1
|
Czyszczon-Burton T, Montes E, Prana J, Lazar S, Rotthowe N, Chen SF, Vázquez H, Inkpen MS. α,ω-Alkanedibromides Form Low Conductance Chemisorbed Junctions with Silver Electrodes. J Am Chem Soc 2024; 146. [PMID: 39364997 PMCID: PMC11487573 DOI: 10.1021/jacs.4c11241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Chemical groups capable of connecting molecules physically and electrically between electrodes are of critical importance in molecular-scale electronics, influencing junction conductance, variability, and function. While the development of such linkage chemistries has focused on interactions at gold, the distinct reactivity and electronic structure of other electrode metals provides underexplored opportunities to characterize and exploit new binding motifs. In this work we show that α,ω-alkanedibromides spontaneously form well-defined junctions using silver, but not gold, electrodes through application of the glovebox-based scanning tunneling microscope-based break junction method. We systematically evaluate, through a series of additional studies, whether these molecular components form physisorbed or chemisorbed contact geometries, and if they undergo secondary chemical reactions at the silver surface. Critically, we find that the same junctions form when using different halide, or trimethylstannyl, terminal groups, suggestive of an electronically transparent silver-carbon(sp3) contact chemistry. However, the experimental conductance of the junctions we measure with silver electrodes is ∼30× lower than that observed for such junctions comprising gold-carbon(sp3) contacts, which does not align with predictions based on first-principles calculations. We further exclude the possibility that the proposed silver alkyl species undergo α- or β-hydride elimination reactions that result in a distinct contact chemistry through conductance measurements of control molecules that cannot undergo such processes. Applying insights provided from prior temperature-programmed desorption studies and a robust series of atomistic simulations, we ultimately propose that in these experiments we measure alkoxide-terminated junctions formed from the reaction of the chemisorbed alkyl with oxygen that is coadsorbed on the silver surface. This work, in demonstrating that high conductance contact chemistries established using model gold electrodes may not be readily transferred to other metals, underscores the need to directly characterize the interfacial electronic properties and reactivity of electrode metals of wider technological relevance.
Collapse
Affiliation(s)
- Thomas
M. Czyszczon-Burton
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Enrique Montes
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 16200, Czech Republic
| | - Jazmine Prana
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sawyer Lazar
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nils Rotthowe
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sully F. Chen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Héctor Vázquez
- Institute
of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 16200, Czech Republic
| | - Michael S. Inkpen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Guo W, Wu Y, Xie C, Tan X, Lu Z, Li H. Covalent Au-C Contact Formation and C-C Homocoupling Reaction from Organotin Compounds in Single-Molecule Junctions. J Am Chem Soc 2024; 146:26687-26693. [PMID: 39308128 DOI: 10.1021/jacs.4c03925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Formation of new chemical species has been achieved under an electric field by the use of the scanning tunneling microscope break junction technique, yet simultaneous implementation of catalytic reactions both at the organic/metal interface and in the bulk solution remains a challenging task. Herein, we show that n-butyl-substituted organotin-terminated benzene undergoes both an efficient cleavage of the terminal tributyltin group to form a covalent Au-C bond and a homocoupling reaction to yield biphenyl product when subjected to an electric field in the vicinity to Au electrodes. By using ex situ characterization of high-performance liquid chromatography with an UV-vis detector, we demonstrate that the homocoupling reaction can occur with high efficiency under an extremely low tip bias voltage of ∼5 mV. Additionally, we show that the efficiency of the homocoupling reaction varies significantly in different solvents; the choice of the solvent proves to be one of the methods for modulating this reaction. By synthesizing and testing varied molecular backbone structures, we show that an extended biphenyl backbone undergoes homocoupling to form a quarterphenylene backbone, and the C-C coupling reactions are prohibited when additional aurophilic or bulky chemical groups that exhibit a steric blockage are introduced.
Collapse
Affiliation(s)
- Weiyi Guo
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yuhao Wu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Chaochao Xie
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Xuefeng Tan
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Zhenpin Lu
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Haixing Li
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
3
|
Kim L, Czyszczon-Burton TM, Nguyen KM, Stukey S, Lazar S, Prana J, Miao Z, Park S, Chen SF, Inkpen MS. Low Vapor Pressure Solvents for Single-Molecule Junction Measurements. NANO LETTERS 2024; 24:9998-10005. [PMID: 39093922 PMCID: PMC11328178 DOI: 10.1021/acs.nanolett.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nonpolar solvents commonly used in scanning tunneling microscope-based break junction measurements exhibit hazards and relatively low boiling points (bp) that limit the scope of solution experiments at elevated temperatures. Here we show that low toxicity, ultrahigh bp solvents such as bis(2-ethylhexyl) adipate (bp = 417 °C) and squalane (457 °C) can be used to probe molecular junctions at ≥100 °C. With these, we extend solvent- and temperature-dependent conductance trends for junction components such as 4,4'-bipyridine and thiomethyl-terminated oligophenylenes and reveal the gold snapback distance is larger at 100 °C due to increased surface atom mobility. We further show the rate of surface transmetalation and homocoupling reactions using phenylboronic acids increases at 100 °C, while junctions comprising anticipated boroxine condensation products form only at room temperature in an anhydrous glovebox atmosphere. Overall, this work demonstrates the utility of low vapor pressure solvents for the comprehensive characterization of junction properties and chemical reactivity at the single-molecule limit.
Collapse
Affiliation(s)
- Leopold Kim
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas M Czyszczon-Burton
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Kenneth M Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Samantha Stukey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sawyer Lazar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jazmine Prana
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zelin Miao
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Seongje Park
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sully F Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Michael S Inkpen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Yang J, Li Y, Zhang Z, Li H. A bias voltage controlled electrode-molecule interface in single-molecule junctions. Chem Commun (Camb) 2024; 60:5980-5983. [PMID: 38769815 DOI: 10.1039/d4cc01143k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Tuning the electrode-molecule interface stands at the heart of functional single-molecule devices. Herein, we report that the electrode-molecule interface of difluoro-substituted benzothiadiazole (FBTZ)-based single-molecule junctions can be modulated by the bias voltage. At low bias voltage (100 mV), the dative Au-N linkage is formed and at high bias voltage (600 mV), a covalent Au-C linkage is constructed. These junctions show distinct conductance. Interestingly, dominant charge carriers in Au-N- and Au-C-based junctions are different, as evidenced by dft calculations. These results provide a new strategy for regulating the electrode-molecule interface, which will advance the development of molecular electronics.
Collapse
Affiliation(s)
- Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
5
|
Tanaka Y. Organometallics in molecular junctions: conductance, functions, and reactions. Dalton Trans 2024; 53:8512-8523. [PMID: 38712999 DOI: 10.1039/d4dt00668b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Molecular junctions, which involve sandwiching molecular structures between electrodes, play a crucial role in molecular electronics. Recent advances in this field have revealed the vital role of organometallic chemistry in the investigation of molecular junctions, which has added to their well-known contributions to catalysis and materials chemistry. This review summarizes the recent examples of organometallic chemistry applications in molecular junctions, which can be categorized into three types, i.e., class I encompassing molecular junctions with bridging organometallic complexes, class II involving molecular junctions with covalent and noncovalent metal electrode-carbon bonds, and class III comprising organometallic reactions within molecular junctions.
Collapse
Affiliation(s)
- Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Li Y, Zhang Z, Wang R, Tang A, Ma C, Lian C, Tian H, Li H. Suppressing the Conductance of Single-Molecule Junctions Fabricated by sp 2 C-H Bond Metalation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497376 DOI: 10.1021/acsami.3c16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-conducting single-molecule junctions have attracted a great deal of attention, but insulating single-molecule junctions, which are critical in molecular circuits, have been less investigated due to the long-standing challenges. Herein, the in situ formation of a Au-C linker via electrical-potential-mediated sp2 C-H bond metalation of polyfluoroarenes with the assistance of scanning tunneling microscope-based break junction technique is reported. This metalation process is bias-dependent and occurs with an electropositive electrode, and the formed junction is highly oriented. Surprisingly, these polyfluoroarenes exhibit unexpected low conductance even under short molecular lengths and are superior molecular insulators. Flicker noise analysis and DFT calculations confirm that the insulating properties of polyfluoroarenes are ascribed to their multiple fluorine substituents. Our results pave a way for constructing oriented asymmetric molecular junctions and provide an efficient strategy to suppress the single-molecule conductance, which will aid in the design of molecular insulators and advance the development of self-integrating functional molecular circuits.
Collapse
Affiliation(s)
- Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zekai Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Chen L, Yang Z, Lin Q, Li X, Bai J, Hong W. Evolution of Single-Molecule Electronic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1988-2004. [PMID: 38227964 DOI: 10.1021/acs.langmuir.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.
Collapse
Affiliation(s)
- Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Qichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| |
Collapse
|
8
|
Daaoub A, Morris JMF, Béland VA, Demay‐Drouhard P, Hussein A, Higgins SJ, Sadeghi H, Nichols RJ, Vezzoli A, Baumgartner T, Sangtarash S. Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions. Angew Chem Int Ed Engl 2023; 62:e202302150. [PMID: 37029093 PMCID: PMC10953449 DOI: 10.1002/anie.202302150] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/09/2023]
Abstract
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.
Collapse
Affiliation(s)
- Abdalghani Daaoub
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - James M. F. Morris
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Vanessa A. Béland
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Paul Demay‐Drouhard
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Amaar Hussein
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Thomas Baumgartner
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
9
|
Song K, Lin J, Song X, Yang B, Zhu J, Zang Y, Zhu D. Formation of covalent metal-carbon contacts assisted by Ag + for single molecule junctions. Chem Commun (Camb) 2023; 59:6207-6210. [PMID: 37129042 DOI: 10.1039/d3cc01113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Covalent metal-carbon (M-C) contacts have long been pursued for constructing robust and high-performance molecular devices. Existing methods for creating such contacts usually rely on direct chemical reactions between metal electrodes and designed molecular ligands. An inherent limitation of this approach is that the commonly used metal electrodes (e.g., Au) are chemically inert, making it generally difficult to form covalent M-C bonds with molecules. Intriguingly, employing the scanning tunneling microscope-break junction technique, we find that simply adding Ag+ ions to molecular solution enables direct covalent bonding of terminal alkynes to Au electrodes. The bonding process is driven by Ag+ ion coupled in situ reactions and efficiently creates covalent Au/Ag-C interfaces in single molecule junctions. This metal ion assisted method avoids the need for complex synthesis of molecular ligands and works robustly for a wide range of alkyne-terminated molecules, offering a facile and versatile approach for precisely tuning the metal-molecule interface.
Collapse
Affiliation(s)
- Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Gu MW, Chen CH. Effects of Electrode Materials on Electron Transport for Single-Molecule Junctions. Int J Mol Sci 2023; 24:ijms24087277. [PMID: 37108439 PMCID: PMC10139062 DOI: 10.3390/ijms24087277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The contact at the molecule-electrode interface is a key component for a range of molecule-based devices involving electron transport. An electrode-molecule-electrode configuration is a prototypical testbed for quantitatively studying the underlying physical chemistry. Rather than the molecular side of the interface, this review focuses on examples of electrode materials in the literature. The basic concepts and relevant experimental techniques are introduced.
Collapse
Affiliation(s)
- Mong-Wen Gu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Ren FD, Liu YZ, Wang XL, Qiu LL, Meng ZH, Cheng X, Li YX. Strong External Electric Fields Reduce Explosive Sensitivity: A Theoretical Investigation into the Reaction Selectivity in NH2NO2∙∙∙NH3. Molecules 2023; 28:molecules28062586. [PMID: 36985558 PMCID: PMC10058811 DOI: 10.3390/molecules28062586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Controlling the selectivity of a detonation initiation reaction of explosive is essential to reduce sensitivity, and it seems impossible to reduce it by strengthening the external electric field. To verify this, the effects of external electric fields on the initiation reactions in NH2NO2∙∙∙NH3, a model system of the nitroamine explosive with alkaline additive, were investigated at the MP2/6-311++G(2d,p) and CCSD(T)/6-311++G(2d,p) levels. The concerted effect in the intermolecular hydrogen exchange is characterized by an index of the imaginary vibrations. Due to the weakened concerted effects by the electric field along the −x-direction opposite to the “reaction axis”, the dominant reaction changes from the intermolecular hydrogen exchange to 1,3-intramolecular hydrogen transference with the increase in the field strengths. Furthermore, the stronger the field strengths, the higher the barrier heights become, indicating the lower sensitivities. Therefore, by increasing the field strength and adjusting the orientation between the field and “reaction axis”, not only can the reaction selectivity be controlled, but the sensitivity can also be reduced, in particular under a super-strong field. Thus, a traditional concept, in which the explosive is dangerous under the super-strong external electric field, is theoretically broken. Compared to the neutral medium, a low sensitivity of the explosive with alkaline can be achieved under the stronger field. Employing atoms in molecules, reduced density gradient, and surface electrostatic potentials, the origin of the reaction selectivity and sensitivity change is revealed. This work provides a new idea for the technical improvement regarding adding the external electric field into the explosive system.
Collapse
Affiliation(s)
- Fu-De Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Correspondence: ; Tel.: +86-351-392-2117
| | - Ying-Zhe Liu
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Xiao-Lei Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Li-Li Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zi-Hui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Cheng
- School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450003, China
| | - Yong-Xiang Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
12
|
Lin J, Lv Y, Song K, Song X, Zang H, Du P, Zang Y, Zhu D. Cleavage of non-polar C(sp 2)‒C(sp 2) bonds in cycloparaphenylenes via electric field-catalyzed electrophilic aromatic substitution. Nat Commun 2023; 14:293. [PMID: 36653339 PMCID: PMC9849230 DOI: 10.1038/s41467-022-35686-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Electrophilic aromatic substitution (EAS) is one of the most fundamental reactions in organic chemistry. Using an oriented external electric field (OEEF) instead of traditional reagents to tune the EAS reactivity can offer an environmentally friendly method to synthesize aromatic compounds and hold the promise of broadening its scope. Despite these advantages, OEEF catalysis of EAS is difficult to realize, due to the challenge of microscopically orienting OEEF along the direction of electron reorganizations. In this work, we demonstrate OEEF-catalyzed EAS reactions in a series of cycloparaphenylenes (CPPs) using the scanning tunneling microscope break junction (STM-BJ) technique. Crucially, the unique radial π-conjugation of CPPs enables a desired alignment for the OEEF to catalyze the EAS with Au STM tip (or substrate) acting as an electrophile. Under mild conditions, the OEEF-catalyzed EAS reactions can cleave the inherently inert C(sp2)-C(sp2) bond, leading to high-yield (~97%) formation of linear oligophenylenes terminated with covalent Au-C bonds. These results not only demonstrate the feasibility of OEEF catalysis of EAS, but also offer a way of exploring new mechanistic principles of classic organic reactions aided by OEEF.
Collapse
Affiliation(s)
- Junfeng Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Lv
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Kai Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuwei Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjun Zang
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Pingwu Du
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaping Zang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Gupta R, Fereiro JA, Bayat A, Pritam A, Zharnikov M, Mondal PC. Nanoscale molecular rectifiers. Nat Rev Chem 2023; 7:106-122. [PMID: 37117915 DOI: 10.1038/s41570-022-00457-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/15/2023]
Abstract
The use of molecules bridged between two electrodes as a stable rectifier is an important goal in molecular electronics. Until recently, however, and despite extensive experimental and theoretical work, many aspects of our fundamental understanding and practical challenges have remained unresolved and prevented the realization of such devices. Recent advances in custom-designed molecular systems with rectification ratios exceeding 105 have now made these systems potentially competitive with existing silicon-based devices. Here, we provide an overview and critical analysis of recent progress in molecular rectification within single molecules, self-assembled monolayers, molecular multilayers, heterostructures, and metal-organic frameworks and coordination polymers. Examples of conceptually important and best-performing systems are discussed, alongside their rectification mechanisms. We present an outlook for the field, as well as prospects for the commercialization of molecular rectifiers.
Collapse
|
14
|
Precise electrical gating of the single-molecule Mizoroki-Heck reaction. Nat Commun 2022; 13:4552. [PMID: 35931699 PMCID: PMC9355990 DOI: 10.1038/s41467-022-32351-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022] Open
Abstract
Precise tuning of chemical reactions with predictable and controllable manners, an ultimate goal chemists desire to achieve, is valuable in the scientific community. This tunability is necessary to understand and regulate chemical transformations at both macroscopic and single-molecule levels to meet demands in potential application scenarios. Herein, we realise accurate tuning of a single-molecule Mizoroki-Heck reaction via applying gate voltages as well as complete deciphering of its detailed intrinsic mechanism by employing an in-situ electrical single-molecule detection, which possesses the capability of single-event tracking. The Mizoroki-Heck reaction can be regulated in different dimensions with a constant catalyst molecule, including the molecular orbital gating of Pd(0) catalyst, the on/off switching of the Mizoroki-Heck reaction, the promotion of its turnover frequency, and the regulation of each elementary reaction within the Mizoroki-Heck catalytic cycle. These results extend the tuning scope of chemical reactions from the macroscopic view to the single-molecule approach, inspiring new insights into designing different strategies or devices to unveil reaction mechanisms and discover novel phenomena.
Collapse
|
15
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
16
|
Yan SS, Wang JY, Pan ZY, Zheng DS, Zhang QC, Chen ZN. Freezing the conductance of platinum(II) complexes by quantum interference effect. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Qu K, Duan P, Wang JY, Zhang B, Zhang QC, Hong W, Chen ZN. Capturing the Rotation of One Molecular Crank by Single-Molecule Conductance. NANO LETTERS 2021; 21:9729-9735. [PMID: 34761680 DOI: 10.1021/acs.nanolett.1c03626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unveiling the internal dynamics of rotation in molecular machine at single-molecule scale is still a challenge. In this work, three crank-shaped molecules are elaborately designed with the conformational flipping between syn and anti fulfilled by two naphthyl groups rotating freely along 1,3-butadiynyl axis. By investigating the single-molecule conductance using scanning tunnelling microscope break junction (STM-BJ) technique and theoretical simulation, the internal rotation of these crank-shaped molecules is well identified through low and high conductance corresponding to syn- and anti-conformations. As demonstrated by theoretically computational study, the orbital energy changes with the conformational flipping and influences the intraorbital quantum interference, thus eventually modulating the single-molecule conductance. This work demonstrates single-molecule conductance measurement to be a rational approach for characterizing the internal rotation of molecular machines.
Collapse
Affiliation(s)
- Kai Qu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
| | - Bochao Zhang
- Department of Pharmacy, Xiamen Medical College, Xiamen 361005, China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, NEL, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China
| |
Collapse
|
18
|
Barragán A, Robles R, Lorente N, Vitali L. Power discontinuity and shift of the energy onset of a molecular de-bromination reaction induced by hot-electron tunneling. NANOSCALE 2021; 13:15215-15219. [PMID: 34494638 DOI: 10.1039/d1nr04229g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding the mechanism of molecular dissociation under applied bias is a fundamental requirement to progress in (electro)-catalysis as well as in (opto)-electronics. The working conditions of a molecular-based device and the stability of chemical bonds can be addressed in metal-organic junctions by injecting electrons in tunneling conditions. Here, we have correlated the energy of de-bromination of an aryl group with its density of states in a self-assembled dimeric structure of 4'-bromo-4-mercaptobiphenyl adsorbed on a Au(111) surface. We have observed that the electron-energy range where the molecule is chemically stable can be extended, shifting the bias threshold for the rupture of the -C-Br bond continuously from about 2.4 to 4.4 V by changing the electron current. Correspondingly, the power needed for the dissociation drops sharply at 3.6 V, identifying different reaction regimes and the contribution of different molecular resonance states.
Collapse
Affiliation(s)
- Ana Barragán
- Donostia International Physics Center (DIPC), Paseo M Lardizabal 4, 20018 San Sebastián, Spain.
- Advanced Polymers and Materials: Physics, Chemistry and Technology, Chemistry Faculty (UPV/EHU), Paseo M Lardizabal 3, 20018 San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), Paseo M Lardizabal 5, 20018 San Sebastián, Spain.
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), Paseo M Lardizabal 5, 20018 San Sebastián, Spain.
| | - Nicolás Lorente
- Donostia International Physics Center (DIPC), Paseo M Lardizabal 4, 20018 San Sebastián, Spain.
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), Paseo M Lardizabal 5, 20018 San Sebastián, Spain.
| | - Lucia Vitali
- Donostia International Physics Center (DIPC), Paseo M Lardizabal 4, 20018 San Sebastián, Spain.
- Advanced Polymers and Materials: Physics, Chemistry and Technology, Chemistry Faculty (UPV/EHU), Paseo M Lardizabal 3, 20018 San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), Paseo M Lardizabal 5, 20018 San Sebastián, Spain.
- Ikerbasque Research Foundation for Science, Plaza Euskadi, 5, Bilbao 48009, Spain
| |
Collapse
|
19
|
Abstract
Chemical reactions that occur at nanostructured electrodes have garnered widespread interest because of their potential applications in fields including nanotechnology, green chemistry and fundamental physical organic chemistry. Much of our present understanding of these reactions comes from probes that interrogate ensembles of molecules undergoing various stages of the transformation concurrently. Exquisite control over single-molecule reactivity lets us construct new molecules and further our understanding of nanoscale chemical phenomena. We can study single molecules using instruments such as the scanning tunnelling microscope, which can additionally be part of a mechanically controlled break junction. These are unique tools that can offer a high level of detail. They probe the electronic conductance of individual molecules and catalyse chemical reactions by establishing environments with reactive metal sites on nanoscale electrodes. This Review describes how chemical reactions involving bond cleavage and formation can be triggered at nanoscale electrodes and studied one molecule at a time.
Collapse
|
20
|
Yao X, Vonesch M, Combes M, Weiss J, Sun X, Lacroix JC. Single-Molecule Junctions with Highly Improved Stability. NANO LETTERS 2021; 21:6540-6548. [PMID: 34286999 DOI: 10.1021/acs.nanolett.1c01747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-molecule junctions (SMJs) have been fabricated using layers generated by diazonium electroreduction. This process creates a C-Au covalent bond between the molecule and the electrode. Rigid oligomers of variable length, based on porphyrin derivatives in their free base or cobalt complex forms, have been grafted on the surface. The conductance of the oligomers has been studied by a scanning tunneling microscopy break junction (STM-bj) technique and G(t) measurements, and the lifetime of the SMJs has been investigated. The conductance histograms indicate that charge transport in the porphyrins is relatively efficient and influenced by the presence of the cobalt center. With both systems, random telegraph G(t) signals are easily recorded, showing SMJ on/off states. The SMJs then stabilize and exhibit a surprisingly long lifetime around 10 s, and attenuation plots, obtained by both G(t) and STM-bj measurements, give identical values. This work shows that highly stable SMJs can be prepared using a diazonium grafting approach.
Collapse
Affiliation(s)
- Xinlei Yao
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Maxime Vonesch
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Maïwenn Combes
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Jean Weiss
- Institut de Chimie de Strasbourg, CNRS-UMR 7177, Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Xiaonan Sun
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| | - Jean-Christophe Lacroix
- ITODYS, CNRS-UMR 7086, Université de Paris, 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
21
|
Zhang L, Yang X, Li S, Zhang J. Functionalized Silicon Electrodes Toward Electrostatic Catalysis. Front Chem 2021; 9:715647. [PMID: 34386481 PMCID: PMC8353247 DOI: 10.3389/fchem.2021.715647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Oriented external electric fields are now emerging as "smart effectors" of chemical changes. The key challenges in experimentally studying electrostatic catalysis are (i) controlling the orientation of fields along the reaction axis and (ii) finely adjusting the magnitudes of electrostatic stimuli. Surface models provide a versatile platform for addressing the direction of electric fields with respect to reactants and balancing the trade-off between the solubility of charged species and the intensity of electric fields. In this mini-review, we present the recent advances that have been investigated of the electrostatic effect on the chemical reaction on the monolayer-functionalized silicon surfaces. We mainly focus on elucidating the mediator/catalysis role of static electric fields induced from either solid/liquid electric double layers at electrode/electrolyte interfaces or space charges in the semiconductors, indicating the electrostatic aspects is of great significance in the semiconductor electrochemistry, redox electroactivity, and chemical bonding. Herein, the functionalization of silicon surfaces allows scientists to explore electrostatic catalysis from nanoscale to mesoscale; most importantly, it provides glimpses of the wide-ranging potentials of oriented electric fields for switching on/off the macroscale synthetic organic electrochemistry and living radical polymerization.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
- Foshan (Southern China) Institute for New Materials, Foshan, China
| | - Xiaohua Yang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - JianMing Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Chen H, Jiang F, Hu C, Jiao Y, Chen S, Qiu Y, Zhou P, Zhang L, Cai K, Song B, Chen XY, Zhao X, Wasielewski MR, Guo H, Hong W, Stoddart JF. Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. J Am Chem Soc 2021; 143:8476-8487. [PMID: 34043344 DOI: 10.1021/jacs.1c03141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Feng Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Hu
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Su Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hong Guo
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
23
|
Yu S, Vermeeren P, Hamlin TA, Bickelhaupt FM. How Oriented External Electric Fields Modulate Reactivity. Chemistry 2021; 27:5683-5693. [PMID: 33289179 PMCID: PMC8049047 DOI: 10.1002/chem.202004906] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Indexed: 01/27/2023]
Abstract
A judiciously oriented external electric field (OEEF) can catalyze a wide range of reactions and can even induce endo/exo stereoselectivity of cycloaddition reactions. The Diels-Alder reaction between cyclopentadiene and maleic anhydride is studied by using quantitative activation strain and Kohn-Sham molecular orbital theory to pinpoint the origin of these catalytic and stereoselective effects. Our quantitative model reveals that an OEEF along the reaction axis induces an enhanced electrostatic and orbital interaction between the reactants, which in turn lowers the reaction barrier. The stronger electrostatic interaction originates from an increased electron density difference between the reactants at the reactive center, and the enhanced orbital interaction arises from the promoted normal electron demand donor-acceptor interaction driven by the OEEF. An OEEF perpendicular to the plane of the reaction axis solely stabilizes the exo pathway of this reaction, whereas the endo pathway remains unaltered and efficiently steers the endo/exo stereoselectivity. The influence of the OEEF on the inverse electron demand Diels-Alder reaction is also investigated; unexpectedly, it inhibits the reaction, as the electric field now suppresses the critical inverse electron demand donor-acceptor interaction.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Pascal Vermeeren
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
24
|
Li H, Kopiec G, Müller F, Nyßen F, Shimizu K, Ceccato M, Daasbjerg K, Plumeré N. Spectroscopic Evidence for a Covalent Sigma Au-C Bond on Au Surfaces Using 13C Isotope Labeling. JACS AU 2021; 1:362-368. [PMID: 33829214 PMCID: PMC8016281 DOI: 10.1021/jacsau.0c00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 05/20/2023]
Abstract
The Au-C linkage has been demonstrated as a robust interface for coupling thin organic films on Au surfaces. However, the nature of the Au-C interaction remains elusive up to now. Surface-enhanced Raman spectroscopy was previously used to assign a band at 412 cm-1 as a covalent sigma Au-C bond for films generated by spontaneous reduction of the 4-nitrobenzenediazonium salt on Au nanoparticles. However, this assignment is disputed based on our isotopic shift study. We now provide direct evidence for covalent Au-C bonds on the surface of Au nanoparticles using 13C cross-polarization/magic angle spinning solid-state NMR spectroscopy combined with isotope substitution. A 13C NMR shift at 165 ppm was identified as an aromatic carbon linked to the gold surface, while the shift at 148 ppm was attributed to C-C junctions in the arylated organic film. This demonstration of the covalent sigma Au-C bond fills the gap in metal-C bonds for organic films on surfaces, and it has great practical and theoretical significance in understanding and designing a molecular junction based on the Au-C bond.
Collapse
Affiliation(s)
- Huaiguang Li
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
- Campus
Straubing for Biotechnology and Sustainability, Technical University Munich, Schulgasse 22, 94315 Straubing, Germany
- . (H.L.)
| | - Gabriel Kopiec
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Frank Müller
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Frauke Nyßen
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Kyoko Shimizu
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Marcel Ceccato
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Interdisciplinary
Nanoscience Center/Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Nicolas Plumeré
- Center
for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
- Campus
Straubing for Biotechnology and Sustainability, Technical University Munich, Schulgasse 22, 94315 Straubing, Germany
- . (N.P.)
| |
Collapse
|
25
|
Ren FD, Shi WJ, Cao DL, Li YX, Zhang DH, Wang XF, Shi ZY. External electric field reduces the explosive sensitivity: a theoretical investigation into the hydrogen transference kinetics of the NH 2NO 2∙∙∙H 2O complex. J Mol Model 2020; 26:351. [PMID: 33241433 DOI: 10.1007/s00894-020-04607-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Controlling the selectivity of detonation initiation reaction to reduce the explosive sensitivity has been a Holy Grail in the field of energetic materials. The effects of the external electric fields on the homolysis of the N-NO2 bond and initiation reaction dynamics of NH2NO2∙∙∙H2O (i.e., intermolecular and 1,3-intramolecular hydrogen transfers) were investigated at the MP2/6-311++G(2d,p) and CCSD/6-311++G(2d,p)//MP2/6-311++G(2d,p) levels. The results show that the N-NO2 bond is not the "trigger linkage." The notable transiliences of the activation energy of the intermolecular hydrogen transfer are found with the field strength of - 0.012 a.u. along the -x-direction, leading to the conversion of the main reaction between the intermolecular and 1,3-intramolecular hydrogen transference. The activation energies of two kinds of the hydrogen transferences are increased under the external electric fields along the -y-direction. In particular, due to the conversion of the main reaction, the activation energies of the overall reaction are increased significantly along the -x-direction, leading to the significant reduced explosive sensitivities. Therefore, by controlling the field strengths and orientations between the "reaction axis" and external electric field along the y- and x-directions, the selectivity of the initiation reaction could be controlled and the explosive sensitivity could be reduced. Employing AIM (atoms in molecules) and surface electrostatic potentials, the origin of the control of reaction selectivity and the reduction of sensitivity is revealed. This work is of great significance to the improvement of the technology that the external electric fields are added safely into the energetic material system to enhance the explosive performance. Graphical abstract.
Collapse
Affiliation(s)
- Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Wen-Jing Shi
- Second Hospital of Shanxi Medical University, Taiyuan, 030053, China
| | - Duan-Lin Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Yong-Xiang Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - De-Hua Zhang
- Shanxi North Jindong Chemical Industries Co., Ltd, Yangquan, 045000, China
| | - Xian-Feng Wang
- Shanxi North Jindong Chemical Industries Co., Ltd, Yangquan, 045000, China
| | - Zhao-Yang Shi
- Shanxi North Jindong Chemical Industries Co., Ltd, Yangquan, 045000, China
| |
Collapse
|
26
|
Shaik S, Danovich D, Joy J, Wang Z, Stuyver T. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. J Am Chem Soc 2020; 142:12551-12562. [PMID: 32551571 DOI: 10.1021/jacs.0c05128] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This Perspective discusses oriented external-electric-fields (OEEF), and other electric-field types, as "smart reagents", which enable in principle control over wide-ranging aspects of reactivity and structure. We discuss the potential of OEEFs to control nonredox reactions and impart rate-enhancement and selectivity. An OEEF along the "reaction axis", which is the direction whereby electronic reorganization converts reactants' to products' bonding, will accelerate reactions, control regioselectivity, induce spin-state selectivity, and elicit mechanistic crossovers. Simply flipping the direction of the OEEF will lead to inhibition. Orienting the OEEF off the reaction axis enables control over stereoselectivity, enantioselectivity, and product selectivity. For polar/polarizable reactants, the OEEF itself will act as tweezers, which orient the reactants and drive their reaction. OEEFs also affect bond-dissociation energies and dissociation modes (covalent vs ionic), as well as alteration of molecular geometries and supramolecular aggregation. The "key" to gaining access to this toolbox provided by OEEFs is microscopic control over the alignment between the molecule and the applied field. We discuss the elegant experimental methods which have been used to verify the theoretical predictions and describe various alternative EEF sources and prospects for upscaling OEEF catalysis in solvents. We also demonstrate the numerous ways in which the OEEF effects can be mimicked by use of (designed) local-electric fields (LEFs), i.e., by embedding charges or dipoles into molecules. LEFs and OEEFs are shown to be equivalent and to obey the same ground rules. Outcomes are exemplified for Diels-Alder cycloadditions, oxidative addition of bonds by transition-metal complexes, H-abstractions by oxo-metal species, ionic cleavage of halogen bonds, methane activation, etc.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - David Danovich
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Jyothish Joy
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Zhanfeng Wang
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel
| | - Thijs Stuyver
- Institute of Chemistry, Edmond J. Safra Compus at Givat Ram, The Hebrew University, Jerusalem 91904, Israel.,Algemene Chemie, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|