1
|
Feng J, Wang X, Pan H. In-situ Reconstruction of Catalyst in Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411688. [PMID: 39436113 PMCID: PMC11635912 DOI: 10.1002/adma.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Reconstruction of catalysts is now well recognized as a common phenomenon in electrocatalysis. As the reconstructed structure may promote or hamper the electrochemical performance, how to achieve the designed active surface for highly enhanced catalytic activity through the reconstruction needs to be carefully investigated. In this review, the genesis and electrochemical effects of reconstruction in various electrochemical catalytic processes, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), and nitrate reduction reaction (NO3RR) are first described. Then, the strategies for optimizing the reconstruction, such as valence states control, active phase retention, phase evolution engineering, and surface poisoning prevention are comprehensively discussed. Finally, the general rules of reconstruction optimization are summarized and give perspectives for future study. It is believed that the review shall provide deep insights into electrocatalytic mechanisms and guide the design of pre-catalysts with highly improved activity.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacao SAR999078China
| | - Xuesen Wang
- Department of PhysicsNational University of SingaporeSingapore119077Singapore
| | - Hui Pan
- Institute of Applied Physics and Materials EngineeringUniversity of MacauTaipaMacao SAR999078China
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
2
|
Schott C, Schneider PM, Song KT, Yu H, Götz R, Haimerl F, Gubanova E, Zhou J, Schmidt TO, Zhang Q, Alexandrov V, Bandarenka AS. How to Assess and Predict Electrical Double Layer Properties. Implications for Electrocatalysis. Chem Rev 2024; 124:12391-12462. [PMID: 39527623 PMCID: PMC11613321 DOI: 10.1021/acs.chemrev.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
The electrical double layer (EDL) plays a central role in electrochemical energy systems, impacting charge transfer mechanisms and reaction rates. The fundamental importance of the EDL in interfacial electrochemistry has motivated researchers to develop theoretical and experimental approaches to assess EDL properties. In this contribution, we review recent progress in evaluating EDL characteristics such as the double-layer capacitance, highlighting some discrepancies between theory and experiment and discussing strategies for their reconciliation. We further discuss the merits and challenges of various experimental techniques and theoretical approaches having important implications for aqueous electrocatalysis. A strong emphasis is placed on the substantial impact of the electrode composition and structure and the electrolyte chemistry on the double-layer properties. In addition, we review the effects of temperature and pressure and compare solid-liquid interfaces to solid-solid interfaces.
Collapse
Affiliation(s)
- Christian
M. Schott
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Peter M. Schneider
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Kun-Ting Song
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Haiting Yu
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Rainer Götz
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Felix Haimerl
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- BMW
AG, Petuelring 130, 80809 München, Germany
| | - Elena Gubanova
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Jian Zhou
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Thorsten O. Schmidt
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
| | - Qiwei Zhang
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- State
Key Laboratory of Urban Water Resource and Environment, School of
Environment, Harbin Institute of Technology, Harbin 150090, People’s Republic of China
| | - Vitaly Alexandrov
- Department
of Chemical and Biomolecular Engineering and Nebraska Center for Materials
and Nanoscience, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Aliaksandr S. Bandarenka
- Physics
of Energy Conversion and Storage, Department of Physics, Technical University of Munich, James-Franck-Straße 1, 85748 Garching bei München, Germany
- Catalysis
Research Center, Technical University of
Munich, Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| |
Collapse
|
3
|
Chen X, Su J, Xiang D, Yuan Z, Lu C. Rapid Size Determination of Quasispherical Gold Nanoparticles by Electrocatalysis Efficiency-Regulated Electrochemiluminescence. Anal Chem 2024; 96:17689-17697. [PMID: 39440875 DOI: 10.1021/acs.analchem.4c03868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The size of gold nanoparticles (AuNPs) largely decides their properties and applications, making the rapid screening of AuNP size important. Despite the fact that AuNP-amplified electrochemiluminescence (ECL) is widely used in various ECL sensing applications, the mechanism of ECL enhancement remains elusive, especially the quantitative relationship between the enhanced ECL intensity and the size of AuNPs. In this work, taking quasispherical and citrate-stabilized AuNPs as model nanoparticles, we have reported that the ECL intensity of the S2O82--O2 system enhanced significantly with the increasing AuNP size. AuNPs acted as bielectrocatalysts for reducing the S2O82- and O2. The further study of enhancement mechanism demonstrates that AuNPs with increasing size facilitate the electron transfer and promote the generation of radicals required for the ECL emission, which produces more emitters-singlet oxygen. Meanwhile, the high surface density of citrate on small AuNPs suppresses the ECL signal by forming an electrostatic barrier. On the basis of the above phenomena, an ECL-based rapid AuNP size screening approach has been established. The accuracy of this platform is verified by the consistent results in comparison to transmission electron microscopy (TEM) measurements. This work not only provides deep insight into the correlation between the AuNP size and the ECL enhancement but also contributes an alternative to the TEM technique for the rapid AuNP size screening. Additionally, this study also extends the exploration of ECL-based structure analysis techniques toward nanomaterials through clarifying the structure-electrocatalytic activity correlation.
Collapse
Affiliation(s)
- Xueqian Chen
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiyuan Su
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Dengke Xiang
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- Pingyuan Laboratory, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Antony LS, Monin L, Aarts M, Alarcon-Llado E. Unveiling Nanoscale Heterogeneities at the Bias-Dependent Gold-Electrolyte Interface. J Am Chem Soc 2024; 146:12933-12940. [PMID: 38591960 PMCID: PMC11099963 DOI: 10.1021/jacs.3c11696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Electrified solid-liquid interfaces (SLIs) are extremely complex and dynamic, affecting both the dynamics and selectivity of reaction pathways at electrochemical interfaces. Enabling access to the structure and arrangement of interfacial water in situ with nanoscale resolution is essential to develop efficient electrocatalysts. Here, we probe the SLI energy of a polycrystalline Au(111) electrode in a neutral aqueous electrolyte through in situ electrochemical atomic force microscopy. We acquire potential-dependent maps of the local interfacial adhesion forces, which we associate with the formation energy of the electric double layer. We observe nanoscale inhomogeneities of interfacial adhesion force across the entire map area, indicating local differences in the ordering of the solvent/ions at the interface. Anion adsorption has a clear influence on the observed interfacial adhesion forces. Strikingly, the adhesion forces exhibit potential-dependent hysteresis, which depends on the local gold grain curvature. Our findings on a model electrode extend the use of scanning probe microscopy to gain insights into the local molecular arrangement of the SLI in situ, which can be extended to other electrocatalysts.
Collapse
Affiliation(s)
| | | | - Mark Aarts
- Leiden
Institute of Chemistry, Leiden University, Leiden 2333 CC, The Netherlands
| | - Esther Alarcon-Llado
- AMOLF, Amsterdam 1098 XG, The Netherlands
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1090, GD, The Netherlands
| |
Collapse
|
5
|
Ni B, Shen P, Zhang G, Zhao J, Ding H, Ye Y, Yue Z, Yang H, Wei H, Jiang K. Second-Shell N Dopants Regulate Acidic O 2 Reduction Pathways on Isolated Pt Sites. J Am Chem Soc 2024. [PMID: 38608251 DOI: 10.1021/jacs.3c14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt-N-C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt-N-C motifs favors the 4e- ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e- ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.
Collapse
Affiliation(s)
- Baoxin Ni
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Shen
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guiru Zhang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiajun Zhao
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honghe Ding
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Yifan Ye
- National Synchrotron Radiation Laboratory, Department of Chemical Physics and Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230029, China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hao Wei
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Long X, Xu W, Duan T, Lin L, Guo Y, Yan X, Cao J, Hu Y. Tuning charge transport by manipulating concentration dependent single-molecule absorption configurations. iScience 2024; 27:109292. [PMID: 38439976 PMCID: PMC10910293 DOI: 10.1016/j.isci.2024.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Understanding and tuning charge transport in molecular junctions is pivotal for crafting molecular devices with tailored functionalities. Here, we report a novel approach to manipulate the absorption configuration within a 4,4'-bipyridine (4,4'-BPY) molecular junction, utilizing the scanning tunneling microscope break junction technique in a concentration-dependent manner. Single-molecule conductance measurements demonstrate that the molecular junctions exhibit a significant concentration dependence, with a transition from high conductance (HC) to low conductance (LC) states as the concentration decreases. Moreover, we identified an additional conductance state in the molecular junctions besides already known HC and LC states. Flicker noise analysis and theoretical calculations provided valuable insights into the underlying charge transport mechanisms and single-molecule absorption configurations concerning varying concentrations. These findings contribute to a fundamental comprehension of charge transport in concentration-dependent molecular junctions. Furthermore, they offer promising prospects for controlling single-molecule adsorption configurations, thereby paving the way for future molecular devices.
Collapse
Affiliation(s)
- Xia Long
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, China
| | - Wangping Xu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, China
| | - Tingting Duan
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, China
| | - Liyan Lin
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yandong Guo
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Xiaohong Yan
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Juexian Cao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, China
| | - Yong Hu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, China
| |
Collapse
|
7
|
Raciti D, Cockayne E, Vinson J, Schwarz K, Walker ARH, Moffat TP. SHINERS Study of Chloride Order-Disorder Phase Transition and Solvation of Cu(100). J Am Chem Soc 2024; 146:1588-1602. [PMID: 38170994 PMCID: PMC11521106 DOI: 10.1021/jacs.3c11812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and density functional theory (DFT) are used to probe Cl- adsorption and the order-disorder phase transition associated with the c(2 × 2) Cl- adlayer on Cu(100) in acid media. A two-component ν(Cu-Cl) vibrational band centered near 260 ± 1 cm-1 is used to track the potential dependence of Cl- adsorption. The potential dependence of the dominant 260 cm-1 component tracks the coverage of the fluctional c(2 × 2) Cl- phase on terraces in good agreement with the normalized intensity of the c(2 × 2) superstructure rods in prior surface X-ray diffraction (SXRD) studies. As the c(2 × 2) Cl- coverage approaches saturation, a second ν(Cu-Cl) component mode emerges between 290 and 300 cm-1 that coincides with the onset and stiffening of step faceting where Cl- occupies the threefold hollow sites to stabilize the metal kink saturated Cu <100> step edge. The formation of the c(2 × 2) Cl- adlayer is accompanied by the strengthening of ν(O-H) stretching modes in the adjacent non-hydrogen-bonded water at 3600 cm-1 and an increase in hydronium concentration evident in the flanking H2O modes at 3100 cm-1. The polarization of the water molecules and enrichment of hydronium arise from the combination of Cl- anionic character and lateral templating provided by the c(2 × 2) adlayer, consistent with SXRD studies. At negative potentials, Cl- desorption occurs followed by development of a sulfate νs(S═O) band. Below -1.1 V vs Hg/HgSO4, a new 200 cm-1 mode emerges congruent with hydride formation and surface reconstruction reported in electrochemical scanning tunneling microscopy studies.
Collapse
Affiliation(s)
- David Raciti
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Eric Cockayne
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - John Vinson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kathleen Schwarz
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | | | - Thomas P. Moffat
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| |
Collapse
|
8
|
Wu J, Zhang J, Chen M, Yan J, Mao B, Feng G. Regulating the electrical double layer to prevent water electrolysis for wet ionic liquids with cheap salts. NANOSCALE 2023; 15:18603-18612. [PMID: 37927229 DOI: 10.1039/d3nr04700h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Hydrophobic ionic liquids (ILs), broadly utilized as electrolytes, face limitations in practical applications due to their hygroscopicity, which narrows their electrochemical windows via water electrolysis. Herein, we scrutinized the impact of incorporating cheap salts on the electrochemical stability of wet hydrophobic ILs. We observed that alkali ions effectively manipulate the solvation structure of water and regulate the electrical double layer (EDL) structure by subtly adjusting the free energy distribution of water in wet ILs. Specifically, alkali ions significantly disrupted the hydrogen bond network, reducing free water, strengthening the O-H bond, and lowering water activity in bulk electrolytes. This effect was particularly pronounced in EDL regions, where most water molecules were repelled from both the cathode and anode with the disappearance of the H-bond network connectivity along the EDL. The residual interfacial water underwent reorientation, inhibiting water electrolysis and thus enhancing the electrochemical window of wet hydrophobic ILs. This theoretical proposition was confirmed by cyclic voltammetry measurements, demonstrating a 45% enhancement in the electrochemical windows for salt-in-wet ILs, approximating the dry one. This work offers feasible strategies for tuning the EDL and managing interfacial water activity, expanding the comprehension of interface engineering for advanced electrochemical systems.
Collapse
Affiliation(s)
- Jiedu Wu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Jinkai Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
| | - Ming Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
- Institute of Interdisciplinary Research for Mathematics and Applied Science, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China
| |
Collapse
|
9
|
Wong RA, Yokota Y, Kim Y. Bridging Electrochemistry and Ultrahigh Vacuum: "Unburying" the Electrode-Electrolyte Interface. Acc Chem Res 2023. [PMID: 37384820 DOI: 10.1021/acs.accounts.3c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
ConspectusElectrochemistry has a central role in addressing the societal issues of our time, including the United Nations' Sustainable Development Goals (SDGs) and beyond. At a more basic level, however, elucidating the nature of electrode-electrolyte interfaces is an ongoing challenge due to many reasons, but one obvious reason is the fact that the electrode-electrolyte interface is buried by a thick liquid electrolyte layer. This fact would seem to preclude, by default, the use of many traditional characterization techniques in ultrahigh vacuum surface science due to their incompatibility with liquids. However, combined UHV-EC (ultrahigh vacuum-electrochemistry) approaches are an active area of research and provide a means of bridging the liquid environment of electrochemistry to UHV-based techniques. In short, UHV-EC approaches are able to remove the bulk electrolyte layer by performing electrochemistry in the liquid environment of electrochemistry followed by sample removal (referred to as emersion), evacuation, and then transfer into vacuum for analysis.Through this Account, we highlight our group's activities using UHV-EC to bridge electrochemistry with UHV-based X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) and scanning tunneling microscopy (STM). We provide a background and overview of the UHV-EC setup, and through illustrative examples, we convey what sorts of insights and information can be obtained. One notable advance is the use of ferrocene-terminated self-assembled monolayers as a spectroscopic molecular probe, allowing the electrochemical response to be correlated with the potential-dependent electronic and chemical state of the electrode-monolayer-electrolyte interfacial region. With XPS/UPS, we have been able to probe changes in the oxidation state, valence structure, and also the so-called potential drop across the interfacial region. In related work, we have also spectroscopically probed changes in the surface composition and screening of the surface charge of oxygen-terminated boron-doped diamond electrodes emersed from high-pH solutions. Finally, we will give readers a glimpse into our recent progress regarding real-space visualizations of electrodes following electrochemistry and emersion using UHV-based STM. We begin by demonstrating the ability to visualize large-scale morphology changes, including electrochemically induced graphite exfoliation and the surface reconstruction of Au surfaces. Taking this further, we show that in certain instances atomically resolved specifically adsorbed anions on metal electrodes can be imaged. In all, we anticipate that this Account will stimulate readers to advance UHV-EC approaches further, as there is a need to improve our understanding concerning the guidelines that determine applicable electrochemical systems and how to exploit promising extensions to other UHV methods.
Collapse
Affiliation(s)
- Raymond A Wong
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Fang Y, Hu R, Ye JY, Qu H, Zhou ZY, Duan S, Tian ZQ, Xu X. Revealing the interfacial water structure on a p-nitrobenzoic acid specifically adsorbed Au(111) surface. Chem Sci 2023; 14:4905-4912. [PMID: 37181786 PMCID: PMC10171072 DOI: 10.1039/d3sc00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The detailed structure of the water layer in the inner Helmholtz plane of a solid/aqueous solution interface is closely related to the electrochemical and catalytic performances of electrode materials. While the applied potential can have a great impact, specifically adsorbed species can also influence the interfacial water structure. With the specific adsorption of p-nitrobenzoic acid on the Au(111) surface, a protruding band above 3600 cm-1 appears in the electrochemical infrared spectra, indicating a distinct interfacial water structure as compared to that on bare metal surfaces, which displays a potential-dependent broad band in the range of 3400-3500 cm-1. Although three possible structures have been guessed for this protruding infrared band, the band assignment and interfacial water structure remain ambiguous in the past two decades. Herein, by combining surface-enhanced infrared absorption spectroscopy and our newly developed quantitative computational method for electrochemical infrared spectra, the protruding infrared band is clearly assigned to the surface-enhanced stretching mode of water molecules hydrogen-bonded to the adsorbed p-nitrobenzoate ions. Water molecules, meanwhile, are hydrogen-bonded with themselves to form chains of five-membered rings. Based on the reaction free energy diagram, we further demonstrate that both hydrogen-bonding interactions and coverages of specifically adsorbed p-nitrobenzoate play an important role in determining the structure of the water layer in the Au(111)/p-nitrobenzoic acid solution interface. Our work sheds light on structural studies of the inner Helmholtz plane under specific adsorptions, which advances the understanding of structure-property relationships in electrochemical and heterogeneous catalytic systems.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
| | - Ren Hu
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Jin-Yu Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Hang Qu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Zhi-You Zhou
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Sai Duan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
| | - Zhong-Qun Tian
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University Xiamen 361005 China
| | - Xin Xu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Fudan University Shanghai 200438 China
- Hefei National Laboratory Hefei 230088 China
| |
Collapse
|
11
|
Huang T, Xu K, Jia N, Yang L, Liu H, Zhu J, Yan Q. Intrinsic Interfacial Dynamic Engineering of Zincophilic Microbrushes via Regulating Zn Deposition for Highly Reversible Aqueous Zinc Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205206. [PMID: 36453716 DOI: 10.1002/adma.202205206] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Aqueous rechargeable zinc ion batteries are promising efficient energy storage systems due to remarkable safety and satisfactory capacity. However, zinc metal anode instability including dendrite growth and side reactions severely hinders widespread applications. Herein, zincophilic microbrushes have been in situ anchored on zinc plates through simple freeze-drying and mild reduction of graphene oxide, successfully overcoming these thorny issues. By introducing suitable oxygen-containing groups, the microbrushes exhibit a good affinity for zinc ions, thereby providing sufficient depositing sites, promoting zinc plating and stripping during cycling, and suppressing side reactions. The delicate zincophilic microbrushes can not only function as protective layer to guide the deposition of zinc ions, but also act as high-speed pathways to redistribute the zinc ion flux for rapid kinetics. Consequently, the microbrushes-covered zinc anode displays long lifespan and good durability, whenever in symmetric cell or full battery tests. This work paves a feasible bridge to design advanced aqueous anodes by architecting both structures and compositions of metal coverings.
Collapse
Affiliation(s)
- Tieqi Huang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Kui Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hongtao Liu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
12
|
Insights into the DMH tautomeric structures and its effects on the electro-reduction of Au(DMH)4− coordination ions. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat Commun 2022; 13:5330. [PMID: 36088353 PMCID: PMC9464189 DOI: 10.1038/s41467-022-33129-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWater-in-salt electrolytes are an appealing option for future electrochemical energy storage devices due to their safety and low toxicity. However, the physicochemical interactions occurring at the interface between the electrode and the water-in-salt electrolyte are not yet fully understood. Here, via in situ Raman spectroscopy and molecular dynamics simulations, we investigate the electrical double-layer structure occurring at the interface between a water-in-salt electrolyte and an Au(111) electrode. We demonstrate that most interfacial water molecules are bound with lithium ions and have zero, one, or two hydrogen bonds to feature three hydroxyl stretching bands. Moreover, the accumulation of lithium ions on the electrode surface at large negative polarizations reduces the interfacial field to induce an unusual “hydrogen-up” structure of interfacial water and blue shift of the hydroxyl stretching frequencies. These physicochemical behaviours are quantitatively different from aqueous electrolyte solutions with lower concentrations. This atomistic understanding of the double-layer structure provides key insights for designing future aqueous electrolytes for electrochemical energy storage devices.
Collapse
|
14
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Steinmann SN, Michel C. How to Gain Atomistic Insights on Reactions at the Water/Solid Interface? ACS Catal 2022. [DOI: 10.1021/acscatal.2c00594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stephan N. Steinmann
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| | - Carine Michel
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie
UMR 5182, 46 allée d’Italie, F-69364 Lyon, France
| |
Collapse
|
16
|
Schönig M, Frittmann S, Schuster R. Identification of electrochemically adsorbed species via electrochemical microcalorimetry: sulfate adsorption on Au(111). Chemphyschem 2022; 23:e202200227. [PMID: 35510390 PMCID: PMC9542382 DOI: 10.1002/cphc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Indexed: 11/11/2022]
Abstract
We investigate compositional changes of an electrochemical interface upon polarization with electrochemical microcalorimetry. From the heat exchanged at a Au(111) electrode upon sulfate adsorption, we determine the reaction entropy of the adsorption process for both neutral and acidic solutions, where the dominant species in solution changes from SO42− to HSO4−. In neutral solution, the reaction entropy is about 40 J mol−1 K−1 more positive than that in acidic solution over the complete sulfate adsorption region. This entropy offset is explicable by a deprotonation step of HSO4− preceding sulfate adsorption in acidic solution, which shows that the adsorbing species is SO4* in both solutions. The observed overall variation of the reaction entropy in the sulfate adsorption region of ca. 80 J mol−1 K−1 indicates significant sulfate‐coverage dependent entropic contributions to the Free Enthalpy of the surface system.
Collapse
Affiliation(s)
- Marco Schönig
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie, Institute of Physical Chemistry, GERMANY
| | - Stefan Frittmann
- Karlsruhe Institute of Technology: Karlsruher Institut fur Technologie, Institute of Physical Chemistry, GERMANY
| | - Rolf Schuster
- Karlsruher Institut für Technologie KIT, Institut für Physikalische Chemie, Kaiserstr. 12, 76131, Karlsruhe, GERMANY
| |
Collapse
|
17
|
Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasio RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chem Rev 2022; 122:6117-6321. [PMID: 35133808 DOI: 10.1021/acs.chemrev.1c00331] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Collapse
Affiliation(s)
- Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cheyenne R Peltier
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Roberto Schimmenti
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qihao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Zhifei Yan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Georgia Potsi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ryan Selhorst
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyao Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Weixuan Xu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mariel Tader
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hanguang Zhang
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Mihail Krumov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ellen Murray
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Pengtao Xu
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy Hitt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Linxi Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsin-Yu Ko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian G Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colin Bundschu
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Aileen Luo
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Danielle Markovich
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Meixue Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng He
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Robert A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Andrej Singer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kevin J T Noonan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bryan S Pivovar
- Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Piotr Zelenay
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Alicante E-03080, Spain
| | - Jin Suntivich
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Emmanuel P Giannelis
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Tomás Arias
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joel D Brock
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, United States
| | - Francis J DiSalvo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Center for Alkaline Based Energy Solutions (CABES), Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Yang JQ, Jin L, Xiao YH, Yu HH, Yang FZ, Zhan DP, Wu DY, Tian ZQ. Suppressing Sulfite Dimerization at a Polarized Gold Electrode/Water Solution Interface for High-Quality Gold Electrodeposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11251-11259. [PMID: 34528801 DOI: 10.1021/acs.langmuir.1c01595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solid/liquid interfacial structure occupies great importance in chemistry, biology, and materials. In this paper, by combining EC-SERS study and DFT calculation, we reveal the adsorption and dimerization of sulfite (SO32-) at a gold electrode/water solution interface, and establish an adsorption displacement strategy to suppress the dimerization of sulfite. At the gold electrode/sodium sulfite solution interface, at least two layers of SO32- anions are adsorbed on the electrode surface. As the applied potential shifts negatively, the adsorption strength of the first SO32- layer is weakened gradually and then is dimerized with the second orientated SO32- layer to form S2O52-, and S2O52- is further reduced to S2O32-. After hydroxyethylene disphosphonic acid (HEDP) is introduced to the gold electrode/sodium sulfite solution interface, the second oriented SO32- layer is replaced by a HEDP coadsorption layer. This results in the first layer of SO32- being desorbed directly without any structural transformation or chemical reaction as the potential shifts negatively. The suppression of sulfite dimerization by HEDP is more clear at the gold electrode/gold sulfite solution interface owing to the electroreduction of gold ions. Furthermore, the electrochemical studies and electrodeposition experiments show that as the sulfite dimerization reaction is suppressed, the electroreduction of gold ions is accelerated, and the deposited gold coating is bright and dense with finer grains.
Collapse
Affiliation(s)
- Jia-Qiang Yang
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Lei Jin
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Huan-Huan Yu
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Fang-Zu Yang
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Dong-Ping Zhan
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of the Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China
| |
Collapse
|
19
|
Hsu Y, Wu C, Yau S. A STM view of the reorientation of cytosine adsorbed on the Au(111) – (1 × 1) electrode in sulfuric and perchloric acids. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Fang Y, Hu R, Ding SY, Tian ZQ. A quantitative simulation method for electrochemical infrared and Raman spectroscopies of single-crystal metal electrodes. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Hermann JM, Abdelrahman A, Jacob T, Kibler LA. The Effect of pH and Anion Adsorption on Formic Acid Oxidation on Au(111) Electrodes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Electrochemical study in acid aqueous solution and ex-situ X-ray photoelectron spectroscopy analysis of metallic rhenium surface. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Heinritz A, Binninger T, Patru A, Schmidt TJ. Asymmetric Butler–Volmer Kinetics of the Electrochemical Ce(III)/Ce(IV) Redox Couple on Polycrystalline Au Electrodes in Sulfuric Acid and the Dissociation Field Effect. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adrian Heinritz
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Tobias Binninger
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
- ICGM, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Alexandra Patru
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Thomas J. Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Yu Z, Xu Y, Su J, Radjenovic PM, Wang Y, Zheng J, Teng B, Shao Y, Zhou X, Li J. Probing Interfacial Electronic Effects on Single‐Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Yu‐Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Jun‐Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Petar M. Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ya‐Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Ju‐Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization College of Chemical Engineering and Materials Science Tianjin University of Science and Technology Tianjin 300457 China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Xiao‐Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 China
| | - Jian‐Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
25
|
Yu Z, Xu YX, Su JQ, Radjenovic PM, Wang YH, Zheng JF, Teng B, Shao Y, Zhou XS, Li JF. Probing Interfacial Electronic Effects on Single-Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angew Chem Int Ed Engl 2021; 60:15452-15458. [PMID: 33884737 DOI: 10.1002/anie.202102587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/17/2021] [Indexed: 11/11/2022]
Abstract
Clarifying interfacial electronic effects on molecular adsorption is significant in many chemical and biochemical processes. Here, we used STM breaking junction and shell-isolated nanoparticle-enhanced Raman spectroscopy to probe electron transport and adsorption geometries of 4,4'-bipyridine (4,4'-BPY) at Au(111). Modifying the surface with 1-butyl-3-methylimidazolium cation-containing ionic liquids (ILs) decreases surface electron density and stabilizes a vertical orientation of pyridine through nitrogen atom σ-bond interactions, resulting in uniform adsorption configurations for forming molecular junctions. Modulation from vertical, tilted, to flat, is achieved on adding water to ILs, leading to a new peak ascribed to CC stretching of adsorbed pyridyl ring and 316 % modulation of single-molecule conductance. The dihedral angle between adsorbed pyridyl ring and surface decreases with increasing surface electronic density, enhancing electron donation from surface to pyridyl ring.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu-Xing Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China.,Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Petar M Radjenovic
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
26
|
Pfisterer JHK, Nattino F, Zhumaev UE, Breiner M, Feliu JM, Marzari N, Domke KF. Role of OH Intermediates during the Au Oxide Electro-Reduction at Low pH Elucidated by Electrochemical Surface-Enhanced Raman Spectroscopy and Implicit Solvent Density Functional Theory. ACS Catal 2020; 10:12716-12726. [PMID: 33194302 PMCID: PMC7654126 DOI: 10.1021/acscatal.0c02752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/26/2020] [Indexed: 11/29/2022]
Abstract
![]()
Molecular understanding of the electrochemical
oxidation of metals
and the electro-reduction of metal oxides is of pivotal importance
for the rational design of catalyst-based devices where metal(oxide)
electrodes play a crucial role. Operando monitoring
and reliable identification of reacting species, however, are challenging
tasks because they require surface-molecular sensitive and specific
experiments under reaction conditions and sophisticated theoretical
calculations. The lack of molecular insight under operating conditions
is largely due to the limited availability of operando tools and to date still hinders a quick technological advancement
of electrocatalytic devices. Here, we present a combination of advanced
density functional theory (DFT) calculations considering implicit
solvent contributions and time-resolved electrochemical surface-enhanced
Raman spectroscopy (EC-SERS) to identify short-lived reaction intermediates
during the showcase electro-reduction of Au oxide (AuOx) in sulfuric
acid over several tens of seconds. The EC-SER spectra provide evidence
for temporary Au-OH formation and for the asynchronous adsorption
of (bi)sulfate ions at the surface during the reduction process. Spectral
intensity fluctuations indicate an OH/(bi)sulfate turnover period
of 4 s. As such, the presented EC-SERS potential jump approach combined
with implicit solvent DFT simulations allows us to propose a reaction
mechanism and prove that short-lived Au-OH intermediates also play
an active role during the AuOx electro-reduction in acidic media,
implying their potential relevance also for other electrocatalytic
systems operating at low pH, like metal corrosion, the oxidation of
CO, HCOOH, and other small organic molecules, and the oxygen evolution
reaction.
Collapse
Affiliation(s)
- Jonas H. K. Pfisterer
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Francesco Nattino
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ulmas E. Zhumaev
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Manuel Breiner
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Juan M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Nicola Marzari
- Theory and Simulations of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katrin F. Domke
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
27
|
Abidi N, Lim KRG, Seh ZW, Steinmann SN. Atomistic modeling of electrocatalysis: Are we there yet? WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1499] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| | - Kang Rui Garrick Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) Singapore
| | - Stephan N. Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182 Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon France
| |
Collapse
|
28
|
Abidi N, Bonduelle-Skrzypczak A, Steinmann SN. Revisiting the Active Sites at the MoS 2/H 2O Interface via Grand-Canonical DFT: The Role of Water Dissociation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31401-31410. [PMID: 32551477 DOI: 10.1021/acsami.0c06489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MoS2 is a promising low-cost catalyst for the hydrogen evolution reaction (HER). However, the nature of the active sites remains a subject of debate. By taking the electrochemcal potential explicitly into account using grand-canonical density functional theory (DFT) in combination with the linearized Poisson-Boltzmann equation, we herein revisit the active sites of 2H-MoS2. In addition to the well-known catalytically active edge sites, also specific point defects on the otherwise inert basal plane provide highly active sites for HER. Given that HER takes place in water, we also assess the reactivity of these active sites with respect to H2O. The thermodynamics of proton reduction as a function of the electrochemical potential reveals that four edge sites and three basal plane defects feature thermodynamic overpotentials below 0.2 V. In contrast to current proposals, many of these active sites involve adsorbed OH. The results demonstrate that even though H2O and OH block "active" sites, HER can also occur on these "blocked" sites, reducing protons on surface OH/H2O entities. As a consequence, our results revise the active sites, highlighting the so far overlooked need to take the liquid component (H2O) of the functional interface into account when considering the stability and activity of the various active sites.
Collapse
Affiliation(s)
- Nawras Abidi
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| | | | - Stephan N Steinmann
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
29
|
Sakaushi K, Kumeda T, Hammes-Schiffer S, Melander MM, Sugino O. Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Phys Chem Chem Phys 2020; 22:19401-19442. [DOI: 10.1039/d0cp02741c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding microscopic mechanism of multi-electron multi-proton transfer reactions at complexed systems is important for advancing electrochemistry-oriented science in the 21st century.
Collapse
Affiliation(s)
- Ken Sakaushi
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Tomoaki Kumeda
- Center for Green Research on Energy and Environmental Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | | | - Marko M. Melander
- Nanoscience Center
- Department of Chemistry
- University of Jyväskylä
- Jyväskylä
- Finland
| | - Osamu Sugino
- The Institute of Solid State Physics
- the University of Tokyo
- Chiba 277-8581
- Japan
| |
Collapse
|