1
|
Lago-Silva M, Fernández-Míguez M, Fernández Z, Cid MM, Quiñoá E, Rodríguez R, Freire F. Coaxial Helices in Chiral Supramolecular Aggregates from Highly Hindered Chiral Allenes. Angew Chem Int Ed Engl 2024:e202421310. [PMID: 39654503 DOI: 10.1002/anie.202421310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Chiral allenes self-assembly following a cooperative mechanism into a supramolecular chiral aggregate consisting of two coaxial helices: the internal helix described by the allene stack and the external helix which consist in a 4-helix described by the four allene substituents. More precisely, this supramolecular aggregate possesses six axially chiral elements within its structure-the allene, the allene stack (internal helix) and the stacks of the four allene substituents (external 4-helix)-. Interestingly, slight variations in the magnitude of the tilting degree while keeping its P- or M- orientation (internal helix) can vary the orientation of the 4-axial motifs at the external helix. Thus, while (P)-1 produces a supramolecular helix with a Θ ca. 15° (Pint) and a M1/P2/M1'/P2' orientation of the four axial motifs at the periphery, (P)-2 produces a supramolecular helix with a Θ ca. 23° (Pint) and a P1/P2/P1'/P2' orientation of the four axial motifs at the external helix. As a result, the ECD spectra and the AFM images of the (P)-1 and (P)-2 supramolecular aggregates dominated by the 1 and 1' substituents of the chiral allene indicate opposite handedness although the chirality of the building block and the orientation of the allene stack are the same.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Zulema Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - María Magdalena Cid
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Rafael Rodríguez
- CINBIO and Departamento de Química Orgánica, Campus Lagoas-Marcosende, Universidade de Vigo, Vigo, E-36310, Spain
| | - Félix Freire
- CINBIO and Departamento de Química Orgánica, Campus Lagoas-Marcosende, Universidade de Vigo, Vigo, E-36310, Spain
| |
Collapse
|
2
|
Sahoo D, Peterca M, Percec V. Designing Highly Ordered Helical and Nonhelical Porous Crystalline and Disordered Nonhelical Columnar Liquid Crystalline Self-Organizations. J Am Chem Soc 2024; 146:22943-22949. [PMID: 39115382 DOI: 10.1021/jacs.4c09127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Helical self-organizations are equilibrium structures responsible for the assembly of nonequilibrium and equilibrium living and synthetic systems. Racemic helical columnar systems transform into one-handed systems with the help of enantiomerically rich or pure components. Racemic, enantiomerically rich, and enantiomerically pure helical periodic arrays of columns are analyzed by oriented fiber X-ray diffraction (XRD). With few exceptions, highly ordered helical 3-D organizations as generated from homochiral columns cannot be obtained from achiral, racemic, or enantiomerically rich helical columns. Here, we report an unprecedented class of nonhelical porous ordered, disordered nonhelical columnar liquid crystalline (LC) self-organizations and columnar liquids constructed from AB4 to AB9 isomeric terphenyls by molecular design unwinding of a 3-D helical organization. A library of 16 nonhelical porous ordered, disordered columnar and four liquids was designed by employing as a model a closely related achiral AB4 meta-terphenyl, which self-organizes one of the most perfect synthetic ordered columnar hexagonal helices known. A general molecular mechanism to unwind highly ordered 3-D helices into nonhelical porous columnar ordered LCs and liquids was elaborated to design this transformation, which provided unprecedented nonequilibrium synthetic systems. This methodology is expected to be general for transformation of helical macromolecular and supramolecular organizations into nonhelical crystals, LCs, and liquids.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
3
|
Sahoo D, Peterca M, Leowanawat P, Percec V. Cogwheel Mechanism of Helical Self-Organization is Thermodynamically Controlled, Self-Repairing, and Universal. J Am Chem Soc 2024; 146:18910-18915. [PMID: 38973781 DOI: 10.1021/jacs.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The cogwheel mechanism of helical self-organization, reported by us, generates columns with the alkyl chains of their components parallel to the column axis. This mechanism disregards the enantiomeric purity of constituents and, under suitable design, provides the fastest rate of helical self-organization. Here, we investigate the supramolecular structure of a thermodynamically controlled helical self-organization system. Unexpectedly, we found that this system follows a cogwheel mechanism of helical self-organization that does not contain the two key parameters of the cogwheel mechanism: the length of the alkyl group of the self-assembling dendron identical to the helical half-pitch (hhp) of the column and the presence of chiral branches pointing toward the column center. Unpredictably, we uncovered that the presence of chiral branching points and strict alkyl chain lengths is not a requirement of the cogwheel mechanism. A self-repairing process provides access to a constant hhp via a shorter and longer alkyl chain length than the originally exact demanded value, which together with the lack of branching point(s) demonstrates the universality of the cogwheel mechanism of helical self-organization. Applications derived from this concept are envisioned.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
4
|
Ogura Y, Akiyama A, Kohri M, Kishikawa K. Positions of Chiral Alkoxy Groups Responsible for Ferroelectricity in a Columnar Liquid Crystal Phase of Diphenylureas with Six Alkoxy Groups. J Phys Chem B 2024; 128:3775-3783. [PMID: 38569005 DOI: 10.1021/acs.jpcb.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The columnar polarization direction of ferroelectric columnar liquid crystals can be switched by applying an external electric field, and the polarization direction can be maintained, even after the electric field is removed. If the polarization direction of each column in ferroelectric columnar liquid crystals can be switched and maintained, then ultrahigh-density memory devices can be generated. Recently, we found that the columnar phase of N,N'-bis(3,4,5-tri(S)-citronellyloxyphenyl)urea (Urea-(S)-cit) shows ferroelectricity, whereas that of N,N'-bis(3,4,5-tridecyloxyphenyl)urea (Urea-10) does not. However, the mechanisms by which the six chiral alkoxy groups in Urea-(S)-cit generate ferroelectricity have not been determined. In this study, we regioselectively synthesized four diphenylurea compounds containing (S)-citronellyloxy and decyloxy groups, i.e., N,N'-bis(3,5-di((S)-citronellyloxy)-4-decyloxyphenyl)urea (1), N,N'-bis(4-((S)-citronellyloxy)-3,5-didecyloxyphenyl)urea (2), N,N'-bis(3-((S)-citronellyloxy)-4,5-didecyloxyphenyl)urea (3), and N,N'-bis(3,4-di((S)-citronellyloxy)-5-decyloxyphenyl)urea (4), and investigated which chiral alkoxy group at which position is strongly responsible for the ferroelectricity. The chiral alkoxy groups at 3- and 5-positions of the phenyl groups were clarified to play a significant role in the generation of ferroelectricity. Furthermore, a comparison of these four compounds based on circular dichroism spectroscopy and second harmonic generation experiments revealed the relationship between the helical structure order and the stability of the polarized structure.
Collapse
Affiliation(s)
- Yoshiki Ogura
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Azumi Akiyama
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Michinari Kohri
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Keiki Kishikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
5
|
Percec V, Sahoo D. From Frank-Kasper, Quasicrystals, and Biological Membrane Mimics to Reprogramming In Vivo the Living Factory to Target the Delivery of mRNA with One-Component Amphiphilic Janus Dendrimers. Biomacromolecules 2024; 25:1353-1370. [PMID: 38232372 DOI: 10.1021/acs.biomac.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This Perspective is dedicated to the 25th Anniversary of Biomacromolecules. It provides a personal view on the developing field of the polymer and biology interface over the 25 years since the journal was launched by the American Chemical Society (ACS). This Perspective is meant to bridge an article published in the first issue of the journal and recent bioinspired developments in the laboratory of the corresponding author. The discovery of supramolecular spherical helices self-organizing into Frank-Kasper and quasicrystals as models of icosahedral viruses, as well as of columnar helical assemblies that mimic rodlike viruses by supramolecular dendrimers, is briefly presented. The transplant of these assemblies from supramolecular dendrimers to block copolymers, giant surfactants, and other self-organized soft matter follows. Amphiphilic self-assembling Janus dendrimers and glycodendrimers as mimics of biological membranes and their glycans are discussed. New concepts derived from them that evolved in the in vivo targeted delivery of mRNA with the simplest one-component synthetic vector systems are introduced. Some synthetic methodologies employed during the synthesis and self-assembly are explained. Unraveling bioinspired applications of novel materials concludes this brief 25th Anniversary Perspective of Biomacromolecules.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Sahoo D, Atochina-Vasserman EN, Maurya DS, Arshad M, Chenna SS, Ona N, Vasserman JA, Ni H, Weissman D, Percec V. The Constitutional Isomerism of One-Component Ionizable Amphiphilic Janus Dendrimers Orchestrates the Total and Targeted Activities of mRNA Delivery. J Am Chem Soc 2024; 146:3627-3634. [PMID: 38306714 DOI: 10.1021/jacs.3c13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14 positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mahwish Arshad
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica A Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
7
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
8
|
Choi YJ, Koo J, Wi Y, Jang J, Oh M, Rim M, Ko H, Yoon WJ, You NH, Jeong KU. Coatable Negative Dispersion Retarder: Kinetically Controlled Self-Assembly Pathway of Butterfly-Shaped Molecular Building Blocks for the Construction of Nanocolumns. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41000-41006. [PMID: 37585907 DOI: 10.1021/acsami.3c09139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Disc-shaped building blocks with columnar phases have attracted attention for their potential in optical applications, including a retarder. However, to achieve coatable high-performance optical films, it is essential to understand a subtle interaction balance between building blocks and relevant self-assembled behaviors during material processing. Herein, we studied a self-assembled nanocolumn evaluation of linear butterfly-shaped dendrons (T-A3D) consisting of thiophene-based conjugated core and flexible alkyl dendron. X-ray diffraction provided insight into the unique hexagonal columnar liquid crystal phase of T-A3D, driven by intermolecular hydrogen bonding and coplanarity of the thiophene-based conjugated core. The formation of a self-assembled nanocolumn with high mobility enabled the uniaxial orientation of butterfly-shaped T-A3D on the aligned rod-shaped nematic reactive mesogens, resulting in a transparent and colorless two-layered negative retarder. The self-assembled nanocolumn consisting of butterfly-shaped molecule would break a new ground for developing advanced optical thin films.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Junhwa Jang
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mintaek Oh
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Minwoo Rim
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyeyoon Ko
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Jin Yoon
- Department of Chemistry and Biochemistry and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nam-Ho You
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk 55324, South Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology and Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Li YX, Cseh L, Chen YX, Yang SG, Zeng X, Liu F, Hu W, Ungar G. Enantiomers Self-Sort into Separate Counter-Twisted Ribbons of the Fddd Liquid Crystal─Antiferrochirality and Parachirality. J Am Chem Soc 2023; 145:17443-17460. [PMID: 37523689 PMCID: PMC10416214 DOI: 10.1021/jacs.3c06164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/02/2023]
Abstract
The recently discovered orthorhombic liquid crystal (LC) phase of symmetry Fddd is proving to be widespread. In this work, a chiral hydroxybutyrate linkage is inserted into the molecular core of hexacatenar rodlike compounds, containing a thienylfluorenone fluorophore. In addition to more usual tools, the methods used include grazing-incidence X-ray scattering, modulated differential scanning calorimetry (DSC), flash DSC with rates up to 6000 K/s, and chiro-optical spectroscopies using Mueller matrix method, plus conformational mapping. Although pure R and S enantiomers form only a strongly chiral hexagonal columnar LC phase (Colh*), the racemic mixture forms a highly ordered Fddd phase with 4 right- and 4 left-handed twisted ribbon-like columns traversing its large unit cell. In that structure, the two enantiomers locally deracemize and self-sort into the columns of their preferred chirality. The twisted ribbons in Fddd, with a 7.54 nm pitch, consist of stacked rafts, each containing ∼2 side-by-side molecules, the successive rafts rotated by 17°. In contrast, an analogous achiral compound forms only the columnar phase. The multiple methods used gave a comprehensive picture and helped in-depth understanding not only of the Fddd phase but also of the "parachiral" Colh* in pure enantiomers with irregular helicity, whose chirality is compared to the magnetization of a paramagnet in a field. Unusual short-range ordering effects are also described. An explanation of these phenomena is proposed based on conformational analysis. Surprisingly, the isotropic-columnar transition is extremely fast, completing within ∼20 ms. A clear effect of phase on UV-vis absorption and emission is observed.
Collapse
Affiliation(s)
- Yan Wang
- Shaanxi
International Research Centre for Soft Matter, State Key Laboratory
for Mechanical Behaviour of Materials, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Ya-Xin Li
- School
of Chemistry and Chemical Engineering, Henan
University of Technology, Zhengzhou 450001, China
| | - Liliana Cseh
- Romanian
Academy, Coriolan Dragulescu Institute of Chemistry, Timisoara 300223, Romania
| | - Yong-Xuan Chen
- State
Key Laboratory of Coordinate Chemistry, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210093, China
| | - Shu-Gui Yang
- Shaanxi
International Research Centre for Soft Matter, State Key Laboratory
for Mechanical Behaviour of Materials, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Xiangbing Zeng
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, U.K.
| | - Feng Liu
- Shaanxi
International Research Centre for Soft Matter, State Key Laboratory
for Mechanical Behaviour of Materials, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Wenbing Hu
- State
Key Laboratory of Coordinate Chemistry, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210093, China
| | - Goran Ungar
- Shaanxi
International Research Centre for Soft Matter, State Key Laboratory
for Mechanical Behaviour of Materials, Xi’an
Jiaotong University, Xi’an 710049, China
- Department
of Materials Science and Engineering, University
of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
10
|
Lu J, Atochina-Vasserman EN, Maurya DS, Shalihin MI, Zhang D, Chenna SS, Adamson J, Liu M, Shah HUR, Shah H, Xiao Q, Queeley B, Ona NA, Reagan EK, Ni H, Sahoo D, Peterca M, Weissman D, Percec V. Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids. Pharmaceutics 2023; 15:1572. [PMID: 37376020 DOI: 10.3390/pharmaceutics15061572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/13/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.
Collapse
Affiliation(s)
- Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Muhammad Irhash Shalihin
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Srijay S Chenna
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Habib Ur Rehman Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Honey Shah
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Bryn Queeley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Nathan A Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
11
|
Percec V, Sahoo D, Adamson J. Stimuli-Responsive Principles of Supramolecular Organizations Emerging from Self-Assembling and Self-Organizable Dendrons, Dendrimers, and Dendronized Polymers. Polymers (Basel) 2023; 15:polym15081832. [PMID: 37111979 PMCID: PMC10142069 DOI: 10.3390/polym15081832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
All activities of our daily life, of the nature surrounding us and of the entire society and its complex economic and political systems are affected by stimuli. Therefore, understanding stimuli-responsive principles in nature, biology, society, and in complex synthetic systems is fundamental to natural and life sciences. This invited Perspective attempts to organize, to the best of our knowledge, for the first time the stimuli-responsive principles of supramolecular organizations emerging from self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers. Definitions of stimulus and stimuli from different fields of science are first discussed. Subsequently, we decided that supramolecular organizations of self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers may fit best in the definition of stimuli from biology. After a brief historical introduction to the discovery and development of conventional and self-assembling and self-organizable dendrons, dendrimers, and dendronized polymers, a classification of stimuli-responsible principles as internal- and external-stimuli was made. Due to the enormous amount of literature on conventional dendrons, dendrimers, and dendronized polymers as well as on their self-assembling and self-organizable systems we decided to discuss stimuli-responsive principles only with examples from our laboratory. We apologize to all contributors to dendrimers and to the readers of this Perspective for this space-limited decision. Even after this decision, restrictions to a limited number of examples were required. In spite of this, we expect that this Perspective will provide a new way of thinking about stimuli in all fields of self-organized complex soft matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Chemical Physics Laboratory, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
12
|
Liu ZF, Ren J, Li P, Niu LY, Liao Q, Zhang S, Yang QZ. Circularly Polarized Laser Emission from Homochiral Superstructures based on Achiral Molecules with Conformal Flexibility. Angew Chem Int Ed Engl 2023; 62:e202214211. [PMID: 36374590 DOI: 10.1002/anie.202214211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Without external chiral intervention, it is a challenge to form homochirality from achiral molecules with conformational flexibility. We here report on a rational strategy that uses multivalent noncovalent interactions to clamp the molecular conformations of achiral D-A molecules. These interactions overcome the otherwise dominant dipole-dipole interactions and thus disfavor their symmetric antiparallel stacking. It in turn facilitates parallel packing, leading to spontaneous symmetry breaking during crystallization and thus the formation of homochiral conglomerates. When this emergent homochirality is coupled with optical gain characteristics of the molecules, the homochiral crystals are explored as excellent circularly polarized micro-lasers with low lasing threshold (16.4 μJ cm-2 ) and high dissymmetry factor glum (0.9). This study therefore provides a facile design strategy for supramolecular chiral materials and active laser ones without the necessity of intrinsic chiral element.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jiahuan Ren
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Pan Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
13
|
Chen J, Yang Z, Zhu G, Fu E, Li P, Chen F, Yu C, Wang S, Zhang S. Heterochiral Diastereomer-Discriminative Diphanes That Form Hierarchical Superstructures with Nonlinear Optical Properties. JACS AU 2022; 2:1661-1668. [PMID: 35911451 PMCID: PMC9327085 DOI: 10.1021/jacsau.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on diastereomeric discrimination of twin-cavity cages (denoted as diphanes) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters. This diastereomeric selectivity results from distinct spatial orientation of reactive secondary amines on TRPN. Homochiral TRPNs with all reactive moieties rotating in the same way facilitate the formation of homochiral and achiral meso diphanes with low strain energy, while heterochiral TRPNs with uneven orientation of secondary amines preclude the formation of cage-like entity, since the virtual diphanes exhibit considerably high strain. Moreover, homochiral diphanes self-assemble into an acentric superstructure composed of single-handed helices, which exhibits interesting nonlinear optical behavior. Such a property is a unique occurrence for organic cages, which thus showcases their potential to spawn novel materials with interesting properties and functions.
Collapse
Affiliation(s)
- Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gucheng Zhu
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Enguang Fu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fangyi Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiyong Wang
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
14
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022; 61:e202202532. [DOI: 10.1002/anie.202202532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Mingyu Fan
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xian Zheng
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
15
|
Wang Y, Huang J, Yan X, Lei H, Liu X, Guo Q, Liu Y, Liu T, Huang M, Bian F, Su Z, Cheng SZD. Soft Alloys Constructed with Distinct Mesoatoms via Self‐Sorting Assembly of Giant Shape Amphiphiles. Angew Chem Int Ed Engl 2022; 61:e202200637. [DOI: 10.1002/anie.202200637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Jiahao Huang
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xiao‐Yun Yan
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Qing‐Yun Guo
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yuchu Liu
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Zebin Su
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
16
|
Li J, Li P, Fan M, Zheng X, Guan J, Yin M. Chirality of Perylene Diimides: Design Strategies and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Li
- Beijing University of Chemical Technology College of Materials Science and Engineering 100029 Beijing CHINA
| | - Pengyu Li
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Mingyu Fan
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Xian Zheng
- Beijing University of Chemical Technology College of Materials Science and Engineering CHINA
| | - Jun Guan
- Tsinghua University Department of Chemistry CHINA
| | - Meizhen Yin
- Beijing University of Chemical Technology College of Materials Science and Engineering No. 15 Bei San Huan Dong Lu 100029 Beijing CHINA
| |
Collapse
|
17
|
Zhang D, Atochina-Vasserman EN, Lu J, Maurya DS, Xiao Q, Liu M, Adamson J, Ona N, Reagan EK, Ni H, Weissman D, Percec V. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted mRNA Delivery Activity. J Am Chem Soc 2022; 144:4746-4753. [PMID: 35263098 DOI: 10.1021/jacs.2c00273] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Elena N Atochina-Vasserman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Juncheng Lu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Devendra S Maurya
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jasper Adamson
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathan Ona
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erin K Reagan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Houping Ni
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
18
|
Wang Y, Huang J, Yan X, Lei H, Liu X, Guo Q, Liu Y, Liu T, Huang M, Bian F, Su Z, Cheng SZD. Soft Alloys Constructed with Distinct Mesoatoms via Self‐Sorting Assembly of Giant Shape Amphiphiles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Jiahao Huang
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xiao‐Yun Yan
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Qing‐Yun Guo
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yuchu Liu
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Zebin Su
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter South China University of Technology Guangzhou 510640 China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices South China University of Technology Guangzhou 510460 China
- Department of Polymer Science School of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
19
|
Li YX, Gao HF, Zhang RB, Gabana K, Chang Q, Gehring GA, Cheng XH, Zeng XB, Ungar G. A case of antiferrochirality in a liquid crystal phase of counter-rotating staircases. Nat Commun 2022; 13:384. [PMID: 35046396 PMCID: PMC8770800 DOI: 10.1038/s41467-022-28024-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Helical structures continue to inspire, prompted by examples such as DNA double-helix and alpha-helix in proteins. Most synthetic polymers also crystallize as helices, which relieves steric clashes by twisting, while keeping the molecules straight for their ordered packing. In columnar liquid crystals, which often display useful optoelectronic properties, overall helical chirality can be induced by inclusion of chiral chemical groups or dopants; these bias molecular twist to either left or right, analogous to a magnetic field aligning the spins in a paramagnet. In this work, however, we show that liquid-crystalline columns with long-range helical order can form by spontaneous self-assembly of straight- or bent-rod molecules without inclusion of any chiral moiety. A complex lattice with Fddd symmetry and 8 columns per unit cell (4 right-, 4 left-handed) characterizes this "antiferrochiral" structure. In selected compounds it allows close packing of their fluorescent groups reducing their bandgap and giving them promising light-emitting properties.
Collapse
Affiliation(s)
- Ya-Xin Li
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Centre for Soft Matter, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
- School of Chemistry and Chemical Engineering, Henan University of Technology, 450001, Zhengzhou, P. R. China
| | - Hong-Fei Gao
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Rui-Bin Zhang
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kutlwano Gabana
- Department of Physics and Astronomy, University of Sheffield, Sheffield, E1 2C, UK
| | - Qing Chang
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China
| | - Gillian A Gehring
- Department of Physics and Astronomy, University of Sheffield, Sheffield, E1 2C, UK
| | - Xiao-Hong Cheng
- Key Laboratory of Medicinal Chemistry from Natural Resources, Ministry of Education, Yunnan University, Kunming, P. R. China.
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, P. R. China.
| | - Xiang-Bing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Goran Ungar
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Centre for Soft Matter, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
20
|
Fernández Z, Fernández B, Quiñoá E, Freire F. Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold. J Am Chem Soc 2021; 143:20962-20969. [PMID: 34860519 PMCID: PMC8679087 DOI: 10.1021/jacs.1c10327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Supramolecular and covalent polymers share multiple structural effects such as chiral amplification, helical inversion, sergeants and soldiers, or majority rules, among others. These features are related to the axial helical structure found in both types of materials, which are responsible for their properties. Herein a novel material combining information and characteristics from both fields of helical polymers, supramolecular (oligo(p-phenyleneethynylene) (OPE)) and covalent (poly(acetylene) (PA)), is presented. To achieve this goal, the poly(acetylene) must adopt a dihedral angle between conjugated double bonds (ω1) higher than 165°. In such cases, the tilting degree (Θ) between the OPE units used as pendant groups is close to 11°, like that observed in supramolecular helical arrays of these molecules. Polymerization of oligo[(p-phenyleneethynylene)n]phenylacetylene monomers (n = 1, 2) bearing L-decyl alaninate as the pendant group yielded the desired scaffolds. These polymers adopt a stretched and almost planar polyene helix, where the OPE units are arranged describing a helical structure. As a result, a novel multihelix material was prepared, the ECD spectra of which are dominated by the OPE axial array.
Collapse
Affiliation(s)
- Zulema Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Fernández
- Departamento
de Química Física, University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
21
|
Synthesis, photophysical, electrochemical and DFT studies of two novel triazine-based perylene dye molecules. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Percec V, Wang S, Huang N, Partridge BE, Wang X, Sahoo D, Hoffman DJ, Malineni J, Peterca M, Jezorek RL, Zhang N, Daud H, Sung PD, McClure ER, Song SL. An Accelerated Modular-Orthogonal Ni-Catalyzed Methodology to Symmetric and Nonsymmetric Constitutional Isomeric AB 2 to AB 9 Dendrons Exhibiting Unprecedented Self-Organizing Principles. J Am Chem Soc 2021; 143:17724-17743. [PMID: 34637302 DOI: 10.1021/jacs.1c08502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five libraries of natural and synthetic phenolic acids containing five AB3, ten constitutional isomeric AB2, one AB4, and one AB5 were previously synthesized and reported by our laboratory in 5 to 11 steps. They were employed to construct seven libraries of self-assembling dendrons, by divergent generational, deconstruction, and combined approaches, enabling the discovery of a diversity of supramolecular assemblies including Frank-Kasper phases, soft quasicrystals, and complex helical organizations, some undergoing deracemization in the crystal state. However, higher substitution patterns within a single dendron were not accessible. Here we report three libraries consisting of 30 symmetric and nonsymmetric constitutional isomeric phenolic acids with unprecedented sequenced patterns, including two AB2, three AB3, eight AB4, five AB5, six AB6, three AB7, two AB8, and one AB9 synthesized by accelerated modular-orthogonal Ni-catalyzed borylation and cross-coupling. A single etherification step with 4-(n-dodecyloxy)benzyl chloride transformed all these phenolic acids, of interest also for other applications, into self-assembling dendrons. Despite this synthetic simplicity, they led to a diversity of unprecedented self-organizing principles: lamellar structures of interest for biological membrane mimics, helical columnar assemblies from rigid-solid angle dendrons forming Tobacco Mosaic Virus-like assemblies, columnar organizations from adaptable-solid angle dendrons forming disordered micellar-like nonhelical columns, columns from supramolecular spheres, five body-centered cubic phases displaying supramolecular orientational memory, rarely encountered in previous libraries forming predominantly Frank-Kasper phases, and two Frank-Kasper phases. Lessons from these self-organizing principles, discovered within a single generation of self-assembling dendrons, may help elaborate design principles for complex helical and nonhelical organizations of synthetic and biological matter.
Collapse
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Shitao Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Benjamin E Partridge
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Xuefeng Wang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - David J Hoffman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jagadeesh Malineni
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ryan L Jezorek
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Na Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Hina Daud
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paul D Sung
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Emily R McClure
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Se Lin Song
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
23
|
Percec V, Xiao Q. Helical Chirality of Supramolecular Columns and Spheres Self‐Organizes Complex Liquid Crystals, Crystals, and Quasicrystals. Isr J Chem 2021. [DOI: 10.1002/ijch.202100057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 United States
| |
Collapse
|
24
|
Schuster GB, Cafferty BJ, Karunakaran SC, Hud NV. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J Am Chem Soc 2021; 143:9279-9296. [PMID: 34152760 DOI: 10.1021/jacs.0c13081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hypothesis that RNA and DNA are products of chemical and biological evolution has motivated our search for alternative nucleic acids that may have come earlier in the emergence of life-polymers that possess a proclivity for covalent and non-covalent self-assembly not exhibited by RNA. Our investigations have revealed a small set of candidate ancestral nucleobases that self-assemble into hexameric rosettes that stack in water to form long, twisted, rigid supramolecular polymers. These structures exhibit properties that provide robust solutions to long-standing problems that have stymied the search for a prebiotic synthesis of nucleic acids. Moreover, their examination by experimental and computational methods provides insight into the chemical and physical principles that govern a particular class of water-soluble one-dimensional supramolecular polymers. In addition to efficient self-assembly, their lengths and polydispersity are modulated by a wide variety of positively charged, planar compounds; their assembly and disassembly are controlled over an exceedingly narrow pH range; they exhibit spontaneous breaking of symmetry; and homochirality emerges through non-covalent cross-linking during hydrogel formation. Some of these candidate ancestral nucleobases spontaneously form glycosidic bonds with ribose and other sugars, and, most significantly, functionalized forms of these heterocycles form supramolecular structures and covalent polymers under plausibly prebiotic conditions. This Perspective recounts a journey of discovery that continues to reveal attractive answers to questions concerning the origins of life and to uncover the principles that control the structure and properties of water-soluble supramolecular polymers.
Collapse
Affiliation(s)
- Gary B Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Brian J Cafferty
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Suneesh C Karunakaran
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Alenaizan A, Borca CH, Karunakaran SC, Kendall AK, Stubbs G, Schuster GB, Sherrill CD, Hud NV. X-ray Fiber Diffraction and Computational Analyses of Stacked Hexads in Supramolecular Polymers: Insight into Self-Assembly in Water by Prospective Prebiotic Nucleobases. J Am Chem Soc 2021; 143:6079-6094. [DOI: 10.1021/jacs.0c12010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Asem Alenaizan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332-0400, United States
- Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Carlos H. Borca
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Suneesh C. Karunakaran
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332-0400, United States
| | - Amy K. Kendall
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gerald Stubbs
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Gary B. Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - C. David Sherrill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332-0400, United States
- Center for Computational Molecular Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0765, United States
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
- NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
26
|
Huang N, Xiao Q, Peterca M, Zeng X, Percec V. Self-organisation of rhombitruncated cuboctahedral hexagonal columns from an amphiphilic Janus dendrimer. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1902586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ning Huang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiangbing Zeng
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Percec V, Xiao Q. Helical Self-Organizations and Emerging Functions in Architectures, Biological and Synthetic Macromolecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
28
|
Yan X, Guo Q, Lin Z, Liu X, Yuan J, Wang J, Wang H, Liu Y, Su Z, Liu T, Huang J, Zhang R, Wang Y, Huang M, Zhang W, Cheng SZD. Geometry‐Directed Self‐Assembly of Polymeric Molecular Frameworks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haomin Wang
- Department of Chemistry Lehigh University 6 E Packer Avenue Bethlehem PA 18015 USA
| | - Yuchu Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiahao Huang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
29
|
Yan X, Guo Q, Lin Z, Liu X, Yuan J, Wang J, Wang H, Liu Y, Su Z, Liu T, Huang J, Zhang R, Wang Y, Huang M, Zhang W, Cheng SZD. Geometry‐Directed Self‐Assembly of Polymeric Molecular Frameworks. Angew Chem Int Ed Engl 2020; 60:2024-2029. [DOI: 10.1002/anie.202012117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/24/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao‐Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zhiwei Lin
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xian‐You Liu
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jing Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Haomin Wang
- Department of Chemistry Lehigh University 6 E Packer Avenue Bethlehem PA 18015 USA
| | - Yuchu Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Jiahao Huang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Ruimeng Zhang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yicong Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
30
|
Percec V, Xiao Q, Lligadas G, Monteiro MJ. Perfecting self-organization of covalent and supramolecular mega macromolecules via sequence-defined and monodisperse components. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|