CH3]. The facile reduction of Ni3+ to Ni+ also facilitates the subsequent step of activating the second C-H bond by the bridging "lattice oxygen" (Ob2-), finally enabling the oxidation of methane into formaldehyde. The important role of the dopant Ni played in improving the product selectivity of CH2O for methane conversion discovered in this study allows us to have a possible molecule-level understanding of the excellent performance of the catalysts doping with nickel.
Collapse
Affiliation(s)
- Chu-Man Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuan Yang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
9
|
Wang P, Shi R, Zhao J, Zhang T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305471. [PMID: 37882341 PMCID: PMC10885660 DOI: 10.1002/advs.202305471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Indexed: 10/27/2023]
Abstract
Methane as the main component in natural gas is a promising chemical raw material for synthesizing value-added chemicals, but its harsh chemical conversion process often causes severe energy and environment concerns. Photocatalysis provides an attractive path to active and convert methane into various products under mild conditions with clean and sustainable solar energy, although many challenges remain at present. In this review, recent advances in photocatalytic methane conversion are systematically summarized. As the basis of methane conversion, the activation of methane is first elucidated from the structural basis and activation path of methane molecules. The study is committed to categorizing and elucidating the research progress and the laws of the intricate methane conversion reactions according to the target products, including photocatalytic methane partial oxidation, reforming, coupling, combustion, and functionalization. Advanced photocatalytic reactor designs are also designed to enrich the options and reliability of photocatalytic methane conversion performance evaluation. The challenges and prospects of photocatalytic methane conversion are also discussed, which in turn offers guidelines for methane-conversion-related photocatalyst exploration, reaction mechanism investigation, and advanced photoreactor design.
Collapse
Affiliation(s)
- Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Nie S, Wu L, Wang X. Electron-Delocalization-Stabilized Photoelectrocatalytic Coupling of Methane by NiO-Polyoxometalate Sub-1 nm Heterostructures. J Am Chem Soc 2023; 145:23681-23690. [PMID: 37861371 DOI: 10.1021/jacs.3c07984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The oxidative coupling of methane to C2 oxygenates merits great scientific and technological potential yet remains a challenge due to its inferior selectivity. Subnanomaterials (SNMs) with "p-n-p-n"-type heteroconstructions feature enhanced external field coupling properties and tunable electronic structures, serving as promising catalysts for the selective partial oxidation of methane. Here we develop NiO-polyoxometalate (POM) subnanocoils with a thickness of 1.8 nm, showing excellent catalytic activity toward photoelectrochemical coupling of methane into a C2 product under mild conditions (1 bar, 25 °C) with a notable productivity (up to 4.48 mmol gcat-1 h-1) and a high selectivity (>99%). Under photoelectrochemical coupling, C-H bonds can be activated by NiO, and the resulted *COOH intermediates are stabilized by the delocalized electrons in POM clusters. The contiguous active sites of NiO and POM at the molecular level allow the in situ coupling of *COOH into oxalate. This work points out an economic way for the oxidation of methane under mild conditions and may enlighten the design of functional SNMs from fundamental standpoints.
Collapse
Affiliation(s)
- Siyang Nie
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Zhao XG, Zhao ZP, Zhao YX, He SG. Activation of Methane by Rhodium Clusters on a Model Support C 20H 10. J Phys Chem Lett 2023; 14:9192-9199. [PMID: 37801470 DOI: 10.1021/acs.jpclett.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Supported metals represent an important family of catalysts for the transformation of the most stable alkane, methane, under mild conditions. Here, using state-of-the-art mass spectrometry coupled with a newly designed double ion trap reactor that can run at high temperatures, we successfully immobilize a series of Rhn- (n = 4-8) cluster anions on a model support C20H10. Reactivity measurements at room temperature identify a significantly enhanced performance of large-sized Rh7,8C20H10- toward methane activation compared to that of free Rh7,8-. The "support" acting as an "electron sponge" is emphasized as the key factor to improve the reactivity of large-sized clusters, for which the high electron-withdrawing capability of C20H10 dramatically shifts the active Rh atom from the apex position in free Rh7- to the edge position in "supported" Rh7- to enhance CH4 adsorption, while the flexibility of C20H10 to release electrons further promotes subsequent C-H activation. The Rh atoms in direct contact with the support serve as electron-relay stations for electron transfer between C20H10 and the active Rh atom. This work not only establishes a novel approach to prepare and measure the reactivity of "supported" metal clusters in isolated gas phase but provides useful atomic-scale insights for understanding the chemical behavior of carbon (e.g., graphene)-supported metals in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Zhong-Pu Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
12
|
Li ZY, Horn F, Li Y, Mou LH, Schöllkopf W, Chen H, He SG, Asmis KR. Dinitrogen Activation in the Gas Phase: Spectroscopic Characterization of C-N Coupling in the V 3 C + +N 2 Reaction. Chemistry 2023; 29:e202203384. [PMID: 36511849 DOI: 10.1002/chem.202203384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
We report on cluster-mediated C-N bond formation in the gas phase using N2 as a nitrogen source. The V3 C+ +N2 reaction is studied by a combination of ion-trap mass spectrometry with infrared photodissociation (IRPD) spectroscopy and complemented by electronic structure calculations. The proposed reaction mechanism is spectroscopically validated by identifying the structures of the reactant and product ions. V3 C+ exhibits a pyramidal structure of C1 -symmetry. N2 activation is initiated by adsorption in an end-on fashion at a vanadium site, followed by spontaneous cleavage of the N≡N triple bond and subsequent C-N coupling. The IRPD spectrum of the metal nitride product [NV3 (C=N)]+ exhibits characteristic C=N double bond (1530 cm-1 ) and V-N single bond (770, 541 and 522 cm-1 ) stretching bands.
Collapse
Affiliation(s)
- Zi-Yu Li
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Francine Horn
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of, Unstable and Stable Species, Institution of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| |
Collapse
|
13
|
Lengyel J, Levin N, Ončák M, Jakob K, Tschurl M, Heiz U. Direct Coupling of Methane and Carbon Dioxide on Tantalum Cluster Cations. Chemistry 2023; 29:e202203259. [PMID: 36404276 PMCID: PMC10107500 DOI: 10.1002/chem.202203259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Understanding molecular-scale reaction mechanisms is crucial for the design of modern catalysts with industrial prospect. Through joint experimental and computational studies, we investigate the direct coupling reaction of CH4 and CO2 , two abundant greenhouse gases, mediated by Ta1,4 + ions to form larger oxygenated hydrocarbons. Coherent with proposed elementary steps, we expose products of CH4 dehydrogenation [Ta1,4 CH2 ]+ to CO2 in a ring electrode ion trap. Product analysis and reaction kinetics indicate a predisposition of the tetramers for C-O coupling with a conversion to products of CH2 O, whereas atomic cations enable C-C coupling yielding CH2 CO. Selected experimental findings are supported by thermodynamic computations, connecting structure, electronic properties, and catalyst function. Moreover, the study of bare Ta1,4 + compounds indicates that methane dehydrogenation is a significant initial step in the direct coupling reaction, enabling new, yet unknown reaction pathways.
Collapse
Affiliation(s)
- Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Nikita Levin
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
| | - Konstantin Jakob
- Lehrstuhl für Theoretische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie, TUM School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
14
|
Zhang J, Shen J, Li D, Long J, Gao X, Feng W, Zhang S, Zhang Z, Wang X, Yang W. Efficiently Light-Driven Nonoxidative Coupling of Methane on Ag/NaTaO 3: A Case for Molecular-Level Understanding of the Coupling Mechanism. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiangjie Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinni Shen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Dongmiao Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Xiaochen Gao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Shiying Zhang
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha410022, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou350106, P. R. China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai201208, P. R. China
| |
Collapse
|
15
|
Du S, Liu X, Ju B, Zhang J, Zou J, Li G, Fan H, Xie H, Jiang L. Spectroscopic Identification of the Dinitrogen Fixation and Activation by Metal Carbide Cluster Anions PtC n- ( n = 4-6). Inorg Chem 2023; 62:170-177. [PMID: 36573891 DOI: 10.1021/acs.inorgchem.2c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitrogen fixation is confronted with great challenges in the field of chemistry. Herein, we report that single metal carbides PtCn- and PtCnN2- (n = 4-6) are indispensable intermediates in the process of nitrogen fixation by mass spectrometry coupled with anionic photoelectron spectroscopy, quantum chemical calculations, and simulated density-of-state spectra. The most stable isomers of these cluster anions are characterized to have linear chain structures. The fixation and activation of dinitrogen are facilitated by the charge transfer from Pt and Cn to N2. The significance of π back-donation of the 5d orbital of the Pt atom to the antibonding π orbits of N2 for dinitrogen fixation and activation is discussed in detail. This study not only provides a theoretical basis at the molecular level for the activation of dinitrogen by mononuclear metal carbide clusters but also provides a new paradigm for dinitrogen fixation.
Collapse
Affiliation(s)
- Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,School of Mathematics and Physics, Hebei University of Engineering, Handan056038, China
| | - Xuegang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Jumei Zhang
- School of Life Science, Ludong University, Yantai, Shandong264025, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China
| |
Collapse
|
16
|
Ban T, Yu XY, Kang HZ, Huang ZQ, Li J, Chang CR. Design of SA-FLP Dual Active Sites for Nonoxidative Coupling of Methane. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tao Ban
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xi-Yang Yu
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Hao-Zhe Kang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jun Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China
| |
Collapse
|
17
|
Tsuji Y, Yoshida M, Kamachi T, Yoshizawa K. Oxidative Addition of Methane and Reductive Elimination of Ethane and Hydrogen on Surfaces: From Pure Metals to Single Atom Alloys. J Am Chem Soc 2022; 144:18650-18671. [PMID: 36153993 DOI: 10.1021/jacs.2c08787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative addition of CH4 to the catalyst surface produces CH3 and H. If the CH3 species generated on the surface couple with each other, reductive elimination of C2H6 may be achieved. Similarly, H's could couple to form H2. This is the outline of nonoxidative coupling of methane (NOCM). It is difficult to achieve this reaction on a typical Pt catalyst surface. This is because methane is overoxidized and coking occurs. In this study, the authors approach this problem from a molecular aspect, relying on organometallic or complex chemistry concepts. Diagrams obtained by extending the concepts of the Walsh diagram to surface reactions are used extensively. C-H bond activation, i.e., oxidative addition, and C-C and H-H bond formation, i.e., reductive elimination, on metal catalyst surfaces are thoroughly discussed from the point of view of orbital theory. The density functional theory method for structural optimization and accurate energy calculations and the extended Hückel method for detailed analysis of crystal orbital changes and interactions play complementary roles. Limitations of monometallic catalysts are noted. Therefore, a rational design of single atom alloy (SAA) catalysts is attempted. As a result, the effectiveness of the Pt1/Au(111) SAA catalyst for NOCM is theoretically proposed. On such an SAA surface, one would expect to find a single Pt monatomic site in a sea of inert Au atoms. This is desirable for both inhibiting overoxidation and promoting reductive elimination.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Masataka Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Mou LH, Li Y, Wei GP, Li ZY, Liu QY, Chen H, He SG. Mutual functionalization of dinitrogen and methane mediated by heteronuclear metal cluster anions CoTaC 2. Chem Sci 2022; 13:9366-9372. [PMID: 36093004 PMCID: PMC9384824 DOI: 10.1039/d2sc02416k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The direct coupling of dinitrogen (N2) and methane (CH4) to construct the N-C bond is a fascinating but challenging approach for the energy-saving synthesis of N-containing organic compounds. Herein we identified a likely reaction pathway for N-C coupling from N2 and CH4 mediated by heteronuclear metal cluster anions CoTaC2 -, which starts with the dissociative adsorption of N2 on CoTaC2 - to generate a Ta δ+-Nt δ- (terminal-nitrogen) Lewis acid-base pair (LABP), followed by the further activation of CH4 by CoTaC2N2 - to construct the N-C bond. The N[triple bond, length as m-dash]N cleavage by CoTaC2 - affording two N atoms with strong charge buffering ability plays a key part, which facilitates the H3C-H cleavage via the LABP mechanism and the N-C formation via a CH3 migration mechanism. A novel Nt triggering strategy to couple N2 and CH4 molecules using metal clusters was accordingly proposed, which provides a new idea for the direct synthesis of N-containing compounds.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Yoshida M, Tsuji Y, Iguchi S, Nishiguchi H, Yamanaka I, Abe H, Kamachi T, Yoshizawa K. Toward Computational Screening of Bimetallic Alloys for Methane Activation: A Case Study of MgPt Alloy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Masataka Yoshida
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shoji Iguchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Hikari Nishiguchi
- Graduate School of Science and Technology, Saitama University, Shimo-Okubo 255, Saitama 338-8570, Japan
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Namiki 1-1,Tsukuba, Ibaraki 305-0044, Japan
| | - Ichiro Yamanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Hideki Abe
- Graduate School of Science and Technology, Saitama University, Shimo-Okubo 255, Saitama 338-8570, Japan
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, Namiki 1-1,Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
20
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
21
|
Yang Y, Zhao Y, He S. Conversion of CH
4
Catalyzed by Gas Phase Ions Containing Metals. Chemistry 2022; 28:e202200062. [DOI: 10.1002/chem.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan Yang
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
22
|
Liu L, Das S, Zhang Z, Kawi S. Nonoxidative Coupling of Methane over Ceria-Supported Single-Atom Pt Catalysts in DBD Plasma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5363-5375. [PMID: 35072474 DOI: 10.1021/acsami.1c21550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasma-catalytic direct nonoxidative coupling of methane (NCM) into C2 hydrocarbons was investigated over ceria-supported atomically dispersed Pt (Pt/CeO2-SAC) and nanoparticle Pt (Pt/CeO2-NP) catalysts in dielectric barrier discharge (DBD) plasma. Nonthermal plasma facilitated C-H bond dissociation in CH4 at low temperatures (<150 °C) and atmospheric pressure. The presence of Pt/CeO2 catalysts in plasma further enhanced CH4 conversion and C2 hydrocarbon selectivity by enabling the conversion of vibrationally excited methane species with high internal energy on active Pt sites. Noticeably, the Pt/CeO2-SAC catalyst displayed a more remarkable performance, with a CH4 conversion of 39% and a C2 selectivity of 54% at 54 W. The enhanced CH4 conversion was attributed to abundant coordinatively unsaturated Pt sites in Pt/CeO2-SAC, which were more active for C-H bond scission. Meanwhile, isolated Pt atoms in Pt/CeO2-SAC promoted C2 hydrocarbon formation by hindering the unselective formation of coke from deep dehydrogenation of CHx• intermediates and higher hydrocarbons from oligomerization reactions.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sonali Das
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Zhikun Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| |
Collapse
|
23
|
Jaroenpanon K, Tiyatha W, Chukeaw T, Sringam S, Witoon T, Wattanakit C, Chareonpanich M, Faungnawakij K, Seubsai A. Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Ren Y, Yang Y, Zhao YX, He SG. Conversion of Methane with Oxygen to Produce Hydrogen Catalyzed by Triatomic Rh 3 - Cluster Anion. JACS AU 2022; 2:197-203. [PMID: 35098236 PMCID: PMC8790732 DOI: 10.1021/jacsau.1c00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Metal catalysts, especially noble metals, have frequently been prepared upon downsizing from nanoparticles to subnanoclusters to catalyze the important reaction of partial oxidation of methane (POM) in order to optimize the catalytic performance and conserve metal resources. Here, benefiting from mass spectrometric experiments in conjunction with photoelectron spectroscopy and quantum chemical calculations, we successfully determine that metal cluster anions composed of only three Rh atoms (Rh3 -) can catalyze the POM reaction with O2 to produce 2H2 + CO2 under thermal collision conditions (∼300 K). The interdependence between CH4 and O2 to protect Rh3 - from collapse and to promote conversion of CH4 → 2H2 has been clarified. This study not only provides a promising metal cluster displaying good catalytic behavior in POM reaction under mild conditions but also reveals a strictly molecular-level mechanism of direct partial oxidation for the production of hydrogen, a promising renewable energy source in the 21st century.
Collapse
Affiliation(s)
- Yi Ren
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuan Yang
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan-Xia Zhao
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing
National Laboratory for Molecular Sciences and CAS Research/Education
Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
25
|
Levin N, Margraf JT, Lengyel J, Reuter K, Tschurl M, Heiz U. CO 2-Activation by size-selected tantalum cluster cations (Ta 1-16+): thermalization governing reaction selectivity. Phys Chem Chem Phys 2022; 24:2623-2629. [PMID: 35029252 DOI: 10.1039/d1cp04469a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of tantalum cluster cations of different sizes toward carbon dioxide are studied in an ion trap under multi-collisional conditions. For all sizes studied, consecutive reactions with several CO2 molecules are observed. This reveals two different pathways, namely oxide formation and the pickup of an entire molecule. Supported by calculations of the thermochemistry of TanO+ formation upon reaction with CO2, changes in the branching ratios at a particular cluster size are related to heat effects due to the vibrational heat capacity of the clusters and the exothermicity of the reaction.
Collapse
Affiliation(s)
- Nikita Levin
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.
| | - Johannes T Margraf
- Lehrstuhl für Theoretische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin D-14195, Germany
| | - Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.
| | - Karsten Reuter
- Lehrstuhl für Theoretische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin D-14195, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.
| | - Ulrich Heiz
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, Garching 85748, Germany.
| |
Collapse
|
26
|
Mou LH, Li Y, Li ZY, Liu QY, Chen H, He SG. Dinitrogen Activation by Heteronuclear Metal Carbide Cluster Anions FeTaC 2-: A 5d Early and 3d Late Transition Metal Strategy. J Am Chem Soc 2021; 143:19224-19231. [PMID: 34731569 DOI: 10.1021/jacs.1c10018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cleavage of the strong N≡N bond has long been a great challenge for energy-efficient dinitrogen (N2) fixation; thus a reasonable design of reactive species to activate N2 under mild conditions is highly desirable and meaningful. Herein a novel N2 activation strategy of combining 5d early (E) and 3d late (L) transition metals (TMs) is proposed, which is verified by the facile and complete N≡N cleavage via the polarized Fe-Ta bond in gas-phase cluster FeTaC2-. The efficient N≡N cleavage benefits from an electronic-level design of highly strengthened donor-acceptor interactions, in which the 5d-ETM (Ta) mainly pushes electrons from occupied 5d-orbitals to N2 π*-orbitals while the 3d-LTM (Fe) simultaneously pulls electrons from N2 σ/π-orbitals to its unoccupied 3d-orbitals. Through employing 5d-ETM and 3d-LTM to play their respective roles, this work provides a new and versatile idea for activating the inert N≡N bond and inspires relevant design of TM-based catalysts.
Collapse
Affiliation(s)
- Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yao Li
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
27
|
Ruan M, Zhao YX, Zhang MQ, He SG. Methane Activation by (MoO 3 ) 5 O - Cluster Anions: The Importance of Orbital Orientation. Chemistry 2021; 28:e202103321. [PMID: 34672031 DOI: 10.1002/chem.202103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 11/07/2022]
Abstract
The reactivity of the molybdenum oxide cluster anion (MoO3 )5 O- , bearing an unpaired electron at a bridging oxygen atom (Ob .- ), towards methane under thermal collision conditions has been studied by mass spectrometry and density functional theory calculations. This reaction follows the mechanism of hydrogen atom transfer (HAT) and is facilitated by the Ob .- radical center. The reactivity of (MoO3 )5 O- can be traced back to the appropriate orientation of the lowest unoccupied molecular orbitals (LUMO) that is essentially the 2p orbital of the Ob .- atom. This study not only makes up the blank of thermal methane activation by the Ob .- radical on negatively charged clusters but also yields new insights into methane activation by the atomic oxygen radical anions.
Collapse
Affiliation(s)
- Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Mei-Qi Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
28
|
Huang ZQ, Chen YT, Chang CR, Li J. Theoretical Insights into Dual-Metal-Site Catalysts for the Nonoxidative Coupling of Methane. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zheng-Qing Huang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - You-Tao Chen
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Shaanxi Yanchang Petroleum (Group) Corp. Ltd., Xi’an 710069, China
| | - Chun-Ran Chang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Zhang T. Recent advances in heterogeneous catalysis for the nonoxidative conversion of methane. Chem Sci 2021; 12:12529-12545. [PMID: 34703539 PMCID: PMC8494125 DOI: 10.1039/d1sc02105b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
The direct conversion of methane to high-value chemicals is an attractive process that efficiently uses abundant natural/shale gas to provide an energy supply. The direct conversion of methane to high-value chemicals is an attractive process that efficiently uses abundant natural/shale gas to provide an energy supply. Among all the routes used for methane transformation, nonoxidative conversion of methane is noteworthy owing to its highly economic selectivity to bulk chemicals such as aromatics and olefins. Innovations in catalysts for selective C-H activation and controllable C-C coupling thus play a key role in this process and have been intensively investigated in recent years. In this review, we briefly summarize the recent advances in conventional metal/zeolite catalysts in the nonoxidative coupling of methane to aromatics, as well as the newly emerging single-atom based catalysts for the conversion of methane to olefins. The emphasis is primarily the experimental findings and the theoretical understanding of the active sites and reaction mechanisms. We also present our perspectives on the design of catalysts for C-H activation and C-C coupling of methane, to shed some light on improving the potential industrial applications of the nonoxidative conversion of methane into chemicals.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
30
|
Eckhard JF, Masubuchi T, Tschurl M, Barnett RN, Landman U, Heiz U. Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. J Phys Chem A 2021; 125:5289-5302. [PMID: 34128681 DOI: 10.1021/acs.jpca.1c02384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energetics of small cationic tantalum clusters and their gas-phase adsorption and dehydrogenation reaction pathways with methane are investigated with ion-trap experiments and spin-density-functional-theory calculations. Tan+ clusters are exposed to methane under multicollision conditions in a cryogenic ring electrode ion-trap. The cluster size affects the reaction efficiency and the number of consecutively dehydrogenated methane molecules. Small clusters (n = 1-4) dehydrogenate CH4 and concurrently eliminate H2, while larger clusters (n > 4) demonstrate only molecular adsorption of methane. Unique behavior is found for the Ta+ cation, which dehydrogenates consecutively up to four CH4 molecules and is predicted theoretically to promote formation of a [Ta(CH2-CH2-CH2)(CH2)]+ product, exhibiting C-C coupled groups. Underlying mechanisms, including reaction-enhancing couplings between potential energy surfaces of different spin-multiplicities, are uncovered.
Collapse
Affiliation(s)
- Jan F Eckhard
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Tsugunosuke Masubuchi
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, United States
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie, Chemistry Department & Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| |
Collapse
|
31
|
Yang Y, Li YK, Zhao YX, Wei GP, Ren Y, Asmis KR, He SG. Catalytic Co-Conversion of CH 4 and CO 2 Mediated by Rhodium-Titanium Oxide Anions RhTiO 2. Angew Chem Int Ed Engl 2021; 60:13788-13792. [PMID: 33890352 PMCID: PMC8251526 DOI: 10.1002/anie.202103808] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 01/26/2023]
Abstract
Catalytic co‐conversion of methane with carbon dioxide to produce syngas (2 H2+2 CO) involves complicated elementary steps and almost all the elementary reactions are performed at the same high temperature conditions in practical thermocatalysis. Here, we demonstrate by mass spectrometric experiments that RhTiO2− promotes the co‐conversion of CH4 and CO2 to free 2 H2+CO and an adsorbed CO (COads) at room temperature; the only elementary step that requires the input of external energy is desorption of COads from the RhTiO2CO− to reform RhTiO2−. This study not only identifies a promising active species for dry (CO2) reforming of methane to syngas, but also emphasizes the importance of temperature control over elementary steps in practical catalysis, which may significantly alleviate the carbon deposition originating from the pyrolysis of methane.
Collapse
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Ya-Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Knut R Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstrasse 2, 04103, Leipzig, Germany
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
32
|
Yang Y, Li Y, Zhao Y, Wei G, Ren Y, Asmis KR, He S. Gemeinsame katalytische Umsetzung von CH
4
und CO
2
durch Rhodium‐Titanoxid‐Anionen RhTiO
2
−. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Ya‐Ke Li
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Yan‐Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Gong‐Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| | - Yi Ren
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
| | - Knut R. Asmis
- Wilhelm-Ostwald Institut für Physikalische und Theoretische Chemie Universität Leipzig Linnéstraße 2 04103 Leipzig Deutschland
| | - Sheng‐Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species Institute of Chemistry Chinese Academy of Sciences Beijing 100190 V.R. China
- University of Chinese Academy of Sciences Beijing 100049 V.R. China
- Beijing National Laboratory for Molecular Sciences and CASResearch/Education Centre of Excellence in Molecular Sciences Beijing 100190 V.R. China
| |
Collapse
|
33
|
Zhao YX, Zhao XG, Yang Y, Ruan M, He SG. Rhodium chemistry: A gas phase cluster study. J Chem Phys 2021; 154:180901. [PMID: 34241019 DOI: 10.1063/5.0046529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the extraordinary catalytic activity in redox reactions, the noble metal, rhodium, has substantial industrial and laboratory applications in the production of value-added chemicals, synthesis of biomedicine, removal of automotive exhaust gas, and so on. The main drawback of rhodium catalysts is its high-cost, so it is of great importance to maximize the atomic efficiency of the precious metal by recognizing the structure-activity relationship of catalytically active sites and clarifying the root cause of the exceptional performance. This Perspective concerns the significant progress on the fundamental understanding of rhodium chemistry at a strictly molecular level by the joint experimental and computational study of the reactivity of isolated Rh-based gas phase clusters that can serve as ideal models for the active sites of condensed-phase catalysts. The substrates cover the important organic and inorganic molecules including CH4, CO, NO, N2, and H2. The electronic origin for the reactivity evolution of bare Rhx q clusters as a function of size is revealed. The doping effect and support effect as well as the synergistic effect among heteroatoms on the reactivity and product selectivity of Rh-containing species are discussed. The ingenious employment of diverse experimental techniques to assist the Rh1- and Rh2-doped clusters in catalyzing the challenging endothermic reactions is also emphasized. It turns out that the chemical behavior of Rh identified from the gas phase cluster study parallels the performance of condensed-phase rhodium catalysts. The mechanistic aspects derived from Rh-based cluster systems may provide new clues for the design of better performing rhodium catalysts including the single Rh atom catalysts.
Collapse
Affiliation(s)
- Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Man Ruan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
34
|
Kraft M, Flores JR, Klopper W, Kappes MM, Schooss D. Structures of Small Tantalum Cluster Anions: Experiment and Theory. J Phys Chem A 2021; 125:3135-3145. [PMID: 33830770 DOI: 10.1021/acs.jpca.1c01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a study of the structural evolution of tantalum cluster anions Tan-, 6 ≤ n ≤ 13 using a combination of trapped ion electron diffraction (TIED) experiments with a variety of electronic structure methods. A genetic algorithm has been employed to establish a set of likely structures for each cluster, their geometries and energetics have been studied by density functional theory (DFT), random phase approximation, and two-component (2C) DFT methods, which include spin-orbit coupling. We find octahedral structures for Ta6- and Ta8- as well as structures based on the pentagonal bipyramid (Ta7- and Ta9-). Ta10--Ta12- are defective icosahedral structures and Ta13- is a distorted icosahedron. For most clusters, we find a good agreement between the theoretically predicted ground-state structures, especially those determined by the 2C method and the TIED results.
Collapse
Affiliation(s)
- Manuel Kraft
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jesús R Flores
- Departamento de Química Física, Facultade de Química, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Wim Klopper
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Detlef Schooss
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
35
|
Chen Z, Wu S, Ma J, Mine S, Toyao T, Matsuoka M, Wang L, Zhang J. Non‐oxidative Coupling of Methane: N‐type Doping of Niobium Single Atoms in TiO
2
–SiO
2
Induces Electron Localization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiayu Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Shinya Mine
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Takashi Toyao
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Katsura Kyoto 615-8520 Japan
| | - Masaya Matsuoka
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
- School of Chemistry & Chemical Engineering Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
36
|
Chen Z, Wu S, Ma J, Mine S, Toyao T, Matsuoka M, Wang L, Zhang J. Non‐oxidative Coupling of Methane: N‐type Doping of Niobium Single Atoms in TiO
2
–SiO
2
Induces Electron Localization. Angew Chem Int Ed Engl 2021; 60:11901-11909. [DOI: 10.1002/anie.202016420] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/16/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Ziyu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jiayu Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Shinya Mine
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Takashi Toyao
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Katsura Kyoto 615-8520 Japan
| | - Masaya Matsuoka
- Department of Applied Chemistry Osaka Prefecture University Gakuen-Cho 1-1 Sakai Osaka 599-8531 Japan
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
- School of Chemistry & Chemical Engineering Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
37
|
Zhu X, Xu F, He Q, Xing Z, Zhang S, Zhang X. Detection of intermediates for diatomic [TaO]+ catalyzed gas-phase reaction of methane coupling to ethane and ethylene by ICP-MS/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Li Y, Wang M, Ding YQ, Zhao CY, Ma JB. Consecutive methane activation mediated by single metal boride cluster anions NbB 4. Phys Chem Chem Phys 2021; 23:12592-12599. [PMID: 34047332 DOI: 10.1039/d1cp01418h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cleavage of all C-H bonds in two methane molecules by gas-phase cluster ions at room temperature is a challenging task. Herein, mass spectrometry and quantum chemical calculations have been used to identify one single metal boride cluster anions NbB4- that can activate eight C-H bonds in two methane molecules and release one H2 molecule each time under thermal collision conditions. In these consecutive reactions, the loaded Nb atoms and the support B4 units play different roles but act synergistically to activate CH4, which is responsible for the interesting reactivity of NbB4-. Moreover, there are some mechanistic differences in these two reactions, including the mechanisms for the first C-H bond activation steps, dihydrogen desorption sites, and major electron donors. This study shows that non-noble metal boride species are reactive enough to facilitate thermal C-H bond cleavages, and boron-based materials may be one kind of potential support material facilitating surface hydrogen transport.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Chong-Yang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
39
|
Lin X, Ma L, Zhao S, Xi Y, Shang H, An G, Lu C. Silica-supported Nb( iii)–CH 3 species can act as an efficient catalyst for the non-oxidative coupling of methane. NEW J CHEM 2021. [DOI: 10.1039/d1nj01039e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Nb(iii)–CH3 catalyst lowers the energetic span of the whole catalytic cycle over its Ta and V analogues.
Collapse
Affiliation(s)
- Xufeng Lin
- Department of Chemistry, College of Science, China University of Petroleum (East China)
- Qingdao
- P. R. China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China)
- Qingdao
| | - Lishuang Ma
- Department of Chemistry, College of Science, China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Shidong Zhao
- Department of Chemistry, College of Science, China University of Petroleum (East China)
- Qingdao
- P. R. China
| | - Yanyan Xi
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China)
- Qingdao
- P. R. China
- College of Chemical Engineering, China University of Petroleum (East China)
- Qingdao
| | - Hongyan Shang
- Department of Chemistry, College of Science, China University of Petroleum (East China)
- Qingdao
- P. R. China
- State Key Laboratory of Heavy Oil Processing China University of Petroleum (East China)
- Qingdao
| | - Gaojun An
- Beijing Institute of New Energy Technology
- Beijing
- P. R. China
| | - Changbo Lu
- Beijing Institute of New Energy Technology
- Beijing
- P. R. China
| |
Collapse
|
40
|
Lengyel J, Levin N, Wensink FJ, Lushchikova OV, Barnett RN, Landman U, Heiz U, Bakker JM, Tschurl M. Carbide Dihydrides: Carbonaceous Species Identified in Ta 4 + -Mediated Methane Dehydrogenation. Angew Chem Int Ed Engl 2020; 59:23631-23635. [PMID: 32966698 PMCID: PMC7814672 DOI: 10.1002/anie.202010794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Indexed: 12/02/2022]
Abstract
The products of methane dehydrogenation by gas‐phase Ta4+ clusters are structurally characterized using infrared multiple photon dissociation (IRMPD) spectroscopy in conjunction with quantum chemical calculations. The obtained spectra of [4Ta,C,2H]+ reveal a dominance of vibrational bands of a H2Ta4C+ carbide dihydride structure over those indicative for a HTa4CH+ carbyne hydride one, as is unambiguously verified by studies employing various methane isotopologues. Because methane dehydrogenation by metal cations M+ typically leads to the formation of either MCH2+ carbene or HMCH+ carbyne hydride structures, the observation of a H2MC+ carbide dihydride structure implies that it is imperative to consider this often‐neglected class of carbonaceous intermediates in the reaction of metals with hydrocarbons.
Collapse
Affiliation(s)
- Jozef Lengyel
- Lehrstuhl für Physikalische Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Nikita Levin
- Lehrstuhl für Physikalische Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Olga V Lushchikova
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Robert N Barnett
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525, ED, Nijmegen, The Netherlands
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
41
|
Lengyel J, Levin N, Wensink FJ, Lushchikova OV, Barnett RN, Landman U, Heiz U, Bakker JM, Tschurl M. Carbid‐Dihydride: kohlenstoffhaltige Spezies identifiziert in der Ta
4
+
‐vermittelten Methandehydrierung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jozef Lengyel
- Lehrstuhl für Physikalische Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Nikita Levin
- Lehrstuhl für Physikalische Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Frank J. Wensink
- Radboud University Institute for Molecules and Materials FELIX Laboratory Toernooiveld 7 6525 ED Nijmegen Niederlande
| | - Olga V. Lushchikova
- Radboud University Institute for Molecules and Materials FELIX Laboratory Toernooiveld 7 6525 ED Nijmegen Niederlande
| | - Robert N. Barnett
- School of Physics Georgia Institute of Technology Atlanta GA 30332 USA
| | - Uzi Landman
- School of Physics Georgia Institute of Technology Atlanta GA 30332 USA
| | - Ueli Heiz
- Lehrstuhl für Physikalische Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Joost M. Bakker
- Radboud University Institute for Molecules and Materials FELIX Laboratory Toernooiveld 7 6525 ED Nijmegen Niederlande
| | - Martin Tschurl
- Lehrstuhl für Physikalische Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| |
Collapse
|
42
|
Amano F, Akamoto C, Ishimaru M, Inagaki S, Yoshida H. Pressure-induced dehydrogenative coupling of methane to ethane by platinum-loaded gallium oxide photocatalyst. Chem Commun (Camb) 2020; 56:6348-6351. [DOI: 10.1039/d0cc01730b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pt/Ga2O3 induced photocatalytic dehydrogenative coupling of CH4 to yield C2H6 under high CH4 pressure.
Collapse
Affiliation(s)
- Fumiaki Amano
- Department of Chemical and Environmental Engineering
- The University of Kitakyushu
- Fukuoka 808-0135
- Japan
- Precursory Research for Embryonic Science and Technology (PRESTO)
| | - Chiho Akamoto
- Department of Chemical and Environmental Engineering
- The University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Mizuki Ishimaru
- Department of Chemical and Environmental Engineering
- The University of Kitakyushu
- Fukuoka 808-0135
- Japan
| | - Satoshi Inagaki
- Precursory Research for Embryonic Science and Technology (PRESTO)
- Japan Science and Technology Agency (JST)
- Saitama 332-0012
- Japan
- Division of Materials Science and Chemical Engineering
| | - Hisao Yoshida
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|