1
|
Hu S, Wang X, Wu T, Ding Z, Wang M, Kong W. Ni-Catalyzed Enantioselective Reductive Cyclization/Amidation and Amination of 1,6-Enynes and 1,7-Enynes. Angew Chem Int Ed Engl 2025; 64:e202413892. [PMID: 39193806 DOI: 10.1002/anie.202413892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Transition-metal-catalyzed hydroamination of unsaturated hydrocarbons is an appealing synthetic tool for the construction of high value-added chiral amines. Despite significant progress in the asymmetric hydroamination of alkenes, allenes, and 1,3-dienes, asymmetric hydroamination of 1,6-enynes or 1,7-enynes remains rather limited due to the enormous challenges in controlling the chemoselectivity and stereoselectivity of the reaction. Herein, we report a Ni-catalyzed chemo- and enantioselective reductive cyclization/amidation and amination of 1,6-enynes and 1,7-enynes using dioxazolones or anthranils as nitrene-transfer reagents. This mild, modular, and practical protocol provides rapid access to a variety of enantioenriched 2-pyrrolidone and 2-piperidone derivatives bearing an aminomethylene group at the 4-position in good yields (up to 83 %) with excellent enantioselectivities (46 examples, up to 99 % ee). Mechanistic experiments and density functional theory calculations indicate that the reaction is initiated by hydronickelation of alkynes followed by migratory insertion into alkenes, rather than by a [2+2+1] oxidative addition process of nickel to alkenes and alkynes.
Collapse
Affiliation(s)
- Shengwei Hu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Tianbao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhengtian Ding
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Wang SC, Liu L, Duan M, Xie W, Han J, Xue Y, Wang Y, Wang X, Zhu S. Regio- and Enantioselective Nickel-Catalyzed Ipso- and Remote Hydroamination Utilizing Organic Azides as Amino Sources for the Synthesis of Primary Amines. J Am Chem Soc 2024; 146:30626-30636. [PMID: 39442777 DOI: 10.1021/jacs.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Primary amines serve as key synthetic precursors to most other N-containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
Collapse
Affiliation(s)
- Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Lin Liu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weijia Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jiabin Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Lyu X, Jung H, Kim D, Chang S. Enantioselective Access to β-Amino Carbonyls via Ni-Catalyzed Formal Olefin Hydroamidation. J Am Chem Soc 2024; 146:14745-14753. [PMID: 38742738 DOI: 10.1021/jacs.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We herein describe a Ni-catalyzed formal hydroamidation of readily available α,β-unsaturated carbonyl compounds to afford valuable chiral β-amino acid derivatives (up to >99:1 e.r.) using dioxazolones as a robust amino source. A wide range of alkyl-substituted olefins conjugated to esters, amides, thioesters, and ketones were successfully amidated at the β-position with excellent enantioselectivity for the first time. Combined experimental and computational mechanistic studies supported our working hypothesis that this unconventional β-amidation of unsaturated carbonyl substrates can be attributed to the polar-matched migratory olefin insertion of an (amido)(Cl)NiII intermediate, in situ generated from the dioxazolone precursor.
Collapse
Affiliation(s)
- Xiang Lyu
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
5
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|
6
|
Sun S, Zhang Q, Zi W. Palladium-Catalyzed Enantioselective Hydrohydrazonation of 1,3-Dienes. Org Lett 2023; 25:8397-8401. [PMID: 37983182 DOI: 10.1021/acs.orglett.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We presented a method for synthesizing allylic chiral hydrazones from 1,4-disubstituted 1,3-dienes and hydrazones through a (R)-DTBM-Segphos-Pd(0)-catalyzed hydrohydrazonation reaction. This transformation has a wide range of substrates and good functional group tolerance. The desired products were obtained in medium to high yield and good regio- and enantioselectivity. Synthetic transformation of the products into various nitrogen-containing chiral compounds was demonstrated.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
7
|
Bulky NHC–Cobalt Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Catalysts 2023. [DOI: 10.3390/catal13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The hydrosilylation of alkynes is one of the most attractive and, at the same time, most challenging catalytic transformations, usually demanding the use of noble transition metals. We describe a catalytic system, based on cobalt(0) complex and bulky N-heterocyclic carbene (NHC) ligands, permitting the highly effective hydrosilylation of a broad scope of alkynes and silanes. The application of bulky NHC ligands allowed a decrease in the amount of cobalt necessary for an effective reaction run to 2.5 mol% and provided excellent selectivity towards challenging α-vinylsilanes. The developed method tolerates a number of substituted aryl, alkyl, and silyl acetylenes. Moreover, it is suitable for both tertiary and secondary silanes. Our findings confirm that steric hindrance around the metal center can effectively increase the activity of a catalyst and ensure better selectivity than those of analogous complexes bearing smaller ligands.
Collapse
|
8
|
Miao H, Guan M, Xiong T, Zhang G, Zhang Q. Cobalt-Catalyzed Enantioselective Hydroamination of Arylalkenes with Secondary Amines. Angew Chem Int Ed Engl 2023; 62:e202213913. [PMID: 36342476 DOI: 10.1002/anie.202213913] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Catalytic asymmetric hydroamination of alkenes with Lewis basic amines is of great interest but remains a challenge in synthetic chemistry. Here, we developed a Co-catalyzed asymmetric hydroamination of arylalkenes directly using commercially accessible secondary amines. This process enables the efficient access to valuable α-chiral tertiary amines in good to excellent yields and enantioselectivities. Mechanistic studies suggest that the reaction includes a CoH-mediated hydrogen atom transfer (MHAT) with arylalkenes, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated electrophilic cationic alkylcobalt(IV) species and free amines. This radical-polar crossover strategy not only provides a straightforward and alternative approach for the synthesis of enantioenriched α-tertiary amines, but also underpins the substantial opportunities in developing asymmetric radical functionalization of alkenes with various free nucleophiles in oxidative MHAT catalysis.
Collapse
Affiliation(s)
- Huanran Miao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Meihui Guan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, 130024, Changchun, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
9
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Liang Y, Das UK, Luo J, Diskin-Posner Y, Avram L, Milstein D. Magnesium Pincer Complexes and Their Applications in Catalytic Semihydrogenation of Alkynes and Hydrogenation of Alkenes: Evidence for Metal-Ligand Cooperation. J Am Chem Soc 2022; 144:19115-19126. [PMID: 36194894 PMCID: PMC9585592 DOI: 10.1021/jacs.2c08491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of catalysts for environmentally benign organic transformations is a very active area of research. Most of the catalysts reported so far are based on transition-metal complexes. In recent years, examples of catalysis by main-group metal compounds have been reported. Herein, we report a series of magnesium pincer complexes, which were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 via aromatization/dearomatization metal-ligand cooperation was studied. Utilizing the obtained complexes, the unprecedented homogeneous main-group metal catalyzed semihydrogenation of alkynes and hydrogenation of alkenes were demonstrated under base-free conditions, affording Z-alkenes and alkanes as products, respectively, with excellent yields and selectivities. Control experiments and DFT studies reveal the involvement of metal-ligand cooperation in the hydrogenation reactions. This study not only provides a new approach for the semihydrogenation of alkynes and hydrogenation of alkenes catalyzed by magnesium but also offers opportunities for the hydrogenation of other compounds catalyzed by main-group metal complexes.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uttam Kumar Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Roy S, Chatterjee I. Visible-Light-Mediated ( sp 3)Cα-H Functionalization of Ethers Enabled by Electron Donor-Acceptor Complex. ACS ORGANIC & INORGANIC AU 2022; 2:306-311. [PMID: 36855592 PMCID: PMC9955270 DOI: 10.1021/acsorginorgau.2c00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A synthetically beneficial visible-light-mediated protocol has been disclosed to achieve C-H amination of readily available feedstocks cyclic and acyclic ethers. A rarely identified N-bromosuccinamide-tetrahydrofuran electron donor-acceptor complex served as an initiator to functionalize both α-diazoketones and dialkyl azodicarboxylates. This developed methodology gives an alternative and milder way to construct the C-N bond and can be explored for the formation of C-C bond to perform arylation and allylation reactions.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
12
|
Chen J, Ying J, Lu Z. Cobalt-catalyzed branched selective hydroallylation of terminal alkynes. Nat Commun 2022; 13:4518. [PMID: 35922446 PMCID: PMC9349270 DOI: 10.1038/s41467-022-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we reported a cobalt-hydride-catalyzed Markovnikov-type hydroallylation of terminal alkynes with allylic electrophile to access valuable and branched skipped dienes (1,4-dienes) with good regioselectivity. This operationally simple protocol exhibits excellent functional group tolerance and exceptional substrate scope. The reactions could be carried out in gram-scale with TON (turn over number) up to 1160, and the products could be easily derivatized. The preliminary mechanism of electrophilic allylation of α-selective cobalt alkenyl intermediate was proposed based on deuterium labeling experiment and kinetic studies. Selectively generating “skipped” dienes, where two carbon–carbon double bonds are separated by a saturated carbon center, is an interesting problem in organic chemistry, with few reliable, catalytic methods currently available. Here, the authors report branched selective hydroallylation of terminal alkynes with allylic bromides to form skipped dienes, via cobalt catalysis.
Collapse
Affiliation(s)
- Jieping Chen
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Ying
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Center of chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Li Y, Liu D, Wan L, Zhang JY, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regiodivergent Alkyne Hydroalkylation. J Am Chem Soc 2022; 144:13961-13972. [PMID: 35866845 DOI: 10.1021/jacs.2c06279] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Regiodivergent alkyne hydroalkylation to generate different isomers of an alkene from the same alkyne starting material would be beneficial; however, it remains a challenge. Herein, we report a ligand-controlled cobalt-catalyzed regiodivergent alkyne hydroalkylation. The sensible selection of bisoxazoline (L1) and pyridine-oxazoline (L8) ligands led to reliable and predictable protocols that provided (E)-1,2-disubstituted and 1,1-disubstituted alkenes with high E/Z stereoselectivity and regioisomeric ratio starting from identical terminal alkyne and alkyl halide substrates and produced trisubstituted alkenes in the case of internal alkynes. This method exhibits a broad scope for terminal and internal alkynes with a wide range of activated and unactivated alkyl halides and shows excellent functional group compatibility.
Collapse
Affiliation(s)
- Yan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Deguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Lei Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Jun-Yang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Xi Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Yao Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China.,Institute of Energy, Hefei Comprehensive National Science Center, 230031 Hefei, China
| |
Collapse
|
14
|
Li Q, Fang X, Pan R, Yao H, Lin A. Palladium-Catalyzed Asymmetric Sequential Hydroamination of 1,3-Enynes: Enantioselective Syntheses of Chiral Imidazolidinones. J Am Chem Soc 2022; 144:11364-11376. [PMID: 35687857 DOI: 10.1021/jacs.2c03620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xinxin Fang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Rui Pan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
15
|
Qin T, Lv G, Miao H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt-Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes. Angew Chem Int Ed Engl 2022; 61:e202201967. [PMID: 35363410 DOI: 10.1002/anie.202201967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/08/2022]
Abstract
An efficient and general intermolecular Cobalt(II)-catalyzed asymmetric alkylation of styrenes with (hetero)arenes including indoles, thiophene and electron rich arenes has been developed, providing straightforward access to enantioenriched alkyl(hetero)arenes with high enantioselectivity. Mechanistic studies suggest that the reaction underwent a CoH-mediated hydrogen atom transfer (HAT) with alkenes, followed by a pivotal catalyst-controlled SN 2-like pathway between in situ generated organocobalt(IV) species and aromatic nucleophiles. This is the first CoH-catalyzed asymmetric hydrofunctionalization using carbon nucleophiles, providing a new strategy for asymmetric Friedel-Crafts type alkylation.
Collapse
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Huanran Miao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Meihui Guan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Chunlu Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
16
|
Jin S, Li J, Liu K, Ding WY, Wang S, Huang X, Li X, Yu P, Song Q. Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nat Commun 2022; 13:3524. [PMID: 35725731 PMCID: PMC9209482 DOI: 10.1038/s41467-022-31234-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/08/2022] [Indexed: 01/16/2023] Open
Abstract
Chiral organoborons are of great value in asymmetric synthesis, functional materials, and medicinal chemistry. The development of chiral bis(boryl) alkanes, especially optically enriched 1,1-diboron compounds, has been greatly inhibited by the lack of direct synthetic protocols. Therefore, it is very challenging to develop a simple and effective strategy to obtain chiral 1,1-diborylalkanes. Herein, we develop an enantioselective copper-catalyzed cascade double hydroboration of terminal alkynes and highly enantioenriched gem-diborylalkanes were readily obtained. Our strategy uses simple terminal alkynes and two different boranes to construct valuable chiral gem-bis(boryl) alkanes with one catalytic and one ligand pattern, which represents the simplest and most straightforward strategy for constructing such chiral gem-diborons.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Jinxia Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Wei-Yi Ding
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xiujuan Huang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Xue Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian, 361021, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
17
|
Qin T, Lv G, Miao H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt‐Catalyzed Asymmetric Alkylation of (Hetero)Arenes with Styrenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Qin
- Northeast Normal University Department of Chemistry CHINA
| | - Guowei Lv
- Northeast Normal University Department of Chemistry CHINA
| | - Huanran Miao
- Northeast Normal University Department of Chemistry CHINA
| | - Meihui Guan
- Northeast Normal University Department of Chemistry CHINA
| | - Chunlu Xu
- Northeast Normal University Department of Chemistry CHINA
| | - Ge Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry 5268 Renmin Street 130024 Changchun CHINA
| |
Collapse
|
18
|
Ramani A, Desai B, Patel M, Naveen T. Recent advances in the functionalization of terminal and internal alkynes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arti Ramani
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Bhargav Desai
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Monak Patel
- Sardar Vallabhbhai National Institute of Technology Department of chemistry INDIA
| | - Togati Naveen
- SVNIT Surat: Sardar Vallabhbhai National Institute of Technology Applied Chemistry Room No: 115, Applied Chemistry DepartmentSVNIT Surat 395007 SURAT INDIA
| |
Collapse
|
19
|
Sun Y, Guo J, Shen X, Lu Z. Ligand relay catalysis for cobalt-catalyzed sequential hydrosilylation and hydrohydrazidation of terminal alkynes. Nat Commun 2022; 13:650. [PMID: 35115508 PMCID: PMC8813943 DOI: 10.1038/s41467-022-28285-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Sequential double hydrofunctionalizationalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2-N,Si compounds via ligand relay catalysis. A phenomenon of ligand relay is found that the tridentate anionic N-ligand (OPAQ) could capture the cobalt ion from bidentate neutral P-ligand (Xantphos) cobalt complex. This protocol uses three abundant chemical feedstocks, alkynes, silanes, and diazo compounds, and also features operationally simple, mild conditions, low catalyst loading (1 mol%), and excellent functional group tolerance. The 1,2-N,Si compounds can be easily further derivatized to afford various substituted silane derivatives via Si-H functionalization, alcohols via Fleming-Tamao oxidation, free amines and amides via N-N bond cleavage and protection. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee. The ligand relay has been supported by control experiments and absorption spectra. In organic chemistry, performing sequential catalytic cycles with a single catalyst improves efficiency. Here the authors present a methodology to functionalize alkynes with nitrogen and silicon atoms, through two catalytic cycles with a homogeneous cobalt catalyst, which is bound to different ligands in each cycle.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
20
|
Sharma DM, Gouda C, Gonnade RG, Punji B. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(ii) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature chemo- and stereoselective hydrogenation of alkynes is described using a well-defined and phosphine-free hemilabile cobalt catalyst.
Collapse
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| | - Chandrakant Gouda
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| |
Collapse
|
21
|
Wang N, Liu J, Zhang M, Wang C, Li X, Ma L. Non-noble Nickel-Modified Covalent Organic Framework for Partial Hydrogenation of Aromatic Terminal Alkynes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60135-60143. [PMID: 34904429 DOI: 10.1021/acsami.1c22069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing non-noble metal-based catalysts with excellent performance for selective hydrogenation of alkynes under mild reaction conditions is highly desirable but still faces challenges. Herein, a non-noble nickel-modified covalent organic framework (Ni/COF) had been synthesized through a facile post-modified method and followed by reduction at a different temperature under a H2/Ar atmosphere. The as-prepared catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, and Fourier transforms infrared, and the optimal H350-Ni/COF presents excellent catalytic performance in the semihydrogenation of a series of aromatic terminal alkyne substrates, particularly in the partial hydrogenation of phenylacetylene with nearly full conversion and 85% selectivity toward styrene under mild reaction conditions (10 bar of H2, 100 °C, and 1 h). Moreover, such a catalyst also exhibited satisfying stability after three consecutive cycles.
Collapse
Affiliation(s)
- Nan Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Jianguo Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Xinjun Li
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, 510640 Guangzhou, China
| | - Longlong Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Chinese Academy of Sciences, 510640 Guangzhou, China
| |
Collapse
|
22
|
Zhang XG, He ZX, Guo P, Chen Z, Ye KY. Cobalt-catalyzed Divergent Markovnikov and Anti-Markovnikov Hydroamination. Org Lett 2021; 24:22-26. [PMID: 34911296 DOI: 10.1021/acs.orglett.1c03511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic hydroamination of the readily available alkenes is among the most straightforward means to construct diverse alkyl amines. To this end, the facile access to both regioselectivity, i.e., Markovnikov or anti-Markovnikov hydroamination, with minimum reaction-parameter alternation, remains challenging. Herein, we report a cobalt-catalyzed highly selective and divergent Markovnikov and anti-Markovnikov hydroamination of alkenes, in which the switch of regioselectivity is achieved simply by the variation of the addition sequence of 9-BBN.
Collapse
Affiliation(s)
- Xiang-Gui Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Xin He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zheng Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
23
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021; 60:25949-25957. [PMID: 34562047 DOI: 10.1002/anie.202110178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Indexed: 11/10/2022]
Abstract
An efficient and general radical hydroamination of alkenes using Co(salen) as catalyst, N-fluorobenzenesulfonimide (NFSI) and its analogues as both nitrogen source and oxidant was successfully disclosed. A variety of alkenes, including aliphatic alkenes, styrenes, α, β-unsaturated esters, amides, acids, as well as enones, were all compatible to provide desired amination products. Mechanistic experiments suggest that the reaction underwent a metal-hydride-mediated hydrogen atom transfer (HAT) with alkene, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated organocobalt(IV) species and nitrogen-based nucleophiles. Moreover, by virtue of modified chiral cobalt(II)-salen catalyst, an unprecedented asymmetric version was also achieved with good to excellent level of enantiocontrol. This novel asymmetric radical C-N bond construction opens a new door for the challenging asymmetric radical hydrofunctionalization.
Collapse
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
24
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt‐Catalyzed Radical Hydroamination of Alkenes with
N
‐Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
25
|
Abstract
Herein, a series of new 8-OIQ cobalt complexes were synthesized and used for cobalt-catalyzed chemo- and enantioselective 1,4-hydroboration of enones with HBpin to access chiral β,β-disubstituted ketones with good to excellent chemo- and enantioselectivties. This protocol is operationally simple and shows a broad substrate scope.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
26
|
Lu D, Lu P, Lu Z. Cobalt‐Catalyzed Asymmetric 1,4‐Reduction of
β,β‐
Dialkyl
α
,
β
‐Unsaturated Esters with PMHS. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Peng Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 310058 China
| |
Collapse
|
27
|
Jin S, Liu K, Wang S, Song Q. Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. J Am Chem Soc 2021; 143:13124-13134. [PMID: 34382392 DOI: 10.1021/jacs.1c04248] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioenriched 1,1-silylboryl alkanes possess silyl and boryl groups that are both connected to the same stereogenic carbon center at well-defined orientations. As these chiral multifunctionalized compounds potentially offer two synthetic handles, they are highly valued building blocks in asymmetric synthesis as well as medicinal chemistry. Despite the potential usefulness, efficient synthetic approaches for their preparation are scarce. Seeking to address this deficiency, an enantioselective cobalt-catalyzed hydrosilylation/hydroboration cascade of terminal alkynes has been realized. This protocol constitutes an impressive case of chemo-, regio-, and stereoselectivity wherein the two different hydrofunctionalization events are exquisitely controlled by a single set of metal catalyst and ligand, an operation which would usually require two separate catalytic systems. Downstream transformations of enantioenriched 1,1-silyboryl alkanes led to various valuable chiral compounds. Mechanistic studies suggest that the present reaction undergoes highly regioselective and stereocontrolled sequential hydrosilylation and hydroboration processes.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
28
|
Lecomte M, Lahboubi M, Thilmany P, El Bouzakhi A, Evano G. A general, versatile and divergent synthesis of selectively deuterated amines. Chem Sci 2021; 12:11157-11165. [PMID: 34522313 PMCID: PMC8386668 DOI: 10.1039/d1sc02622d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Deuterated organic molecules are of utmost importance in many areas of science and have been recently intensively investigated in medicinal chemistry due to their enhanced metabolic stability. The development of efficient and broadly applicable methods for the selective incorporation of deuterium atoms into organic molecules from readily available starting materials and reagents is therefore of extreme importance. Such methods however often lack generality and selectivity, notably in the nitrogen series. With nitrogen-containing molecules being indeed ubiquitous in medicinal chemistry, there is a strong need for efficient methods enabling the selective synthesis of deuterated amines. In this perspective, we report herein a general, versatile, divergent and metal-free synthesis of amines selectively deuterated at their α and/or β positions. Upon simple treatment of readily available ynamides with a mixture of triflic acid and triethylsilane, either deuterated or not, a range of amines can be smoothly obtained with high levels of deuterium incorporation by a unique sequence involving a domino keteniminium/iminium activation. A general, versatile, divergent and metal-free synthesis of amines selectively deuterated at their α and/or β positions and relying on a simple treatment of ynamides with triflic acid and triethylsilane, either deuterated or not, is reported.![]()
Collapse
Affiliation(s)
- Morgan Lecomte
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Mounsef Lahboubi
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Pierre Thilmany
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Adil El Bouzakhi
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
29
|
Lu P, Ren X, Xu H, Lu D, Sun Y, Lu Z. Iron-Catalyzed Highly Enantioselective Hydrogenation of Alkenes. J Am Chem Soc 2021; 143:12433-12438. [PMID: 34343425 DOI: 10.1021/jacs.1c04773] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we reported for the first time an iron-catalyzed highly enantioselective hydrogenation of minimally functionalized 1,1-disubstituted alkenes to access chiral alkanes with full conversion and excellent ee. A novel chiral 8-oxazoline iminoquinoline ligand and its iron complex have been designed and synthesized. This protocol is operationally simple by using 1 atm of hydrogen gas and shows good functional group tolerance. A primary mechanism has been proposed by the deuterium-labeling experiments.
Collapse
Affiliation(s)
- Peng Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Xiang Ren
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Haofeng Xu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Dongpo Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
30
|
Gao Y, Yang S, Huo Y, Chen Q, Li X, Hu XQ. NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02055] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Simin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
31
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|
32
|
Yang D, Huang H, Zhang H, Yin LM, Song MP, Niu JL. Regioselective Intermolecular Hydroamination of Unactivated Alkenes: “Co–H” Enabled Remote Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Dandan Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - He Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ming Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
33
|
Sarkar S, Sarkar P, Ghosh P. Heteroditopic Macrobicyclic Molecular Vessels for Single Step Aerial Oxidative Transformation of Primary Alcohol Appended Cross Azobenzenes. J Org Chem 2021; 86:6648-6664. [PMID: 33908241 DOI: 10.1021/acs.joc.1c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of oxy-ether tris-amino heteroditopic macrobicycles (L1-L4) with various cavity dimensions have been synthesized and explored for their Cu(II) catalyzed selective single step aerial oxidative cross-coupling of primary alcohol based anilines with several aromatic amines toward the formation of primary alcohol appended cross azobenzenes (POCABs). The beauty of this transformation is that the easily oxidizable benzyl/primary alcohol group remains unhampered during the course of this oxidation due to the protective oxy-ether pocket of this series of macrobicyclic vessels. Various dimensionalities of the molecular vessels have shown specific size complementary selection for substrates toward efficient syntheses of regioselective POCAB products. To establish the requirement of the three-dimensional cavity based additives, a particular catalytic reaction has been examined in the presence of macrobicycles (L2 and L3) versus macrocycles (MC1 and MC2) and tripodal acyclic (AC1 and AC2) analogous components, respectively. Subsequently, L1-L4 have been extensively utilized toward the syntheses of as many as 44 POCABs and are characterized by different spectroscopic techniques and single crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
34
|
Yin YN, Ding RQ, Ouyang DC, Zhang Q, Zhu R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation. Nat Commun 2021; 12:2552. [PMID: 33953181 PMCID: PMC8100129 DOI: 10.1038/s41467-021-22373-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 12/05/2022] Open
Abstract
α-Tertiary amides are of great importance for medicinal chemistry. However, they are often challenging to access through conventional methods due to reactivity and chemoselectivity issues. Here, we report a single-step approach towards such amides via cobalt-catalyzed intermolecular oxidative hydroamidation of unactivated alkenes, using nitriles of either solvent- or reagent-quantities. This protocol is selective for terminal alkenes over groups that rapidly react under known carbocation amidation conditions such as tertiary alcohols, electron-rich alkenes, ketals, weak C−H bonds, and carboxylic acids. Straightforward access to a diverse array of hindered amides is demonstrated, including a rapid synthesis of an aminoadamantane-derived pharmaceutical intermediate. α-Tertiary amides are common in bioactive natural products and pharmaceuticals, but challenging to access by conventional methods. Here, the authors report a single-step approach toward α-tertiary amides via cobalt-catalyzed intermolecular oxidative hydroamidation of unactivated alkenes.
Collapse
Affiliation(s)
- Yun-Nian Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Rui-Qi Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Dong-Chen Ouyang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
35
|
Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tomoaki Mitsuyama
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Sayaka Shin
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Momoko Hori
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Ryuta Ishikawa
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
36
|
Viereck P, Rummelt SM, Soja NA, Pabst TP, Chirik PJ. Synthesis and Asymmetric Alkene Hydrogenation Activity of C2-Symmetric Enantioenriched Pyridine Dicarbene Iron Dialkyl Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Viereck
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephan M. Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Natalia A. Soja
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P. Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
Lyu X, Zhang J, Kim D, Seo S, Chang S. Merging NiH Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation of Alkynes. J Am Chem Soc 2021; 143:5867-5877. [DOI: 10.1021/jacs.1c01138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiang Lyu
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jianbo Zhang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sangwon Seo
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
38
|
Li J, Yu B, Lu Z. Chiral Imidazoline Ligands and Their Applications in
Metal‐Catalyzed
Asymmetric Synthesis
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajing Li
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310058 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University Hangzhou Zhejiang 310058 China
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
39
|
Wang Y, Lin X, Zhang P, Shen M, Xu H, Xu D. Design and Synthesis of Pyridine and 1,3,5-Triazine PNP Pincer Ligands and Their Application in Cobalt Catalyzed Semihydrogenation of Terminal Alkynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Song F, Zhu S, Wang H, Chen G. Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Wu X, Zheng P, Li W, XU T. Reductive cross-coupling to access C–N bonds from aryl halides and diazoesters under dual nickel/photoredox-catalyzed conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00548k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A reductive cross-coupling reaction to access C–N bonds via dual Ni/photoredox-catalyzed systems has been reported. This method tolerates a broad scope of functional groups and the products can be transformed into several heterocycles.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Purui Zheng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| | - Wanfang Li
- Department of Chemistry
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability
- School of Chemical Science and Engineering
- Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Chen J, Shen X, Lu Z. Cobalt‐Catalyzed Markovnikov‐Type Selective Hydroboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020; 60:690-694. [DOI: 10.1002/anie.202012164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Jieping Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xuzhong Shen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
43
|
Chen J, Shen X, Lu Z. Cobalt‐Catalyzed Markovnikov‐Type Selective Hydroboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jieping Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xuzhong Shen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
44
|
Blasius CK, Vasilenko V, Matveeva R, Wadepohl H, Gade LH. Reaction Pathways and Redox States in α-Selective Cobalt-Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020; 59:23010-23014. [PMID: 32889757 PMCID: PMC7756293 DOI: 10.1002/anie.202009625] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Indexed: 11/19/2022]
Abstract
Cobalt(II) alkyl complexes supported by a monoanionic NNN pincer ligand are pre‐catalysts for the regioselective hydroboration of terminal alkynes, yielding the Markovnikov products with α:β‐(E) ratios of up to 97:3. A cobalt(II) hydride and a cobalt(II) vinyl complex appear to determine the main reaction pathway. In a background reaction the highly reactive hydrido species specifically converts to a coordinatively unsaturated cobalt(I) complex which was found to re‐enter the main catalytic cycle.
Collapse
Affiliation(s)
- Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
45
|
Reaction Pathways and Redox States in α‐Selective Cobalt‐Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|