1
|
Sun W, Zhang F, Lai J, Li B, Hu X, Gui B, Chen N, Guo X, Li Z, Chen N, Li L, Wu F, Chen R. A Supramolecular Deep Eutectic Electrolyte Enhancing Interfacial Stability and Solution Phase Discharge in Li-O 2 Batteries. Angew Chem Int Ed Engl 2024:e202409965. [PMID: 39221479 DOI: 10.1002/anie.202409965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Li-O2 batteries (LOBs) have gained widespread recognition for their exceptional energy densities. However, a major challenge faced by LOBs is the lack of appropriate electrolytes that can effectively balance reactant transport, interfacial compatibility, and non-volatility. To address this issue, a novel supramolecular deep eutectic electrolyte (DEE) has been developed, based on synergistic interaction between Li-bonds and H-bonds through a combination of lithium salt (LiTFSI), acetamide (Ace) and boric acid (BA). The incorporation of BA serves as an interface modification additive, acting as both Li-bonds acceptor and H-bonds donor/acceptor, thereby enhancing the redox stability of the electrolyte, facilitating a solution phase discharge process and improving compatibility with the Li anode. Our proposed DEE demonstrates a high oxidation voltage of 4.5 V, an ultrahigh discharge capacity of 15225 mAh g-1 and stable cycling performance of 196 cycles in LOBs. Additionally, the intrinsic non-flammability and successful operation of a Li-O2 pouch cell indicate promising practical applications of this electrolyte. This research broadens the design possibilities for LOBs electrolytes and provides theoretical insights for future studies.
Collapse
Affiliation(s)
- Wen Sun
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Fengling Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Jingning Lai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Bohua Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xin Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Boshun Gui
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Nuo Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xingming Guo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Zhujie Li
- Advanced Technology Research Institute, Beijing Institute of Technology, 250300, Jinan, China
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, 250300, Jinan, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, 250300, Jinan, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, 100081, Beijing, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, 250300, Jinan, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, 100081, Beijing, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, 250300, Jinan, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, 100081, Beijing, China
| |
Collapse
|
2
|
Chen K, Li M, Yang Z, Ye Z, Zhang D, Zhao B, Xia Z, Wang Q, Kong X, Shang Y, Liu C, Yu H, Cao A. Ultra-Large Stress and Strain Polymer Nanocomposite Actuators Incorporating a Mutually-Interpenetrated, Collective-Deformation Carbon Nanotube Network. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313354. [PMID: 38589015 DOI: 10.1002/adma.202313354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Stimulus-responsive polymer-based actuators are extensively studied, with the challenging goal of achieving comprehensive performance metrics that include large output stress and strain, fast response, and versatile actuation modes. The design and fabrication of nanocomposites offer a promising route to integrate the advantages of both polymers and nanoscale fillers, thus ensuring superior performance. Here, it is started from a three-dimensional (3D) porous sponge to fabricate a mutually interpenetrated nanocomposite, in which the embedded carbon nanotube (CNT) network undergoes collective deformation with the shape memory polymer (SMP) matrix during large-degree stretching and releasing, increases junction density with polymer chains and enhances molecular orientation. These features result in substantial improvement of the overall mechanical properties and during thermally actuated contraction, the bulk SMP/CNT composites exhibit output stresses up to 19.5 ± 0.97 MPa and strains up to 69%, accompanied by a rapid response and high energy density, exceeding the majority of recent reports. Furthermore, electrical actuation is also demonstrated via uniform Joule heating across the self-percolated CNT network. Applications such as low-temperature thermal actuated vascular stent and wound dressing are explored. These findings lay out a universal blueprint for developing robust and highly deformable SMP/CNT nanocomposite actuators with broad potential applications.
Collapse
Affiliation(s)
- Kun Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ziming Ye
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qi Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Joint Laboratory of Polymer Science and Materials Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
3
|
Bhowmik S, Ghosh T, Sanghvi YS, Das AK. Synthesis and Structural Studies of Nucleobase Functionalized Hydrogels for Controlled Release of Vitamins. ACS APPLIED BIO MATERIALS 2023; 6:5301-5309. [PMID: 37971725 DOI: 10.1021/acsabm.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of biomolecule-derived biocompatible scaffolds for drug delivery applications is an emerging research area. Herein, we have synthesized a series of nucleobase guanine (G) functionalized amino acid conjugates having different chain lengths to study their molecular self-assembly in the hydrogel state. The gelation properties have been induced by the correct choice of chain lengths of fatty acids present in nucleobase functionalized molecules. The effect of alkali metal cations, pH, and the concentration of nucleobase functionalized amino acid conjugates in the molecular self-assembly process has been explored. The presence of Hoogsteen hydrogen bonding interaction drives the formation of a G-quadruplex functionalized hydrogel. The DOSY nuclear magnetic resonance is also performed to evaluate the self-assembling behavior of the newly formed nucleobase functionalized hydrogel. The nanofibrillar morphology is responsible for the formation of a hydrogel, which has been confirmed by various microscopic experiments. The mechanical behaviors of the hydrogel were evaluated by rheological experiments. The in vitro biostability of the synthesized nucleobase amino acid conjugate is also investigated in the presence of hydrolytic enzymes proteinase K and chymotrypsin. Finally, the nucleobase functionalized hydrogel has been used as a drug delivery platform for the control and sustained pH-responsive release of vitamins B2 and B12. This synthesized nucleobase functionalized hydrogel also exhibits noncytotoxic behavior, which has been evaluated by their in vitro cell viability experiment using HEK 293 and MCF-7 cell lines.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Tapas Ghosh
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
4
|
Zheng S, Xue H, Yao J, Chen Y, Brook MA, Noman ME, Cao Z. Exploring Lipoic Acid-Mediated Dynamic Bottlebrush Elastomers as a New Platform for the Design of High-Performance Thermally Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41043-41054. [PMID: 37590910 DOI: 10.1021/acsami.3c09826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The development of high-performance thermally conductive interface materials is the key to unlocking the serious bottleneck of modern microelectronic technology through enhanced heat dispersion. Existing methods that utilize silicone composites rely either on loading large doses of randomly distributed thermal conductive fillers or on filling prealigned thermal conductive scaffolds with liquid silicone precursors. Both approaches suffer from several limitations in terms of physical traits and processability. We describe an alternative approach in which malleable silicone matrices, based on the dynamic cyclic disulfide nature cross-linker (α-lipoic acid), are readily prepared using ring-opening polymerization. The mechanical properties of the resultant dynamic silicone matrix are readily tunable. Stress-dependent depolymerization of the disulfide network demonstrates the ability to reprocess the silicone elastomer matrix, which allows for the fabrication of highly efficient thermal conductive composites with a 3D interconnecting, thermally conductive network (3D-graphite/MxBy composites) via in situ methods. Applications of the composites as thermal dispersion interface materials are demonstrated by LEDs and CPUs, suggesting great potential in advanced electronics.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haiyan Xue
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Chen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Muhammad Ebad Noman
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Park H, Kang T, Kim H, Kim JC, Bao Z, Kang J. Toughening self-healing elastomer crosslinked by metal-ligand coordination through mixed counter anion dynamics. Nat Commun 2023; 14:5026. [PMID: 37596250 PMCID: PMC10439188 DOI: 10.1038/s41467-023-40791-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Mechanically tough and self-healable polymeric materials have found widespread applications in a sustainable future. However, coherent strategies for mechanically tough self-healing polymers are still lacking due to a trade-off relationship between mechanical robustness and viscoelasticity. Here, we disclose a toughening strategy for self-healing elastomers crosslinked by metal-ligand coordination. Emphasis was placed on the effects of counter anions on the dynamic mechanical behaviors of polymer networks. As the coordinating ability of the counter anion increases, the binding of the anion leads to slower dynamics, thus limiting the stretchability and increasing the stiffness. Additionally, multimodal anions that can have diverse coordination modes provide unexpected dynamicity. By simply mixing multimodal and non-coordinating anions, we found a significant synergistic effect on mechanical toughness ( > 3 fold) and self-healing efficiency, which provides new insights into the design of coordination-based tough self-healing polymers.
Collapse
Affiliation(s)
- Hyunchang Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Taewon Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-Chul Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Wu Z, Wu JW, Michaudel Q, Jayaraman A. Investigating the Hydrogen Bond-Induced Self-Assembly of Polysulfamides Using Molecular Simulations and Experiments. Macromolecules 2023; 56:5033-5049. [PMID: 38362140 PMCID: PMC10865372 DOI: 10.1021/acs.macromol.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/08/2023] [Indexed: 02/17/2024]
Abstract
In this paper, we present a synergistic, experimental, and computational study of the self-assembly of N,N'-disubstituted polysulfamides driven by hydrogen bonds (H-bonds) between the H-bonding donor and acceptor groups present in repeating sulfamides as a function of the structural design of the polysulfamide backbone. We developed a coarse-grained (CG) polysulfamide model that captures the directionality of H-bonds between the sulfamide groups and used this model in molecular dynamics (MD) simulations to study the self-assembly of these polymers in implicit solvent. The CGMD approach was validated by reproducing experimentally observed trends in the extent of crystallinity for three polysulfamides synthesized with aliphatic and/or aromatic repeating units. After validation of our CGMD approach, we computationally predicted the effect of repeat unit bulkiness, length, and uniformity of segment lengths in the polymers on the extent of orientational and positional order among the self-assembled polysulfamide chains, providing key design principles for tuning the extent of crystallinity in polysulfamides in experiments. Those computational predictions were then experimentally tested through the synthesis and characterization of polysulfamide architectures.
Collapse
Affiliation(s)
- Zijie Wu
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Jiun Wei Wu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Li C, Xiong Q, Clemons TD, Sai H, Yang Y, Hussain Sangji M, Iscen A, Palmer LC, Schatz GC, Stupp SI. Role of supramolecular polymers in photo-actuation of spiropyran hydrogels. Chem Sci 2023; 14:6095-6104. [PMID: 37293659 PMCID: PMC10246702 DOI: 10.1039/d3sc00401e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/14/2023] [Indexed: 06/10/2023] Open
Abstract
Supramolecular-covalent hybrid polymers have been shown to be interesting systems to generate robotic functions in soft materials in response to external stimuli. In recent work supramolecular components were found to enhance the speed of reversible bending deformations and locomotion when exposed to light. The role of morphology in the supramolecular phases integrated into these hybrid materials remains unclear. We report here on supramolecular-covalent hybrid materials that incorporate either high-aspect-ratio peptide amphiphile (PA) ribbons and fibers, or low-aspect-ratio spherical peptide amphiphile micelles into photo-active spiropyran polymeric matrices. We found that the high-aspect-ratio morphologies not only play a significant role in providing mechanical reinforcement to the matrix but also enhance photo-actuation for both light driven volumetric contraction and expansion of spiropyran hydrogels. Molecular dynamics simulations indicate that water within the high-aspect-ratio supramolecular polymers exhibits a faster draining rate as compared to those in spherical micelles, which suggests that the high-aspect-ratio supramolecular polymers effectively facilitate the transport of trapped water molecules by functioning as channels and therefore enhancing actuation of the hybrid system. Our simulations provide a useful strategy for the design of new functional hybrid architectures and materials with the aim of accelerating response and enhancing actuation by facilitating water diffusion at the nanoscopic level.
Collapse
Affiliation(s)
- Chuang Li
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 China
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Qinsi Xiong
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Tristan D Clemons
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Hiroaki Sai
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Materials Science and Engineering, Northwestern University 2220 Campus Drive Evanston IL 60208 USA
| | - Yang Yang
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - M Hussain Sangji
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Biomedical Engineering, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Aysenur Iscen
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Liam C Palmer
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Simpson Querrey Institute, Northwestern University 303 E. Superior Street Chicago IL 60611 USA
| | - George C Schatz
- Department of Chemical and Biological Engineering, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Samuel I Stupp
- Center for Bio-inspired Energy Science, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Materials Science and Engineering, Northwestern University 2220 Campus Drive Evanston IL 60208 USA
- Department of Biomedical Engineering, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Medicine, Northwestern University 676 N St. Clair Chicago IL 60611 USA
- Simpson Querrey Institute, Northwestern University 303 E. Superior Street Chicago IL 60611 USA
| |
Collapse
|
8
|
Cooper CB, Root SE, Michalek L, Wu S, Lai JC, Khatib M, Oyakhire ST, Zhao R, Qin J, Bao Z. Autonomous alignment and healing in multilayer soft electronics using immiscible dynamic polymers. Science 2023; 380:935-941. [PMID: 37262169 DOI: 10.1126/science.adh0619] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Self-healing soft electronic and robotic devices can, like human skin, recover autonomously from damage. While current devices use a single type of dynamic polymer for all functional layers to ensure strong interlayer adhesion, this approach requires manual layer alignment. In this study, we used two dynamic polymers, which have immiscible backbones but identical dynamic bonds, to maintain interlayer adhesion while enabling autonomous realignment during healing. These dynamic polymers exhibit a weakly interpenetrating and adhesive interface, whose width is tunable. When multilayered polymer films are misaligned after damage, these structures autonomously realign during healing to minimize interfacial free energy. We fabricated devices with conductive, dielectric, and magnetic particles that functionally heal after damage, enabling thin-film pressure sensors, magnetically assembled soft robots, and underwater circuit assembly.
Collapse
Affiliation(s)
- Christopher B Cooper
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lukas Michalek
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Solomon T Oyakhire
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Ye B, Cai Z, Wang Q, Zhang Y, Chen J. Supramolecular self-assembly of glycosaminoglycan mimetic nanostructures for cell proliferation and 3D cell culture application. Int J Biol Macromol 2023; 231:123179. [PMID: 36621740 DOI: 10.1016/j.ijbiomac.2023.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Glycosaminoglycans (GAGs), such as heparin, heparan sulfate and chondroitin sulfate, are playing important roles in various biological processes. Due to the laborious work of organic or enzymatic total synthesis of GAGs, different approaches, including glycopolymers, dendrimers, etc., have been developed to mimic the structures and bioactivities of GAGs, but the syntheses can still be difficult. In the current study, a new format of GAG mimetic structure, supramolecularly assembled polymers, have been easily prepared by mixing fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) and sulfated glyco-modified fluorenylmethoxy derivatives (FGS and FG3S). The self-assembly behavior of these polymers into different structural formats of nanoparticles, nanofibers and macroscopic hydrogels upon adjusted concentrations and composite ratios have been detailed studied. The nanofibers modified with highly sulfated glycol groups (FG3S/Fmoc-FF) showed strong promotion effect for cell proliferation, which efficiency was even similar to that of natural heparin, higher than nanoparticles or non-/low-sulfated glyco-modified nanofibers. Moreover, the supramolecular polymers were further made into hydrogels that capable of 3D cell culture. This study provided a novel and efficient approach for GAG mimicking, showing great potential for tissue engineering related applications.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical & Material Engineering, Jiangnan Universtiy, Wuxi, 214122, P.R. China
| | - Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
10
|
Lessard JJ, Stewart KA, Sumerlin BS. Controlling Dynamics of Associative Networks through Primary Chain Length. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jacob J. Lessard
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kevin A. Stewart
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
Kulshreshtha A, Jayaraman A. Phase Behavior and Morphology of Blends Containing Associating Polymers: Insights from Liquid-State Theory and Molecular Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 Dupont Hall, Newark, Delaware19716, United States
| |
Collapse
|
12
|
Yu J, Wang H, Dai X, Chen Y, Liu Y. Multivalent Supramolecular Assembly Based on a Triphenylamine Derivative for Near-Infrared Lysosome Targeted Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4417-4422. [PMID: 35005883 DOI: 10.1021/acsami.1c19698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) targeted cell imaging has become a research hotspot due to the advantages of deeper tissue penetration, minimal interference from the background signals, and lower light damage. Herein, we report a multivalent supramolecular aggregate with NIR fluorescence emission, which was fabricated from triphenylamine derivatives (TPAs), cucurbit[8]uril (CB[8]), Si-rhodamine (SiR), and hyaluronic acid (HA). Interestingly, possessing a rigid luminescent core and cationic phenylpyridinium units linked by flexible alkyl chains, the tripaddle hexacationic TPA could bind with CB[8] at a 2:3 stoichiometric ratio to form a network-like multivalent assembly with enhanced red luminescence. Such organic two-dimensional network-like aggregate further co-assembled with the energy acceptor SiR and cancer cell targeting agent HA, leading to nanoparticles with NIR emission at 675 nm via an intermolecular energy transfer pathway. Furthermore, the obtained multivalent supramolecular aggregate was successfully applied in lysosome targeted imaging toward A549 cancer cells, which provides a convenient strategy for NIR targeted cell imaging.
Collapse
Affiliation(s)
- Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Hui Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
13
|
Guo MY, Li G, Yang SL, Bu R, Piao XQ, Gao EQ. Metal-Organic Frameworks with Novel Catenane-like Interlocking: Metal-Determined Photoresponse and Uranyl Sensing. Chemistry 2021; 27:16415-16421. [PMID: 34599532 DOI: 10.1002/chem.202102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/20/2022]
Abstract
The assembly of two tripyridinium-tricarboxylate ligands and different metal ions leads to seven isostructural MOFs, which show novel 2D→2D supramolecular entanglement featuring catenane-like interlocking of tricyclic cages. The MOFs show tripyridinium-afforded and metal-modulated photoresponsive properties. The MOFs with d10 metal centers (1-Cd, 1-Zn, 2-Cd, 2-Zn) show fast and reversible photochromism and concomitant fluorescence quenching, 1-Ni displays slower photochromism but does not fluoresce, and 1-Co and 2-Co are neither photochromic nor fluorescent. It is shown here that the network entanglement dictates donor-acceptor close contacts, which enable fluorescence originated from interligand charge transfer. The contacts also allow photoinduced electron transfer, which underlies photochromism and concomitant fluorescence response. The metal dependence in fluorescence and photochromism can be related to energy transfer through metal-centered d-d transitions. In addition, 1-Cd is demonstrated to be a potential fluorescence sensor for sensitive and selective detection of UO2 2+ in water.
Collapse
Affiliation(s)
- Meng-Yue Guo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Gen Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shuai-Liang Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Ran Bu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xian-Qing Piao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
14
|
Cooper C, Nikzad S, Yan H, Ochiai Y, Lai JC, Yu Z, Chen G, Kang J, Bao Z. High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS CENTRAL SCIENCE 2021; 7:1657-1667. [PMID: 34729409 PMCID: PMC8554838 DOI: 10.1021/acscentsci.1c00829] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 05/07/2023]
Abstract
Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to ∼1 MJ/m3). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m3 or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.
Collapse
Affiliation(s)
- Christopher
B. Cooper
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongping Yan
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Stanford
Synchroton Radiation Lightsource, SLAC National
Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yuto Ochiai
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian-Cheng Lai
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhiao Yu
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Material Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jiheong Kang
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Lendlein A, Heuchel M. Shape-Memory Polymers Designed in View of Thermomechanical Energy Storage and Conversion Systems. ACS CENTRAL SCIENCE 2021; 7:1599-1601. [PMID: 34729401 PMCID: PMC8554782 DOI: 10.1021/acscentsci.1c01032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Andreas Lendlein
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
- Institute
of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Matthias Heuchel
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, 14513 Teltow, Germany
| |
Collapse
|
16
|
Liang M, Gao Y, Qiu W, Ye M, Hu J, Xu J, Xue P, Kang Y, Xu Z. Acid-Sensitive Supramolecular Nanoassemblies with Multivalent Interaction: Effective Tumor Retention and Deep Intratumor Infiltration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37680-37692. [PMID: 34313427 DOI: 10.1021/acsami.1c10064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It remains a conundrum to reconcile the contradiction between effective tumor retention and deep intratumor infiltration for nanotherapeutics due to the sophisticated drug delivery journey. Herein, we reported an acid-sensitive supramolecular nanoassemblies (DCD SNs) based on the multivalent host-gest inclusions of two polymer conjugates for conquering diverse physiological blockages and amplifying therapeutic efficacy. The multiple inclusions of repetitive units on the hydrophilic polymer backbone reinforced the binding affinity and induced robust self-assembly, ameliorating instability of the self-assemblies and facilitating to prolong the drug retention time. By virtue of the acid-sensitive Schiff base linkages, the supramolecular nanoassembly could respond to the unique tumor microenvironment (TME), dissociate, and transform into smaller particles (∼30 nm), thereby efficiently traversing the complicated extracellular matrix and irregular blood vessels to achieve deep intratumor infiltration. The acid-sensitive DCD SNs can absorb a large number of protons in the acidic lysosomal environment, causing the proton sponge effect, which was conducive to their escape from endolysosomes and accelerated lysosomal disruption, so that the active chemotherapeutic doxorubicin (DOX) could enter the nucleus well and exert severe DNA damage to induce apoptosis. This versatile supramolecular nanoplatform is anticipated to be a promising candidate to overcome the limitations of insufficient stability within the circulation and weak intratumor penetration.
Collapse
Affiliation(s)
- Mengyun Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Wei Qiu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Mengjie Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Junfeng Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Jiming Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
17
|
Wang X, Wang L, Fan X, Guo J, Li L, Feng S. Multifunctional Polysiloxane with coordinative ligand for ion recognition, reprocessable elastomer, and reconfigurable shape memory. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Xing JY, Li S, Ma LJ, Gao HM, Liu H, Lu ZY. Understanding of supramolecular emulsion interfacial polymerization in silico. J Chem Phys 2021; 154:184903. [PMID: 34241008 DOI: 10.1063/5.0047824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The composition and structure of a membrane determine its functionality and practical application. We study the supramolecular polymeric membrane prepared by supramolecular emulsion interfacial polymerization (SEIP) on the oil-in-water droplet via the computer simulation method. The factors that may influence its structure and properties are investigated, such as the degree of polymerization and molecular weight distribution (MWD) of products in the polymeric membranes. We find that the SEIP can lead to a higher total degree of polymerization as compared to the supramolecular interfacial polymerization (SIP). However, the average chain length of products in the SEIP is lower than that of the SIP due to its obvious interface curvature. The stoichiometric ratio of reactants in two phases will affect the MWD of the products, which further affects the performance of the membranes in practical applications, such as drug release rate and permeability. Besides, the MWD of the product by SEIP obviously deviates from the Flory distribution as a consequence of the curvature of reaction interface. In addition, we obtain the MWD for the emulsions whose size distribution conforms to the Gaussian distribution so that the MWD may be predicted according to the corresponding emulsion size distribution. This study helps us to better understand the controlling factors that may affect the structure and properties of supramolecular polymeric membranes by SEIP.
Collapse
Affiliation(s)
- Ji-Yuan Xing
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Sheng Li
- College of Chemistry, Jilin University, Changchun 130023, China
| | - Li-Jun Ma
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Hui-Min Gao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
19
|
Ma X, Zhou D, Liu L, Wang L, Yu H, Li L, Feng S. Reprocessable Supramolecular Elastomers of Poly(Siloxane–Urethane) via Self‐Complementary Quadruple Hydrogen Bonding. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiyang Ma
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Debo Zhou
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Lei Liu
- Shandong Dongyue Organosilicone Materials Co., Ltd. Zibo 25640 P. R. China
| | - Linlin Wang
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- Weihai New Era Chemical Co., Ltd. Weihai 264205 P. R. China
| | - Huidong Yu
- Shandong Qilu Zhonghe Technology Co., Ltd. Jinan 250101 P. R. China
| | - Lei Li
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
20
|
Xie L, Zhou S, Liu J, Qiu B, Liu T, Liang Q, Zheng X, Li B, Zeng J, Yan M, He Y, Zhang X, Zeng H, Ma D, Chen P, Liang K, Jiang L, Wang Y, Zhao D, Kong B. Sequential Superassembly of Nanofiber Arrays to Carbonaceous Ordered Mesoporous Nanowires and Their Heterostructure Membranes for Osmotic Energy Conversion. J Am Chem Soc 2021; 143:6922-6932. [PMID: 33929189 DOI: 10.1021/jacs.1c00547] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The capture of sustainable energy from a salinity gradient, in particular, using renewable biomass-derived functional materials, has attracted significant attention. In order to convert osmotic energy to electricity, many membrane materials with nanofluidic channels have been developed. However, the high cost, complex preparation process, and low output power density still restrict the practical application of traditional membranes. Herein, we report the synthesis of highly flexible and mechanically robust nanofiber-arrays-based carbonaceous ordered mesoporous nanowires (CMWs) through a simple and straightforward soft-templating hydrothermal carbonization approach. This sequential superassembly strategy shows a high yield and great versatility in controlling the dimensions of CMWs with the aspect ratio changes from about 3 to 39. Furthermore, these CMWs can be used as novel building blocks to construct functional hybrid membranes on macroporous alumina. This nanofluidic membrane with asymmetric geometry and charge polarity exhibits low resistance and high-performance energy conversion. This work opens a solution-based route for the one-pot preparation of CMWs and functional heterostructure membranes for various applications.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jinrong Liu
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiaozhong Zheng
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Ben Li
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Miao Yan
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xin Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Hui Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ding Ma
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
21
|
Bai H, Han L, Li W, Li C, Zhang S, Wang X, Yin Y, Yan H, Ma H. C5 and C6 Polymerizations by Anion Migrated Ring-Opening of 1-Cyclopropylvinylbenzene and 1-Cyclobutylvinylbenzene. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongyuan Bai
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Li Han
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Li
- Shenyang Research Institute of Chemical Industry Company, Ltd., Shenyang 110000, China
| | - Chao Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Songbo Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Yin
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hongwei Ma
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Structural insights on the metal cross-linking of polymers from the first principles: Calcium – Polymethacrylic acid case study. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|