1
|
Koemans T, Bennett M, Ferraz MJ, Armstrong Z, Artola M, Aerts JMFG, Codée JDC, Overkleeft HS, Davies GJ. Structure-guided design of C3-branched swainsonine as potent and selective human Golgi α-mannosidase (GMII) inhibitor. Chem Commun (Camb) 2024; 60:11734-11737. [PMID: 39318342 DOI: 10.1039/d4cc04514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The human Golgi α-mannosidase, hGMII, removes two mannose residues from GlcNAc-Man5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor of all complex N-glycans including tumour-associated ones. The natural product GMII inhibitor, swainsonine, blocks processing of cancer-associated N-glycans, but also inhibits the four other human α-mannosidases, rendering it unsuitable for clinical use. Our previous structure-guided screening of iminosugar pyrrolidine and piperidine fragments identified two micromolar hGMII inhibitors occupying the enzyme active pockets in adjacent, partially overlapping sites. Here we demonstrate that fusing these fragments yields swainsonine-configured indolizidines featuring a C3-substituent that act as selective hGMII inhibitors. Our structure-guided GMII-selective inhibitor design complements a recent combinatorial approach that yielded similarly configured and substituted indolizidine GMII inhibitors, and holds promise for the potential future development of anti-cancer agents targeting Golgi N-glycan processing.
Collapse
Affiliation(s)
- Tony Koemans
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Megan Bennett
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York, YO10 5DD, UK.
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Zachary Armstrong
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory, The University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
2
|
Liu Y, Bineva-Todd G, Meek RW, Mazo L, Piniello B, Moroz O, Burnap SA, Begum N, Ohara A, Roustan C, Tomita S, Kjaer S, Polizzi K, Struwe WB, Rovira C, Davies GJ, Schumann B. A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V. J Am Chem Soc 2024; 146:26707-26718. [PMID: 39287665 PMCID: PMC11450819 DOI: 10.1021/jacs.4c05955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme-substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
Collapse
Affiliation(s)
- Yu Liu
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| | - Richard W. Meek
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
- School
of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Laura Mazo
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Beatriz Piniello
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Olga Moroz
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Sean A. Burnap
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Nadima Begum
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - André Ohara
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Chloe Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Sara Tomita
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Svend Kjaer
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Karen Polizzi
- Department
of Chemical Engineering and Imperial College Centre for Synthetic
Biology, Imperial College London, London SW7 2AZ, U.K.
| | - Weston B. Struwe
- Department
of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- The
Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin
Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) and Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08020 Barcelona, Spain
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Benjamin Schumann
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, London NW1 1AT, U.K.
| |
Collapse
|
3
|
Artola M, Aerts JMFG, van der Marel GA, Rovira C, Codée JDC, Davies GJ, Overkleeft HS. From Mechanism-Based Retaining Glycosidase Inhibitors to Activity-Based Glycosidase Profiling. J Am Chem Soc 2024; 146:24729-24741. [PMID: 39213505 PMCID: PMC11403624 DOI: 10.1021/jacs.4c08840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Activity-based protein profiling (ABPP) is an effective technology for the identification and functional annotation of enzymes in complex biological samples. ABP designs are normally directed to an enzyme active site nucleophile, and within the field of Carbohydrate-Active Enzymes (CAZymes), ABPP has been most successful for those enzymes that feature such a residue: retaining glycosidases (GHs). Several mechanism-based covalent and irreversible retaining GH inhibitors have emerged over the past sixty years. ABP designs based on these inhibitor chemistries appeared since the turn of the millennium, and we contributed to the field by designing a suite of retaining GH ABPs modeled on the structure and mode of action of the natural product, cyclophellitol. These ABPs enable the study of both exo- and endo-acting retaining GHs in human health and disease, for instance in genetic metabolic disorders in which retaining GHs are deficient. They are also finding increasing use in the study of GHs in gut microbiota and environmental microorganisms, both in the context of drug (de)toxification in the gut and that of biomass polysaccharide processing for future sustainable energy and chemistries. This account comprises the authors' view on the history of mechanism-based retaining GH inhibitor design and discovery, on how these inhibitors served as blueprints for retaining GH ABP design, and on some current and future developments on how cyclophellitol-based ABPs may drive the discovery of retaining GHs and their inhibitors.
Collapse
Affiliation(s)
- Marta Artola
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | | | - Carme Rovira
- Departament de Química Inorgànica I Orgànica & IQTCUB, Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08020, Spain
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Gideon J Davies
- Department of Chemistry, The University York, Heslington, York YO10 5DD, United Kingdom
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
4
|
Kalník M, Gabko P, Kóňa J, Šesták S, Moncoľ J, Bella M. (5S)-5-Benzylswainsonines as potent and selective inhibitors of Golgi α-mannosidase II: synthesis, enzyme evaluation and molecular modelling. Bioorg Chem 2024; 150:107578. [PMID: 38955002 DOI: 10.1016/j.bioorg.2024.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Development of novel anti-cancer therapeutics based on Golgi α-mannosidase II (GMII) inhibition is considerably impeded by an undesired co-inhibition of lysosomal α-mannosidase leading to severe side-effects. In this contribution, we describe a fully stereoselective synthesis of (5S)-5-[4-(halo)benzyl]swainsonines as highly potent and selective inhibitors of GMII. The synthesis starts from a previously reported aldehyde readily available from l-ribose, and the key features include an intramolecular reductive amination with substrate-controlled stereoselectivity and a late-stage derivatisation of the benzyl group via ipso-substitution. These novel swainsonine analogues were found to be nanomolar inhibitors of the Golgi-type α-mannosidase AMAN-2 (Ki = 23-75 nM) with excellent selectivity (selectivity index = 205-870) over the lysosomal-type Jack bean α-mannosidase. Finally, molecular docking and pKa calculations were performed to provide more insight into the structure of the inhibitor:enzyme complexes, and a pair interaction energy analysis (FMO-PIEDA) was carried out to rationalise the observed potency and selectivity of the inhibitors.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Peter Gabko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia; Medical Vision, Civic Research Association, Záhradnícka 4837/55, SK-82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovakia.
| |
Collapse
|
5
|
Wardman JF, Withers SG. Carbohydrate-active enzyme (CAZyme) discovery and engineering via (Ultra)high-throughput screening. RSC Chem Biol 2024; 5:595-616. [PMID: 38966674 PMCID: PMC11221537 DOI: 10.1039/d4cb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) constitute a diverse set of enzymes that catalyze the assembly, degradation, and modification of carbohydrates. These enzymes have been fashioned into potent, selective catalysts by millennia of evolution, and yet are also highly adaptable and readily evolved in the laboratory. To identify and engineer CAZymes for different purposes, (ultra)high-throughput screening campaigns have been frequently utilized with great success. This review provides an overview of the different approaches taken in screening for CAZymes and how mechanistic understandings of CAZymes can enable new approaches to screening. Within, we also cover how cutting-edge techniques such as microfluidics, advances in computational approaches and synthetic biology, as well as novel assay designs are leading the field towards more informative and effective screening approaches.
Collapse
Affiliation(s)
- Jacob F Wardman
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver BC V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia Vancouver BC V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
6
|
Li Z, Pickles IB, Sharma M, Melling B, Pallasdies L, Codée JDC, Williams SJ, Overkleeft HS, Davies GJ. Detection of Sulfoquinovosidase Activity in Cell Lysates Using Activity-Based Probes. Angew Chem Int Ed Engl 2024; 63:e202401358. [PMID: 38647177 DOI: 10.1002/anie.202401358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
The sulfolipid sulfoquinovosyl diacylglycerol (SQDG), produced by plants, algae, and cyanobacteria, constitutes a major sulfur reserve in the biosphere. Microbial breakdown of SQDG is critical for the biological utilization of its sulfur. This commences through release of the parent sugar, sulfoquinovose (SQ), catalyzed by sulfoquinovosidases (SQases). These vanguard enzymes are encoded in gene clusters that code for diverse SQ catabolic pathways. To identify, visualize and isolate glycoside hydrolase CAZY-family 31 (GH31) SQases in complex biological environments, we introduce SQ cyclophellitol-aziridine activity-based probes (ABPs). These ABPs label the active site nucleophile of this enzyme family, consistent with specific recognition of the SQ cyclophellitol-aziridine in the active site, as evidenced in the 3D structure of Bacillus megaterium SQase. A fluorescent Cy5-probe enables visualization of SQases in crude cell lysates from bacteria harbouring different SQ breakdown pathways, whilst a biotin-probe enables SQase capture and identification by proteomics. The Cy5-probe facilitates monitoring of active SQase levels during different stages of bacterial growth which show great contrast to more traditional mRNA analysis obtained by RT-qPCR. Given the importance of SQases in global sulfur cycling and in human microbiota, these SQase ABPs provide a new tool with which to study SQase occurrence, activity and stability.
Collapse
Affiliation(s)
- Zirui Li
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Isabelle B Pickles
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Benjamin Melling
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Luise Pallasdies
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
7
|
Yuasa H, Morino N, Wagatsuma T, Munekane M, Ueda S, Matsunaga M, Uchida Y, Katayama T, Katoh T, Kambe T. ZNT5-6 and ZNT7 play an integral role in protein N-glycosylation by supplying Zn 2+ to Golgi α-mannosidase II. J Biol Chem 2024; 300:107378. [PMID: 38762179 PMCID: PMC11209640 DOI: 10.1016/j.jbc.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
The stepwise addition of monosaccharides to N-glycans attached to client proteins to generate a repertoire of mature proteins involves a concerted action of many glycosidases and glycosyltransferases. Here, we report that Golgi α-mannosidase II (GMII), a pivotal enzyme catalyzing the first step in the conversion of hybrid- to complex-type N-glycans, is activated by Zn2+ supplied by the early secretory compartment-resident ZNT5-ZNT6 heterodimers (ZNT5-6) and ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in marked accumulation of hybrid-type and complex/hybrid glycans with concomitant reduction of complex- and high-mannose-type glycans. In cells lacking the ZNT5-6 and ZNT7 functions, the GMII activity is substantially decreased. In contrast, the activity of its homolog, lysosomal mannosidase (LAMAN), is not decreased. Moreover, we show that the growth of pancreatic cancer MIA PaCa-2 cells lacking ZNT5-6 and ZNT7 is significantly decreased in a nude mouse xenograft model. Our results indicate the integral roles of ZNT5-6 and ZNT7 in N-glycosylation and highlight their potential as novel target proteins for cancer therapy.
Collapse
Affiliation(s)
- Hana Yuasa
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Matsunaga
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuo Uchida
- Department of Molecular Systems Pharmaceutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima City, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Toshihiko Katoh
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Drogalin A, Monteiro LS, Alves MJ, Castro TG. Golgi α-mannosidase: opposing structures of Drosophila melanogaster and novel human model using molecular dynamics simulations and docking at different pHs. J Biomol Struct Dyn 2024; 42:2714-2725. [PMID: 37158092 DOI: 10.1080/07391102.2023.2209184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The search for Golgi α-mannosidase II (GMII) potent and specific inhibitors has been a focus of many studies for the past three decades since this enzyme is a key target for cancer treatment. α-Mannosidases, such as those from Drosophila melanogaster or Jack bean, have been used as functional models of the human Golgi α-mannosidase II (hGMII) because mammalian mannosidases are difficult to purify and characterize experimentally. Meanwhile, computational studies have been seen as privileged tools able to explore assertive solutions to specific enzymes, providing molecular details of these macromolecules, their protonation states and their interactions. Thus, modelling techniques can successfully predict hGMII 3D structure with high confidence, speeding up the development of new hits. In this study, Drosophila melanogaster Golgi mannosidase II (dGMII) and a novel human model, developed in silico and equilibrated via molecular dynamics simulations, were both opposed for docking. Our findings highlight that the design of novel inhibitors should be carried out considering the human model's characteristics and the enzyme operating pH. A reliable model is evidenced, showing a good correlation between Ki/IC50 experimental data and theoretical ΔGbinding estimations in GMII, opening the possibility of optimizing the rational drug design of new derivatives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Artem Drogalin
- Chemistry Centre, School of Sciences, University of Minho, Braga, Portugal
| | - Luís S Monteiro
- Chemistry Centre, School of Sciences, University of Minho, Braga, Portugal
| | - Maria José Alves
- Chemistry Centre, School of Sciences, University of Minho, Braga, Portugal
| | - Tarsila G Castro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Chen Y, van den Nieuwendijk AMC, Wu L, Moran E, Skoulikopoulou F, van Riet V, Overkleeft HS, Davies GJ, Armstrong Z. Molecular Basis for Inhibition of Heparanases and β-Glucuronidases by Siastatin B. J Am Chem Soc 2024; 146:125-133. [PMID: 38118176 PMCID: PMC10785800 DOI: 10.1021/jacs.3c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Siastatin B is a potent and effective iminosugar inhibitor of three diverse glycosidase classes, namely, sialidases, β-d-glucuronidases, and N-acetyl-glucosaminidases. The mode of inhibition of glucuronidases, in contrast to sialidases, has long been enigmatic as siastatin B appears too bulky and incorrectly substituted to be accommodated within a β-d-glucuronidase active site pocket. Herein, we show through crystallographic analysis of protein-inhibitor complexes that siastatin B generates both a hemiaminal and a 3-geminal diol iminosugar (3-GDI) that are, rather than the parent compound, directly responsible for enzyme inhibition. The hemiaminal product is the first observation of a natural product that belongs to the noeuromycin class of inhibitors. Additionally, the 3-GDI represents a new and potent class of the iminosugar glycosidase inhibitor. To substantiate our findings, we synthesized both the gluco- and galacto-configured 3-GDIs and characterized their binding both structurally and kinetically to exo-β-d-glucuronidases and the anticancer target human heparanase. This revealed submicromolar inhibition of exo-β-d-glucuronidases and an unprecedented binding mode by this new class of inhibitor. Our results reveal the mechanism by which siastatin B acts as a broad-spectrum glycosidase inhibitor, identify a new class of glycosidase inhibitor, and suggest new functionalities that can be incorporated into future generations of glycosidase inhibitors.
Collapse
Affiliation(s)
- Yurong Chen
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | | | - Liang Wu
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Elisha Moran
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Foteini Skoulikopoulou
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Vera van Riet
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Hermen S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
| | - Gideon J. Davies
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| | - Zachary Armstrong
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300
RA Leiden, The Netherlands
- York
Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, U.K.
| |
Collapse
|
10
|
McGregor NS, de Boer C, Foucart QPO, Beenakker T, Offen WA, Codée JDC, Willems LI, Overkleeft HS, Davies GJ. A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System. ACS CENTRAL SCIENCE 2023; 9:2306-2314. [PMID: 38161374 PMCID: PMC10755729 DOI: 10.1021/acscentsci.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, Cellvibrio japonicus, when grown on xyloglucan. A suite of activity-based probes bearing orthogonal fluorophores allows for the visualization of accessory exo-acting glycosidases, which are then identified using biotin-bearing probes. Substrate specificity of xyloglucanases is directly revealed by imbuing xyloglucan structural elements into bespoke activity-based probes. Our ABPP platform provides a highly useful tool to dissect xyloglucan-degrading systems from various sources and to rapidly select potentially useful ones. The observed specificity of the probes moreover bodes well for the study of other biomass polysaccharide-degrading systems, by modeling probe structures to those of desired substrates.
Collapse
Affiliation(s)
| | - Casper de Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Quentin P. O. Foucart
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Thomas Beenakker
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Wendy A. Offen
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Lianne I. Willems
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| |
Collapse
|
11
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
12
|
van der Gracht D, Rowland RJ, Roig-Zamboni V, Ferraz MJ, Louwerse M, Geurink PP, Aerts JMFG, Sulzenbacher G, Davies GJ, Overkleeft HS, Artola M. Fluorescence polarisation activity-based protein profiling for the identification of deoxynojirimycin-type inhibitors selective for lysosomal retaining alpha- and beta-glucosidases. Chem Sci 2023; 14:9136-9144. [PMID: 37655021 PMCID: PMC10466331 DOI: 10.1039/d3sc01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Lysosomal exoglycosidases are responsible for processing endocytosed glycans from the non-reducing end to produce the corresponding monosaccharides. Genetic mutations in a particular lysosomal glycosidase may result in accumulation of its particular substrate, which may cause diverse lysosomal storage disorders. The identification of effective therapeutic modalities to treat these diseases is a major yet poorly realised objective in biomedicine. One common strategy comprises the identification of effective and selective competitive inhibitors that may serve to stabilize the proper folding of the mutated enzyme, either during maturation and trafficking to, or residence in, endo-lysosomal compartments. The discovery of such inhibitors is greatly aided by effective screening assays, the development of which is the focus of the here-presented work. We developed and applied fluorescent activity-based probes reporting on either human GH30 lysosomal glucosylceramidase (GBA1, a retaining β-glucosidase) or GH31 lysosomal retaining α-glucosidase (GAA). FluoPol-ABPP screening of our in-house 358-member iminosugar library yielded compound classes selective for either of these enzymes. In particular, we identified a class of N-alkyldeoxynojirimycins that inhibit GAA, but not GBA1, and that may form the starting point for the development of pharmacological chaperone therapeutics for the lysosomal glycogen storage disease that results from genetic deficiency in GAA: Pompe disease.
Collapse
Affiliation(s)
- Daniël van der Gracht
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Rhianna J Rowland
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Véronique Roig-Zamboni
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University Marseille France
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Max Louwerse
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Paul P Geurink
- Department of Cell and Chemical Biology, Leiden University Medical Centre 2333 ZC Leiden The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Gerlind Sulzenbacher
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University Marseille France
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York York YO10 5DD UK
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| | - Marta Artola
- Leiden Institute of Chemistry, Leiden University P. O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
13
|
Kalník M, Šesták S, Kóňa J, Bella M, Poláková M. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives. Beilstein J Org Chem 2023; 19:282-293. [PMID: 36925565 PMCID: PMC10012049 DOI: 10.3762/bjoc.19.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A synthesis of 1,4-imino-ᴅ-lyxitols and their N-arylalkyl derivatives altered at C-5 is reported. Their inhibitory activity and selectivity toward four GH38 α-mannosidases (two Golgi types: GMIIb from Drosophila melanogaster and AMAN-2 from Caenorhabditis elegans, and two lysosomal types: LManII from Drosophila melanogaster and JBMan from Canavalia ensiformis) were investigated. 6-Deoxy-DIM was found to be the most potent inhibitor of AMAN-2 (K i = 0.19 μM), whose amino acid sequence and 3D structure of the active site are almost identical to the human α-mannosidase II (GMII). Although 6-deoxy-DIM was 3.5 times more potent toward AMAN-2 than DIM, their selectivity profiles were almost the same. N-Arylalkylation of 6-deoxy-DIM resulted only in a partial improvement as the selectivity was enhanced at the expense of potency. Structural and physicochemical properties of the corresponding inhibitor:enzyme complexes were analyzed by molecular modeling.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.,Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
14
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
15
|
Kóňa J, Šesták S, Wilson IBH, Poláková M. 1,4-Dideoxy-1,4-imino-D- and L-lyxitol-based inhibitors bind to Golgi α-mannosidase II in different protonation forms. Org Biomol Chem 2022; 20:8932-8943. [PMID: 36322142 PMCID: PMC7614232 DOI: 10.1039/d2ob01545e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of effective inhibitors of Golgi α-mannosidase II (GMII, E.C.3.2.1.114) with minimal off-target effects on phylogenetically-related lysosomal α-mannosidase (LMan, E.C.3.2.1.24) is a complex task due to the complicated structural and chemical properties of their active sites. The pKa values (and also protonation forms in some cases) of several ionizable amino acids, such as Asp, Glu, His or Arg of enzymes, can be changed upon the binding of the inhibitor. Moreover, GMII and LMan work under different pH conditions. The pKa calculations on large enzyme-inhibitor complexes and FMO-PIEDA energy decomposition analysis were performed on the structures of selected inhibitors obtained from docking and hybrid QM/MM calculations. Based on the calculations, the roles of the amino group incorporated in the ring of the imino-D-lyxitol inhibitors and some ionizable amino acids of Golgi-type (Asp270-Asp340-Asp341 of Drosophila melanogaster α-mannosidase dGMII) and lysosomal-type enzymes (His209-Asp267-Asp268 of Canavalia ensiformis α-mannosidase, JBMan) were explained in connection with the observed inhibitory properties. The pyrrolidine ring of the imino-D-lyxitols prefers at the active site of dGMII the neutral form while in JBMan the protonated form, whereas that of imino-L-lyxitols prefers the protonation form in both enzymes. The calculations indicate that the binding mechanism of inhibitors to the active-site of α-mannosidases is dependent on the inhibitor structure and could be used to design new selective inhibitors of GMII. A series of novel synthetic N-substituted imino-D-lyxitols were evaluated with four enzymes from the glycoside hydrolase GH38 family (two of Golgi-type, Drosophila melanogaster GMIIb and Caenorhabditis elegans AMAN-2, and two of lysosomal-type, Drosophila melanogaster LManII and Canavalia ensiformis JBMan, enzymes). The most potent structures [N-9-amidinononyl and N-2-(1-naphthyl)ethyl derivatives] inhibited GMIIb (Ki = 40 nM) and AMAN-2 (Ki = 150 nM) with a weak selectivity index (SI) toward Golgi-type enzymes of IC50(LManII)/IC50(GMIIb) = 35 or IC50(JBMan)/IC50(AMAN-2) = 86. On the other hand, weaker micromolar inhibitors, such as N-2-naphthylmethyl or 4-iodobenzyl derivatives [IC50(GMIIb) = 2.4 μM and IC50 (AMAN-2) = 7.6 μM], showed a significant SI in the range from 111 to 812.
Collapse
Affiliation(s)
- Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
- Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
16
|
Anderson AJ, Seebald LM, Arbour CA, Imperiali B. Probing Monotopic Phosphoglycosyl Transferases from Complex Cellular Milieu. ACS Chem Biol 2022; 17:3191-3197. [PMID: 36346917 PMCID: PMC9703085 DOI: 10.1021/acschembio.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monotopic phosphoglycosyl transferase enzymes (monoPGTs) initiate the assembly of prokaryotic glycoconjugates essential for bacterial survival and proliferation. MonoPGTs belong to an expansive superfamily with a diverse and richly annotated sequence space; however, the biochemical roles of most monoPGTs in glycoconjugate biosynthesis pathways remain elusive. To better understand these critical enzymes, we have implemented activity-based protein profiling (ABPP) probes as protein-centric, membrane protein compatible tools that lay the groundwork for understanding the activity and regulation of the monoPGT superfamily from a cellular proteome. With straightforward gel-based readouts, we demonstrate robust, covalent labeling at the active site of various representative monoPGTs from cell membrane fractions using 3-phenyl-2H-azirine probes.
Collapse
Affiliation(s)
- Alyssa J. Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christine A. Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
17
|
Jia Y, Kim RQ, Kooij R, Ovaa H, Sapmaz A, Geurink PP. Chemical Toolkit for PARK7: Potent, Selective, and High-Throughput. J Med Chem 2022; 65:13288-13304. [PMID: 36149939 PMCID: PMC9574860 DOI: 10.1021/acs.jmedchem.2c01113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multifunctional human Parkinson's disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson's disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components. The selective PARK7 submicromolar inhibitor with a cyanimide reactive group covalently modifies the active site Cys106. Installment of different dyes onto the inhibitor delivered two PARK7 probes. The Rhodamine110 probe provides a high-throughput screening compatible FP assay, showcased by screening a compound library (8000 molecules). The SulfoCy5-equipped probe is a valuable tool to assess the effect of PARK7 inhibitors in a cell lysate. Our work creates new possibilities to explore PARK7 function in a physiologically relevant setting and develop new and improved PARK7 inhibitors.
Collapse
Affiliation(s)
- Yuqing Jia
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Robbert Q Kim
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Raymond Kooij
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
18
|
Chen WA, Chen YH, Hsieh CY, Hung PF, Chen CW, Chen CH, Lin JL, Cheng TJR, Hsu TL, Wu YT, Shen CN, Cheng WC. Harnessing natural-product-inspired combinatorial chemistry and computation-guided synthesis to develop N-glycan modulators as anticancer agents. Chem Sci 2022; 13:6233-6243. [PMID: 35733906 PMCID: PMC9159088 DOI: 10.1039/d1sc05894k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Modulation of N-glycosylation using human Golgi α-mannosidase II (α-hGMII) inhibitors is a potential anticancer approach, but the clinical utility of current α-hGMII inhibitors is limited by their co-inhibition of human lysosomal α-mannosidase (α-hLM), resulting in abnormal storage of oligomannoses. We describe the synthesis and screening of a small library of novel bicyclic iminosugar-based scaffolds, prepared via natural product-inspired combinatorial chemistry (NPICC), which resulted in the identification of a primary α-hGMII inhibitor with 13.5-fold selectivity over α-hLM. Derivatization of this primary inhibitor using computation-guided synthesis (CGS) yielded an advanced α-hGMII inhibitor with nanomolar potency and 106-fold selectivity over α-hLM. In vitro studies demonstrated its N-glycan modulation and inhibitory effect on hepatocellular carcinoma (HCC) cells. In vivo studies confirmed its encouraging anti-HCC activity, without evidence of oligomannose accumulation. An integrated strategy of Natural-Product-Inspired Combinatorial Chemistry (NPICC) and Computation-Guided Synthesis is used to develop an α-hGMII inhibitor with 106-fold selectivity over α-hLM, with inhibitory effect on hepatocellular carcinoma.![]()
Collapse
Affiliation(s)
- Wei-An Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Yu-Hsin Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Yun Hsieh
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Pi-Fang Hung
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chiao-Wen Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chien-Hung Chen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ting-Jen R Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Ying-Ta Wu
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan
| | - Wei-Chieh Cheng
- Genomics Research Center, Academia Sinica 128, Section 2, Academia Road Taipei 11529 Taiwan .,Department of Chemistry, National Cheng-Kung University 1, University Road Tainan 701 Taiwan.,Department of Applied Chemistry, National Chiayi University 300, Xuefu Rd, East Dist. Chiayi 600 Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University 100 Shih-Chuan 1st Rd Kaohsiung 807 Taiwan
| |
Collapse
|
19
|
McGregor NGS, Overkleeft HS, Davies GJ. Detecting and identifying glycoside hydrolases using cyclophellitol-derived activity-based probes. Methods Enzymol 2022; 664:103-134. [PMID: 35331370 DOI: 10.1016/bs.mie.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability to detect active enzymes in a complex mixture of folded proteins (e.g., secretome, cell lysate) generally relies on observations of catalytic ability, necessitating the development of an activity assay that is compatible with the sample and selective for the enzyme(s) of interest. Deconvolution of the contributions of different enzymes to an observed catalytic ability further necessitates an often-challenging protein separation. The advent of broadly reactive activity-based probes (ABPs) for retaining glycoside hydrolases (GHs) has enabled an alternative, often complementary, assay for active GHs. Using activity-based protein profiling (ABPP) techniques, many retaining glycoside hydrolases can be separated, detected, and identified with high sensitivity and selectivity. This chapter outlines ABPP methods for the detection and identification of retaining glycoside hydrolases from microbial sources, including protein sample preparation from bacterial lysates and fungal secretomes, enzyme labeling and detection via fluorescence, and enzyme identification using affinity-based enrichment coupled to peptide sequencing following isobaric labeling.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | | | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom.
| |
Collapse
|
20
|
McGregor NGS, Kuo CL, Beenakker TJM, Wong CS, Offen WA, Armstrong Z, Florea BI, Codée JDC, Overkleeft HS, Aerts JMFG, Davies GJ. Synthesis of broad-specificity activity-based probes for exo-β-mannosidases. Org Biomol Chem 2022; 20:877-886. [PMID: 35015006 PMCID: PMC8790593 DOI: 10.1039/d1ob02287c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exo-β-mannosidases are a broad class of stereochemically retaining hydrolases that are essential for the breakdown of complex carbohydrate substrates found in all kingdoms of life. Yet the detection of exo-β-mannosidases in complex biological samples remains challenging, necessitating the development of new methodologies. Cyclophellitol and its analogues selectively label the catalytic nucleophiles of retaining glycoside hydrolases, making them valuable tool compounds. Furthermore, cyclophellitol can be readily redesigned to enable the incorporation of a detection tag, generating activity-based probes (ABPs) that can be used to detect and identify specific glycosidases in complex biological samples. Towards the development of ABPs for exo-β-mannosidases, we present a concise synthesis of β-manno-configured cyclophellitol, cyclophellitol aziridine, and N-alkyl cyclophellitol aziridines. We show that these probes covalently label exo-β-mannosidases from GH families 2, 5, and 164. Structural studies of the resulting complexes support a canonical mechanism-based mode of action in which the active site nucleophile attacks the pseudoanomeric centre to form a stable ester linkage, mimicking the glycosyl enzyme intermediate. Furthermore, we demonstrate activity-based protein profiling using an N-alkyl aziridine derivative by specifically labelling MANBA in mouse kidney tissue. Together, these results show that synthetic manno-configured cyclophellitol analogues hold promise for detecting exo-β-mannosidases in biological and biomedical research.
Collapse
Affiliation(s)
- Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Chi-Lin Kuo
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thomas J M Beenakker
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Chun-Sing Wong
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Wendy A Offen
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Zachary Armstrong
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| | - Bogdan I Florea
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-Organic Chemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, UK.
| |
Collapse
|
21
|
Heinzlmeir S, Müller S. Selectivity aspects of activity-based (chemical) probes. Drug Discov Today 2021; 27:519-528. [PMID: 34728376 DOI: 10.1016/j.drudis.2021.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Selective chemical modulators are ideal tools to study the function of a protein. Yet, the poor ligandability of many proteins has hampered the development of specific chemical probes for numerous protein classes. Tools, such as covalent inhibitors and activity-based protein profiling, have enhanced our understanding of thus-far difficult-to-target proteins and have enabled correct assessment of the selectivity of small-molecule modulators. This also requires deeper knowledge of compound and target site reactivity, evaluation of binding to noncovalent targets and protein turnover. The availability of highly selective chemical probes, the evolution of activity-based probes, and the development of profiling methods will open a new era of drugging the undruggable proteome.
Collapse
Affiliation(s)
- Stephanie Heinzlmeir
- Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Susanne Müller
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strabe 15, 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strabe 9, 60438 Frankfurt, Germany; The Chemical Probes Portal, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
22
|
Dhara D, Dhara A, Bennett J, Murphy PV. Cyclisations and Strategies for Stereoselective Synthesis of Piperidine Iminosugars. CHEM REC 2021; 21:2958-2979. [PMID: 34713557 DOI: 10.1002/tcr.202100221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022]
Abstract
This personal account focuses on synthesis of polyhydroxylated piperidines, a subset of compounds within the iminosugar family. Cyclisations to form the piperidine ring include reductive amination, substitution via amines, iminium ions and cyclic nitrones, transamidification (N-acyl transfer), addition to alkenes, ring contraction and expansion, photoinduced electron transfer, multicomponent Ugi reaction and ring closing metathesis. Enantiomerically pure piperidines are obtained from chiral pool precursors (e. g. sugars, amino acids, Garner's aldehyde) or asymmetric reactions (e. g. epoxidation, dihydroxylation, aminohydroxylation, aldol, biotransformation). Our laboratory have contributed cascades based on reductive amination from glycosyl azide precursors as well as Huisgen azide-alkene cycloaddition. The latter's combination with allylic azide rearrangement has given substituted piperidines, including those with quaternary centres adjacent to nitrogen.
Collapse
Affiliation(s)
- Debashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,Unité de Chimie des Biomolécules, UMR 3523 CNRS, Institut Pasteur, Université de Paris, 28 rue du Dr Roux, 75015, Paris, France
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Jack Bennett
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.,SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
23
|
Jain N, Tamura K, Déjean G, Van Petegem F, Brumer H. Orthogonal Active-Site Labels for Mixed-Linkage endo-β-Glucanases. ACS Chem Biol 2021; 16:1968-1984. [PMID: 33988963 DOI: 10.1021/acschembio.1c00063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small molecule irreversible inhibitors are valuable tools for determining catalytically important active-site residues and revealing key details of the specificity, structure, and function of glycoside hydrolases (GHs). β-glucans that contain backbone β(1,3) linkages are widespread in nature, e.g., mixed-linkage β(1,3)/β(1,4)-glucans in the cell walls of higher plants and β(1,3)glucans in yeasts and algae. Commensurate with this ubiquity, a large diversity of mixed-linkage endoglucanases (MLGases, EC 3.2.1.73) and endo-β(1,3)-glucanases (laminarinases, EC 3.2.1.39 and EC 3.2.1.6) have evolved to specifically hydrolyze these polysaccharides, respectively, in environmental niches including the human gut. To facilitate biochemical and structural analysis of these GHs, with a focus on MLGases, we present here the facile chemo-enzymatic synthesis of a library of active-site-directed enzyme inhibitors based on mixed-linkage oligosaccharide scaffolds and N-bromoacetylglycosylamine or 2-fluoro-2-deoxyglycoside warheads. The effectiveness and irreversibility of these inhibitors were tested with exemplar MLGases and an endo-β(1,3)-glucanase. Notably, determination of inhibitor-bound crystal structures of a human-gut microbial MLGase from Glycoside Hydrolase Family 16 revealed the orthogonal labeling of the nucleophile and catalytic acid/base residues with homologous 2-fluoro-2-deoxyglycoside and N-bromoacetylglycosylamine inhibitors, respectively. We anticipate that the selectivity of these inhibitors will continue to enable the structural and mechanistic analyses of β-glucanases from diverse sources and protein families.
Collapse
Affiliation(s)
- Namrata Jain
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kazune Tamura
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Guillaume Déjean
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
24
|
Maruyama S, Sawano K, Amaki S, Suzuki T, Narita S, Kimura K, Arakawa T, Yamada C, Ito Y, Dohmae N, Fujita K, Ishiwata A, Fushinobu S. Substrate complex structure, active site labeling and catalytic role of the zinc ion in cysteine glycosidase. Glycobiology 2021; 32:171-180. [PMID: 34735571 DOI: 10.1093/glycob/cwab103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
β-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-β-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, β-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the β-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.
Collapse
Affiliation(s)
- Shun Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kota Sawano
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoko Amaki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoru Narita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan
| | - Kenta Kimura
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma, Saitama 337-8570, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihaya Yamada
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Graduate School of Science, Osaka University, 1-1 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan
| | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
25
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells*. Angew Chem Int Ed Engl 2021; 60:12796-12801. [PMID: 33783926 PMCID: PMC8159897 DOI: 10.1002/anie.202102601] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/19/2021] [Indexed: 01/01/2023]
Abstract
Changing an oxygen atom of the phosphoester bond in phosphopeptides by a sulfur atom enables instantly targeting Golgi apparatus (GA) and selectively killing cancer cells by enzymatic self-assembly. Specifically, conjugating cysteamine S-phosphate to the C-terminal of a self-assembling peptide generates a thiophosphopeptide. Being a substrate of alkaline phosphatase (ALP), the thiophosphopeptide undergoes rapid ALP-catalyzed dephosphorylation to form a thiopeptide that self-assembles. The thiophosphopeptide enters cells via caveolin-mediated endocytosis and macropinocytosis and instantly accumulates in GA because of dephosphorylation and formation of disulfide bonds in Golgi by themselves and with Golgi proteins. Moreover, the thiophosphopeptide potently and selectively inhibits cancer cells (HeLa) with the IC50 (about 3 μM), which is an order of magnitude more potent than that of the parent phosphopeptide.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
26
|
Tan W, Zhang Q, Wang J, Yi M, He H, Xu B. Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Weiyi Tan
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Qiuxin Zhang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqing Wang
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Meihui Yi
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
27
|
The Uncovered Function of the Drosophila GBA1a-Encoded Protein. Cells 2021; 10:cells10030630. [PMID: 33809074 PMCID: PMC8000066 DOI: 10.3390/cells10030630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Human GBA1 encodes lysosomal acid β-glucocerebrosidase (GCase), which hydrolyzes cleavage of the beta-glucosidic linkage of glucosylceramide (GlcCer). Mutations in this gene lead to reduced GCase activity, accumulation of glucosylceramide and glucosylsphingosine, and development of Gaucher disease (GD). Drosophila melanogaster has two GBA1 orthologs. Thus far, GBA1b was documented as a bone fide GCase-encoding gene, while the role of GBA1a encoded protein remained unclear. In the present study, we characterized a mutant variant of the fly GBA1a, which underwent ERAD and mildly activated the UPR machinery. RNA-seq analyses of homozygous mutant flies revealed upregulation of inflammation-associated as well as of cell-cycle related genes and reduction in programmed cell death (PCD)-associated genes, which was confirmed by qRT-PCR. We also observed compromised cell death in the midgut of homozygous larvae and a reduction in pupation. Our results strongly indicated that GBA1a-encoded protein plays a role in midgut maturation during larvae development.
Collapse
|
28
|
Khiar‐Fernández N, Macicior J, Marcos‐Ramiro B, Ortega‐Gutiérrez S. Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nora Khiar‐Fernández
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Jon Macicior
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Beatriz Marcos‐Ramiro
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Silvia Ortega‐Gutiérrez
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| |
Collapse
|
29
|
Chen Y, Armstrong Z, Artola M, Florea BI, Kuo CL, de Boer C, Rasmussen MS, Abou Hachem M, van der Marel GA, Codée JDC, Aerts JMF, Davies GJ, Overkleeft HS. Activity-Based Protein Profiling of Retaining α-Amylases in Complex Biological Samples. J Am Chem Soc 2021; 143:2423-2432. [PMID: 33497208 PMCID: PMC7883350 DOI: 10.1021/jacs.0c13059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/02/2022]
Abstract
Amylases are key enzymes in the processing of starch in many kingdoms of life. They are important catalysts in industrial biotechnology where they are applied in, among others, food processing and the production of detergents. In man amylases are the first enzymes in the digestion of starch to glucose and arguably also the preferred target in therapeutic strategies aimed at the treatment of type 2 diabetes patients through down-tuning glucose assimilation. Efficient and sensitive assays that report selectively on retaining amylase activities irrespective of the nature and complexity of the biomaterial studied are of great value both in finding new and effective human amylase inhibitors and in the discovery of new microbial amylases with potentially advantageous features for biotechnological application. Activity-based protein profiling (ABPP) of retaining glycosidases is inherently suited for the development of such an assay format. We here report on the design and synthesis of 1,6-epi-cyclophellitol-based pseudodisaccharides equipped with a suite of reporter entities and their use in ABPP of retaining amylases from human saliva, murine tissue as well as secretomes from fungi grown on starch. The activity and efficiency of the inhibitors and probes are substantiated by extensive biochemical analysis, and the selectivity for amylases over related retaining endoglycosidases is validated by structural studies.
Collapse
Affiliation(s)
- Yurong Chen
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Zachary Armstrong
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Marta Artola
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bogdan I. Florea
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Casper de Boer
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mikkel S. Rasmussen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plad, 2800 Kgs. Lyngby, Denmark
| | - Maher Abou Hachem
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plad, 2800 Kgs. Lyngby, Denmark
| | - Gijsbert A. van der Marel
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jeroen D. C. Codée
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Johannes M. F.
G. Aerts
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Department
of Bioorganic Synthesis and Department of Medical Biochemistry,
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
30
|
N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase. Molecules 2020; 25:molecules25204618. [PMID: 33050585 PMCID: PMC7594070 DOI: 10.3390/molecules25204618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for β-glucosidases, some exhibiting activities in the low nanomolar range for β-glucocerebrosidase.
Collapse
|