1
|
Doheny PW, Stenning GBG, Brookfield A, Orlandi F, Collison D, Manuel P, Carr ST, Saines PJ. Low-Temperature Ferromagnetic Order in a Two-Level Layered Co 2+ Material. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8208-8216. [PMID: 39279907 PMCID: PMC11393796 DOI: 10.1021/acs.chemmater.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
The magnetic properties of a 2D layered material consisting of high-spin Co2+ complexes, [Co(NH3NH2)2(H2O)2Cl2]Cl2 (CoHyd 2 Cl 4 ), have been extensively characterized using electron paramagnetic resonance, magnetic susceptibility, and low-temperature heat capacity measurements. Electron paramagnetic resonance spectroscopy studies suggest that below 50 K, the J = 3/2 orbital triplet state of Co is gradually depopulated in favor of the J = 1/2 spin state, which is dominant below 20 K. In light of this, the magnetic susceptibility has been fitted with a two-level model, indicating that the interactions in this material are much weaker than previously thought. This two-level model is unable to fit the data at low temperatures and, combined with electron paramagnetic resonance spectroscopy, suggests that ferromagnetic interactions between Co2+ cations in the J = 1/2 state become significant approaching 2 K. Heat capacity measurements suggest the emergence of a long-range ordered state below 246 mK, which neutron diffraction confirms to be ferromagnetic.
Collapse
Affiliation(s)
- Patrick W Doheny
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury CT2 7NH, U.K
| | - Gavin B G Stenning
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K
| | - Adam Brookfield
- Department of Chemistry and Photon Science Institute, EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Fabio Orlandi
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K
| | - David Collison
- Department of Chemistry and Photon Science Institute, EPSRC National Research Facility for Electron Paramagnetic Resonance Spectroscopy, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Pascal Manuel
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, U.K
| | - Sam T Carr
- School of Physics and Astronomy, Ingram Building, University of Kent, Canterbury CT2 7NH, U.K
| | - Paul J Saines
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury CT2 7NH, U.K
| |
Collapse
|
2
|
Du SN, Deng W, Liu JC, Chen YC, Yao CY, Zhou YQ, Wu SG, Liu JL, Tong ML. Phase Transition Control in Molecular Solids via Complementarity of Hydrogen-Bond Strength. Chemistry 2024; 30:e202401395. [PMID: 38802980 DOI: 10.1002/chem.202401395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Phase transitions in molecular solids involve synergistic changes in chemical and electronic structures, leading to diversification in physical and chemical properties. Despite the pivotal role of hydrogen bonds (H-bonds) in many phase-transition materials, it is rare and challenging to chemically regulate the dynamics and to elucidate the structure-property relationship. Here, four high-spin CoII compounds were isolated and systematically investigated by modifying the ligand terminal groups (X=S, Se) and substituents (Y=Cl, Br). S-Cl and Se-Br undergo a reversible structural phase transition near room temperature, triggering the rotation of 15-crown-5 guests and the swing between syn- and anti-conformation of NCX- ligands, accompanied by switchable magnetism. Conversely, S-Br and Se-Cl retain stability in ordered and disordered phases, respectively. H-bonds geometric analysis and ab initio calculations reveal that the electronegativity of X and Y affects the strength of NY-ap-H⋅⋅⋅X interactions. Entropy-driven structural phase transitions occur when the H-bond strength is appropriate; otherwise, the phase stays unchanged if it is too strong or weak. This work highlights a phase transition driven by H-bond strength complementarity - pairing strong acceptor with weak donor and vice versa, which offers a straightforward and effective approach for designing phase-transition molecular solids from a chemical perspective.
Collapse
Affiliation(s)
- Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chan-Ying Yao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ying-Qian Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
4
|
Zenno H, Sekine Y, Zhang Z, Hayami S. Solvation/desolvation induced reversible distortion change and switching between spin crossover and single molecular magnet behaviour in a cobalt(II) complex. Dalton Trans 2024; 53:5861-5870. [PMID: 38411596 DOI: 10.1039/d3dt03936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.
Collapse
Affiliation(s)
- Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Zhongyue Zhang
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
5
|
Masuda S, Kusumoto S, Okamura M, Hikichi S, Tokunaga R, Hayami S, Kim Y, Koide Y. Thermosalient effect of a naphthalene diimide and tetrachlorocobaltate hybrid and changes of color and magnetic properties by ammonia vapor. Dalton Trans 2023; 52:10531-10536. [PMID: 37458173 DOI: 10.1039/d3dt01822a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An organic-inorganic hybrid metal halide (OIMH), namely the electron-deficient naphthalene diimide (NDI) and [CoCl4]2- hybrid (1), showed potential as a sensor for ammonia and amines, in addition to magnetic changes upon vapochromism. Crystal 1 exhibited thermosalient behavior such as leaping and movement, at around 130 °C, which could be explained to be associated with the removal of water molecules from the crystal lattice as shown by TGA and DSC. Compound 1 changed from green to black within 5 minutes when exposed to ammonia vapor, which was attributed to the radical formation in the NDI moiety as evidenced by ESR, and this phenomenon was preserved even when other mono- and di-alkylamines were applied. The exposure of 1 to ammonia resulted in a subsequent color alteration, progressing from black to a gradually dark orange after one day (1_NH3_1 day). This transformation was concomitant with the formation of [Co(NH3)6]3+ from [CoCl4]2-, leading to a modification of the magnetic properties from paramagnetic Co(II) (S = 3/2) to diamagnetic Co(III) (S = 0). Based on these findings, compound 1 represents the first example of an OIMH that exhibits thermosalient behaviour, color change, and magnetic conversion upon exposure to ammonia.
Collapse
Affiliation(s)
- Shunya Masuda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Sotaro Kusumoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Masaya Okamura
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Shiro Hikichi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| | - Ryuya Tokunaga
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Koide
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan.
| |
Collapse
|
6
|
Change in the Electronic Structure of the Cobalt(II) Ion in a One-Dimensional Polymer with Flexible Linkers Induced by a Structural Phase Transition. Int J Mol Sci 2022; 24:ijms24010215. [PMID: 36613658 PMCID: PMC9820815 DOI: 10.3390/ijms24010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
A new 1D-coordination polymer [Co(Piv)2(NH2(CH2)6NH2)]n (1, Piv is Me3CCO2- anion) was obtained, the mononuclear fragments {Co(O2CR)2} within which are linked by μ-bridged molecules of hexamethylenediamine (NH2(CH2)6NH2). For this compound, two different monoclinic C2/c (α-1) and P2/n (β-1) phases were found at room temperature by single-crystal X-ray diffraction analysis, with a similar structure of chains and their packages in unit cells. The low-temperature phase (γ-1) of crystal 1 at 150 K corresponds to the triclinic space group P-1. As the temperature decreases, the structural phase transition (SPT) in the α-1 and β-1 crystals is accompanied by an increase in the crystal packing density caused by the rearrangements of both H-bonds and the nearest ligand environment of the cobalt atom ("octahedral CoN2O4 around the metal center at room temperature" → "pseudo-tetrahedral CoN2O2 at 150 K"). The SPT was confirmed by DSC in the temperature range 210-150 K; when heated above 220 K, anomalies in the behavior of the heat flow are observed, which may be associated with the reversibility of SPT; endo effects are observed up to 300 K. The SPT starts below 200 K. At 100 K, a mixture of phases was found in sample 1: 27% α-1 phase, 61% γ-1 phase. In addition, at 100 K, 12% of the new δ-1 phase was detected, which was identified from the diffraction pattern at 260 K upon subsequent heating: the a,b,c-parameters and unit cell volume are close to the structure parameters of γ-1, and the values of the α,β,γ-angles are significantly different. Further heating leads to a phase transition from δ-1 to α-1, which both coexist at room temperature. According to the DC magnetometry data, during cooling and heating, the χMT(T) curves for 1 form a hysteresis loop with ~110 K, in which the difference in the χMT values reaches 9%. Ab initio calculations of the electronic structure of cobalt(II) in α-1 and γ-1 have been performed. Based on the EPR data at 10 K and the ab initio calculations, the behavior of the χMT(T) curve for 1 was simulated in the temperature range of 2-150 K. It was found that 1 exhibits slow magnetic relaxation in a field of 1000 Oe.
Collapse
|
7
|
Schreck C, Weihermüller J, Thoma P, Rosenfeldt S, Drechsler M, Förster C, Heinze K, Hörner G, Weber B. Solvent‐dependent self‐assembly of an amphiphilic copper(II) complex with bulky head groups. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Markus Drechsler
- Universitat Bayreuth Keylab Electron and Optical Microscopy GERMANY
| | - Christoph Förster
- Mainz University: Johannes Gutenberg Universitat Mainz Chemistry GERMANY
| | - Katja Heinze
- Mainz University: Johannes Gutenberg Universitat Mainz Chemistry GERMANY
| | | | - Birgit Weber
- Universitat Bayreuth Fachbereich Chemie Universitätsstr. 30, NW I 95440 Bayreuth GERMANY
| |
Collapse
|
8
|
Achieving large thermal hysteresis in an anthracene-based manganese(II) complex via photo-induced electron transfer. Nat Commun 2022; 13:2646. [PMID: 35551184 PMCID: PMC9098415 DOI: 10.1038/s41467-022-30425-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1–O2–C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism. Achieving magnetic bistability with large thermal hysteresis is still a challenge in material science. Here, the authors report a Mn(II) chain complex that enables light-induced magnetic bistability with a 177 K thermal hysteresis loop.
Collapse
|
9
|
Affiliation(s)
- Milica Feldt
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Theory & Catalysis Albert-Einstein-Str 29A 18059 Rostock GERMANY
| | - Quan Manh Phung
- Nagoya University: Nagoya Daigaku Department of Chemistry JAPAN
| |
Collapse
|
10
|
Zhao XH, Shao D, Chen JT, Gan DX, Yang J, Zhang YZ. A trinuclear {FeIII2FeII} complex involving both spin and non-spin transitions exhibits three-step and wide thermal hysteresis. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Syntheses and properties of mononuclear cobalt-dioxolene complexes with the ancillary ligand containing bulky quinoline rings – Electronic state manipulation of the complexes by steric effect. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
Three new ionic salts containing [M(CN)8]4− (M = MoIV and WIV) were prepared using large complex cations based on a non-conventional motif built with the tris(2-aminoethyl)amine (noted hereafter tren) ligand, [{M’(tren)}3(μ-tren)]6+ (M’ = CuII and ZnII). The crystal structures of the three compounds show that the atomic arrangement is formed by relatively isolated anionic and cationic entities. The three compounds were irradiated with a blue light at low temperature, and show a significant photomagnetic effect. The remarkable properties of these compounds are (i) the long-lived photomagnetic metastable states for the [Mo(CN)8]4−-based compounds well above 200 K and (ii) the rare efficient photomagnetic properties of the [W(CN)8]4−-based compound. These photomagnetic properties are compared with the singlet-triplet conversion recently reported for the K4[Mo(CN)8]·2H2O compound.
Collapse
|
13
|
Zenno H, Kobayashi F, Nakamura M, Sekine Y, Lindoy LF, Hayami S. Hydrogen bond-induced abrupt spin crossover behaviour in 1-D cobalt(II) complexes - the key role of solvate water molecules. Dalton Trans 2021; 50:7843-7853. [PMID: 34008663 DOI: 10.1039/d1dt01069g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The magnetic properties and structural aspects of the 1-D cobalt(ii) complexes, [Co(pyterpy)Cl2]·2H2O (1·2H2O; pyterpy = 4'-(4'''-pyridyl)-2,2':6',2''-terpyridine) and [Co(pyethyterpy)Cl2]·2H2O (2·2H2O; pyethyterpy = 4'-((4'''-pyridyl)ethynyl)-2,2':6',2''-terpyridine) are reported. In each complex the central cobalt(ii) ion displays an octahedral coordination environment composed of three nitrogen donors from the terpyridine moiety, a nitrogen donor from a pyridyl group and two chloride ligands which occupy the axial sites. 1·2H2O exhibits abrupt spin-crossover (SCO) behaviour (T1/2↓ = 218 K; T1/2↑ = 227 K) along with a thermal hysteresis loop, while 2·2H2O and the dehydrated species 1 and 2 exhibit high-spin (HS) states at 2-300 K as well as field-induced single-molecule magnet (SMM) behaviour attributed to the presence of magnetic anisotropic HS cobalt(ii) species (S = 3/2). 1·2H2O exhibited reversible desorption/resorption of its two water molecules, revealing reversible switching between SCO and SMM behaviour triggered by the dehydration/rehydration processes. Single crystal X-ray structural analyses revealed that 1·2H2O crystalizes in the orthorhombic space group Pcca while 2 and 2·2H2O crystallize in the monoclinic space group P2/n. Each of the 1-D chains formed by 1·2H2O in the solid state are bridged by hydrogen bonds between water molecules and chloride groups to form a 2-D layered structure. The water molecules bridging 1-D chains in 1·2H2O interact with the chloride ligands occupying the axial positions, complementing the effect of Jahn-Teller distortion and contributing to the abrupt SCO behaviour and associated stabilization of the LS state.
Collapse
Affiliation(s)
- Hikaru Zenno
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Fumiya Kobayashi
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan and Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
14
|
Wang RG, Meng YS, Gao FF, Gao WQ, Liu CH, Li A, Liu T, Zhu YY. Ligand symmetry significantly affects spin crossover behaviour in isomeric [Fe(pybox) 2] 2+ complexes. Dalton Trans 2021; 50:3369-3378. [PMID: 33595584 DOI: 10.1039/d0dt03978k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of the correlation between the spin-state behaviour and the structural features in transition-metal complexes is of pronounced importance to the design of spin crossover compounds with high performance. However, the study of the influence of ligand symmetry on the spin crossover properties is still limited due to the shortage of suitable structural systems. Herein we report the magneto-structural correlations of three mononuclear Fe(ii) isomers with respect to their ligand symmetry. In this work, two phenyl-substituted meso and optically pure pybox ligands were employed to construct meso (1), optically pure (2), and racemic (3) ligand types of [Fe(pybox)2]2+ complexes. Their magnetic susceptibilities were measured via temperature-dependent paramagnetic 1H NMR spectroscopy. We fitted the midpoint temperatures of the transition (T1/2) of 260 K for 1(ClO4), 247 K for 2(ClO4), and 281 K for 3(ClO4). The influence of structural symmetry on spin crossover was rationalized through density functional theory calculations. The optimized structures of [Fe(pybox)2]2+ complex cations show that the geometric distortion of the central FeN6 coordination sphere is mainly caused by the steric congestions between adjacent phenyl substituents. In these compounds, there is a distinct correlation that more steric congestions produce larger coordination distortion and favor the electron configuration in the high-spin state, which reflects in the increase of T1/2. Additionally, the influence of the counter anion and lattice solvent on the meso series compounds was inspected. It is revealed that multiple factors dominate the spin-state behaviour in the solid state. This work provides deep insight into the effect of ligand symmetry on the spin transition behaviour in spin crossover compounds. It demonstrates that molecular symmetry should be considered in the design of spin crossover compounds.
Collapse
Affiliation(s)
- Run-Guo Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao XH, Shao D, Chen JT, Liu M, Li T, Yang J, Zhang YZ. Spin and valence isomerism in cyanide-bridged {FeM II} (M = Fe and Co) clusters. Dalton Trans 2021; 50:9768-9774. [PMID: 34169954 DOI: 10.1039/d1dt01298c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two cyanide-bridged V-shaped isostructural trinuclear complexes [{(Tp*)FeIII(CN)3}2MII(bztpen)]·Sol (M = Fe, Sol = CH3OH·3H2O, 1; M = Co, Sol = 2CH3OH·2H2O, 2; bztpen = N-benzyl-N,N',N'-tris(2-methylpyridyl)ethylenediamine; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate) were synthesized and characterized. The bztpen ligand serves as a tetradentate capping ligand around the inner metal ion, leaving one pyridyl group intact. Complex 1 exhibits a spin crossover (SCO) behavior between the {FeIIILSFeIIHSFeIIILS} and {FeIIILSFeIILSFeIIILS} spin isomers, while 2 shows both thermally- and photo-induced electron-transfer coupled spin transition (ETCST) property between the {FeIIILSCoIIHSFeIIILS} and {FeIIILSCoIIILSFeIILS} valence isomers. The total entropy changes for 1 and 2 between their corresponding two electronic states were found to be very close with the values of 87.46 and 84.49 J mol-1 K-1, respectively, indicating the comparable thermal energy barriers necessary for either an SCO or ETCST event for such a given system. Furthermore, both complexes undergo desolvation-induced irreversible and sharp magnetic change at high temperatures.
Collapse
Affiliation(s)
- Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Dong Shao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Jia-Tao Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Min Liu
- College of Nuclear Science and Technology, University of South China, Hengyang, 421001, P. R. China
| | - Tao Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
| |
Collapse
|
16
|
Suenaga Y, Mibu T, Okubo T, Maekawa M, Kuroda-Sowa T, Sugimoto K. Dinuclear cobalt complexes with a redox active biphenyl bridging ligand [Co 2(BP)(tqa) 2](PF 6) 2 (H 4BP = 4,4'-bis(3- tert-butyl-1,2-catechol), tqa = tris(2-quinolylmethyl)amine): structure and magnetic properties. Dalton Trans 2021; 50:9833-9841. [PMID: 34190272 DOI: 10.1039/d1dt00995h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biscatechol, H4BP (4,4'-bis(3-tert-butyl-1,2-catechol)) that can directly connect two redox active catechol moieties was synthesized. Also, tris(2-pyridylmethyl)amine (tpa), bis(2-pyridylmethyl)(2-quinolylmethyl)amine (bpqa), (2-pyridylmethyl)bis(2-quinolyl methyl)amine (pbqa), and tris (2-quinolylmethyl)amine (tqa) were synthesized as terminal ligands of the tetracoordinated tripod. In total, five different dinuclear Co complexes were synthesized from H4BP with various terminal ligands as follows, [Co2(BP)(tpa)2](PF6)2 (1), [Co2(BP)(tpa)2](PF6)3 (2), [Co2(BP)(bpqa)2](PF6)2 (3), [Co2(BP)(pbqa)2](PF6)2 (4), and [Co2(BP)(tqa)2](PF6)2 (5). After a one-electron oxidation reaction of complex (1), complex (2), was isolated as a mixed valence state lsCoIII-[SQ-Cat]-lsCoIII, with an absorption intensity of about 1370 nm (intervalence charge transfer (IVCT) bands) in CH3CN solution. In addition, an investigation of the magnetic properties of the dinuclear Co complex (3) with SQUID showed that the χMT value gradually increased as the temperature increased from 280 to 380 K. Studies in the solid and solution states using electronic spectra, cyclic voltammetry and SQUID for the above complexes provide clear evidence for three different charge distributions: complexes (1) and (3) are CoIII-[Cat-Cat]-CoIII, complex (2) is CoIII-[Sq-Cat]-CoIII, complexes (4) and (5) are CoII-[Sq-Sq]-CoII. Of the five cobalt dinuclear complexes, only complex (3) shows evidence of the temperature dependence of the charge distribution, displaying a thermally induced valence tautomeric transition from the lsCoIII-[Cat-Cat]-lsCoIII to hsCoII-[Sq-Sq]-hsCoII in both solid and solution states. However, this valence tautomeric step is incomplete at 380 K, with the χMT value of hsCoII-[Sq-Sq]-hsCoII. This suggests that the steric hindrance of the quinolyl rings around the Co ion produces a coordination atmosphere that is weaker than that observed with pyridyl rings, which facilitates a change in the CoIII ions to CoII.
Collapse
Affiliation(s)
- Yusaku Suenaga
- Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Takuto Mibu
- Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Takashi Okubo
- Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan. and Research Institute of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masahiko Maekawa
- Research Institute of Science and Technology, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Takayoshi Kuroda-Sowa
- Department of Science, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kunihisa Sugimoto
- Diffraction & Scattering Division, Japan Synchrotron Radiation Research Institute(JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan and Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advance Study (KUIAS), Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Akiyoshi R, Ohtani R, Lindoy LF, Hayami S. Spin crossover phenomena in long chain alkylated complexes. Dalton Trans 2021; 50:5065-5079. [DOI: 10.1039/d1dt00004g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presents a discussion of soft metal complexes with a focus on spin crossover behaviours that are associated with structural phase transition, including liquid crystal LC transition.
Collapse
Affiliation(s)
- Ryohei Akiyoshi
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Ryo Ohtani
- Department of Chemistry
- Faculty of Science
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | | - Shinya Hayami
- Department of Chemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| |
Collapse
|
18
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|