1
|
Ukah N, Wegner HA. On-surface synthesis - Ullmann coupling reactions on N-heterocyclic carbene functionalized gold nanoparticles. NANOSCALE 2024; 16:18524-18533. [PMID: 39269035 DOI: 10.1039/d4nr03065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Organic on-surface syntheses promise to be a useful method for direct integration of organic molecules onto 2-dimensional (2D) flat surfaces. In the past years, there has been an increasing understanding of the mechanistic details of reactions on surfaces, however, mostly under ultra-high vacuum on very defined surfaces. Herein, we expand the scope to gold nanoparticles (AuNps) in solution via an Ullmann reaction of aryl halides connected via N-heterocyclic carbenes (NHCs) to AuNps. Through design and syntheses of various organic precursors, we address the influence of the contact angle, reactivity of the halogen and the proximity of the entire coupling partner on on-surface reactivities, thus, establishing general parameters governing organic on-surface syntheses on AuNps in solution, in comparison with the reactivity on defined surfaces under ultra-high vacuum. The retention of such halogenated Nps even at higher reaction temperatures holds great promise in the fields of materials engineering, nanotechnology and molecular self-assembly, while expanding the toolbox of organic chemistry synthesis in accessing various covalent architectures.
Collapse
Affiliation(s)
- Nathaniel Ukah
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
- Center for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
2
|
Miyashita T, He S, Jaimes P, Kaledin AL, Fumanal M, Lian T, Lee Tang M. Oligoyne bridges enable strong through-bond coupling and efficient triplet transfer from CdSe QD trap excitons for photon upconversion. J Chem Phys 2024; 161:094707. [PMID: 39234973 DOI: 10.1063/5.0223478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Polyyne bridges have attracted extensive interest as molecular wires due to their shallow distance dependence during charge transfer. Here, we investigate whether triplet energy transfer from cadmium selenide (CdSe) quantum dots (QDs) to anthracene acceptors benefits from the high conductance associated with polyyne bridges, especially from the potential cumulene character in their excited states. Introducing π-electron rich oligoyne bridges between the surface-bound anthracene-based transmitter ligands, we explore the triplet energy transfer rate between the CdSe QDs and anthracene core. Our femtosecond transient absorption results reveal that a rate constant damping coefficient of β is 0.118 ± 0.011 Å-1, attributed to a through-bond coupling mechanism facilitated by conjugation among the anthracene core, the oligoyne bridges, and the COO⊖ anchoring group. In addition, oligoyne bridges lower the T1 energy level of the anthracene-based transmitters, enabling efficient triplet energy transfer from trapped excitons in CdSe QDs. Density-functional theory calculations suggest a slight cumulene character in these oligoyne bridges during triplet energy transfer, with diminished bond length alternation. This work demonstrates the potential of oligoyne bridges in mediating long-distance energy transfer.
Collapse
Affiliation(s)
- Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sheng He
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Paulina Jaimes
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alexey L Kaledin
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- The Cherry L. Emerson Center for Scientific Computation, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, USA
| | - Maria Fumanal
- Departament de Ciència de Materials i Química Física and IQTCUB, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Ming Lee Tang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
3
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
4
|
Huang Z, Miyashita T, Tang ML. Photon Upconversion at Organic-Inorganic Interfaces. Annu Rev Phys Chem 2024; 75:329-346. [PMID: 38382565 DOI: 10.1146/annurev-physchem-090722-011335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Photon upconversion is a process that combines low-energy photons to form useful high-energy photons. There are potential applications in photovoltaics, photocatalysis, biological imaging, etc. Semiconductor quantum dots (QDs) are promising for the absorption of these low-energy photons due to the high extinction coefficient of QDs, especially in the near infrared (NIR). This allows the intriguing use of diffuse light sources such as solar irradiation. In this review, we describe the development of this organic-QD upconversion platform based on triplet-triplet annihilation, focusing on the dark exciton in QDs with triplet character. Then we introduce the underlying energy transfer steps, starting from QD triplet photosensitization, triplet exciton transport, triplet-triplet annihilation, and ending with the upconverted emission. Design principles to improve the total upconversion efficiency are presented. We end with limitations in current reports and proposed future directions. This review provides a guide for designing efficient organic-QD upconversion platforms for future applications, including overcoming the Shockley-Queisser limit for more efficient solar energy conversion, NIR-based phototherapy, and diagnostics in vivo.
Collapse
Affiliation(s)
- Zhiyuan Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China;
| | - Tsumugi Miyashita
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA;
| | - Ming Lee Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
5
|
Niihori Y, Kosaka T, Negishi Y. Triplet-triplet annihilation-based photon upconversion using nanoparticles and nanoclusters. MATERIALS HORIZONS 2024; 11:2304-2322. [PMID: 38587491 DOI: 10.1039/d4mh00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The phenomenon of photon upconversion (UC), generating high-energy photons from low-energy photons, has attracted significant attention. In particular, triplet-triplet annihilation-based UC (TTA-UC) has been achieved by combining the excitation states of two types of molecules, called the sensitizer and emitter (or annihilator). With TTA-UC, it is possible to convert weak, incoherent near-infrared (NIR) light, which constitutes half of the solar radiation intensity, into ultraviolet and visible light that are suitable for the operation of light-responsive functional materials or devices such as solar cells and photocatalysts. Research on TTA-UC is being conducted worldwide, often employing materials with high intersystem crossing rates, such as metal porphyrins, as sensitizers. This review summarizes recent research and trends in triplet energy transfer and TTA-UC for semiconductor nanoparticles or nanocrystals with diameters in the nanometer range, also known as quantum dots, and for ligand-protected metal nanoclusters, which have even smaller well-defined sub-nanostructures. Concerning nanoparticles, transmitter ligands have been applied on the surface of the nanoparticles to efficiently transfer triplet excitons formed inside the nanoparticles to emitters. Applications are expanding to solid-state UC devices that convert NIR light to visible light. Additionally, there is active research in the development of sensitizers using more cost-effective and environmentally friendly elements. Regarding metal nanoclusters, methods have been established for the evaluation of excited states, deepening the understanding of luminescent properties and excited relaxation processes.
Collapse
Affiliation(s)
- Yoshiki Niihori
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Taiga Kosaka
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Graduate School of Science, Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
6
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
7
|
Huang T, He S, Ni A, Lian T, Lee Tang M. Triplet energy transfer from quantum dots increases Ln(iii) photoluminescence, enabling excitation at visible wavelengths. Chem Sci 2024; 15:4556-4563. [PMID: 38516074 PMCID: PMC10952073 DOI: 10.1039/d3sc05408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024] Open
Abstract
Europium(iii) complexes are promising for bioimaging because of their long-lived, narrow emission. The photoluminescence (PL) from europium(iii) complexes is usually low. Thus, the effective utilization of low-energy light >400 nm and enhancement of PL are long-standing goals. Here, we show for the first time that 1-naphthoic acid triplet transmitter ligands bound to CdS quantum dots (QDs) and europium(iii) complexes create an energy transfer cascade that takes advantage of the strong QD absorption. This is confirmed by transient absorption spectroscopy, which shows hole mediated triplet energy transfer from QDs to 1-NCA, followed by triplet transfer from 1-NCA to europium(iii) complexes with an efficiency of 65.9 ± 7.7%. Smaller CdS QDs with a larger driving force lead to higher triplet transfer efficiency, with Eu(iii) PL intensity enhanced up to 21.4 times, the highest value ever reported. This hybrid QD system introduces an innovative approach to enhance the brightness of europium complexes.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Sheng He
- Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA
| | - Anji Ni
- Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA
| | - Tianquan Lian
- Department of Chemistry, Emory University 1515 Dickey Drive Northeast Atlanta Georgia 30322 USA
| | - Ming Lee Tang
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| |
Collapse
|
8
|
Wang X, Ding F, Jia T, Li F, Ding X, Deng R, Lin K, Yang Y, Wu W, Xia D, Chen G. Molecular near-infrared triplet-triplet annihilation upconversion with eigen oxygen immunity. Nat Commun 2024; 15:2157. [PMID: 38461161 PMCID: PMC10924867 DOI: 10.1038/s41467-024-46541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/01/2024] [Indexed: 03/11/2024] Open
Abstract
Molecular triplet-triplet annihilation upconversion often experiences drastic luminescence quenching in the presence of oxygen molecules, posing a significant constraint on practical use in aerated conditions. We present an oxygen-immune near-infrared triplet-triplet annihilation upconversion system utilizing non-organometallic cyanine sensitizers (λex = 808 nm) and chemically synthesized benzo[4,5]thieno[2,3-b][1,2,5]thiadiazolo[3,4-g]quinoxaline dyes with a defined dimer structure as annihilators (λem = 650 nm). This system exhibits ultrastable upconversion under continuous laser irradiance (>480 mins) or extended storage (>7 days) in aerated solutions. Mechanistic investigations reveal rapid triplet-triplet energy transfer from sensitizer to annihilators, accompanied by remarkably low triplet oxygen quenching efficiencies (η O 2 < 13% for the sensitizer, <3.7% for the annihilator), endowing the bicomponent triplet-triplet annihilation system with inherent oxygen immunity. Our findings unlock the direct and potent utilization of triplet-triplet annihilation upconversion systems in real-world applications, demonstrated by the extended and sensitive nanosensing of peroxynitrite radicals in the liver under in vivo nitrosative stress.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fangwei Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Tao Jia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Feng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiping Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Ruibin Deng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yulin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Wenzhi Wu
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Debin Xia
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
9
|
De A, Mora Perez C, Liang A, Wang K, Dou L, Prezhdo O, Huang L. Tunneling-Driven Marcus-Inverted Triplet Energy Transfer in a Two-Dimensional Perovskite. J Am Chem Soc 2024; 146:4260-4269. [PMID: 38305175 DOI: 10.1021/jacs.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Quantum tunneling, a phenomenon that allows particles to pass through potential barriers, can play a critical role in energy transfer processes. Here, we demonstrate that the proper design of organic-inorganic interfaces in two-dimensional (2D) hybrid perovskites allows for efficient triplet energy transfer (TET), where quantum tunneling of the excitons is the key driving force. By employing temperature-dependent and time-resolved photoluminescence and pump-probe spectroscopy techniques, we establish that triplet excitons can transfer from the inorganic lead-iodide sublattices to the pyrene ligands with rapid and weakly temperature-dependent characteristic times of approximately 50 ps. The energy transfer rates obtained based on the Marcus theory and first-principles calculations show good agreement with the experiments, indicating that the efficient tunneling of triplet excitons within the Marcus-inverted regime is facilitated by high-frequency molecular vibrations. These findings offer valuable insights into how one can effectively manipulate the energy landscape in 2D hybrid perovskites for energy transfer and the creation of diverse excitonic states.
Collapse
Affiliation(s)
- Angana De
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Aihui Liang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Ji S, Peng D, Sun F, You Q, Wang R, Yan N, Zhou Y, Wang W, Tang Q, Xia N, Zeng Z, Wu Z. Coexistent, Competing Tunnelling, and Hopping Charge Transport in Compressed Metal Nanocluster Crystals. J Am Chem Soc 2023; 145:24012-24020. [PMID: 37903430 DOI: 10.1021/jacs.3c07007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Understanding charge transport among metal particles with sizes of approximately 1 nm poses a great challenge due to the ultrasmall nanosize, yet it holds great significance in the development of innovative materials as substitutes for traditional semiconductors, which are insulative and unstable in less than ∼10 nm thickness. Herein, atomically precise gold nanoclusters with well-defined compositions and structures were investigated to establish a mathematical relation between conductivity and interparticle distance. This was accomplished using high-pressure in situ resistance characterizations, synchrotron X-ray diffraction (XRD), and the Murnaghan equation of state. Based on this precise correlation, it was predicted that the conductivity of Au25(SNap)18 (SNap: 1-naphthalenethiolate) solid is comparable to that of bulk silver when the interparticle distance is reduced to approximately 3.6 Å. Furthermore, the study revealed the coexisting, competing tunneling, and incoherent hopping charge transport mechanisms, which differed from those previously reported. The introduction of conjugation-structured ligands, tuning of the structures of metal nanoclusters, and use of high-pressure techniques contributed to enhanced conductivity, and thus, the charge carrier types were determined using Hall measurements. Overall, this study provides valuable insight into the charge transport in gold nanocluster solids and represents an important advancement in metal nanocluster semiconductor research.
Collapse
Affiliation(s)
- Shiyu Ji
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Di Peng
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Weiyi Wang
- University of Science and Technology of China, Hefei 230601, P. R. China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zhi Zeng
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
11
|
DuBose JT, Kamat PV. How Pendant Groups Dictate Energy and Electron Transfer in Perovskite-Rhodamine Light Harvesting Assemblies. J Am Chem Soc 2023; 145:4601-4612. [PMID: 36795798 DOI: 10.1021/jacs.2c12248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Energy and electron transfer processes allow for efficient manipulation of excited states within light harvesting assemblies for photocatalytic and optoelectronic applications. We have now successfully probed the influence of acceptor pendant group functionalization on the energy and electron transfer between CsPbBr3 perovskite nanocrystals and three rhodamine-based acceptor molecules. The three acceptors─rhodamine B (RhB), rhodamine isothiocyanate (RhB-NCS), and rose Bengal (RoseB)─contain an increasing degree of pendant group functionalization that affects their native excited state properties. When interacting with CsPbBr3 as an energy donor, photoluminescence excitation spectroscopy reveals that singlet energy transfer occurs with all three acceptors. However, the acceptor functionalization directly influences several key parameters that dictate the excited state interactions. For example, RoseB binds to the nanocrystal surface with an apparent association constant (Kapp = 9.4 × 106 M-1) 200 times greater than RhB (Kapp = 0.05 × 106 M-1), thus influencing the rate of energy transfer. Femtosecond transient absorption reveals the observed rate constant of singlet energy transfer (kEnT) is an order-of-magnitude greater for RoseB (kEnT = 1 × 1011 s-1) than for RhB and RhB-NCS. In addition to energy transfer, each acceptor had a subpopulation of molecules (∼30%) that underwent electron transfer as a competing pathway. Thus, the structural influence of acceptor moieties must be considered for both excited state energy and electron transfer in nanocrystal-molecular hybrids. The competition between electron and energy transfer further highlights the complexity of excited state interactions in nanocrystal-molecular complexes and the need for careful spectroscopic analysis to elucidate competitive pathways.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Gong N, Xu B, Mo J, Man T, Qiu J. Defect engineering of inorganic sensitizers for efficient triplet–triplet annihilation upconversion. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
13
|
Cadena DM, Sowa JK, Cotton DE, Wight CD, Hoffman CL, Wagner HR, Boette JT, Raulerson EK, Iverson BL, Rossky PJ, Roberts ST. Aggregation of Charge Acceptors on Nanocrystal Surfaces Alters Rates of Photoinduced Electron Transfer. J Am Chem Soc 2022; 144:22676-22688. [PMID: 36450151 DOI: 10.1021/jacs.2c09758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Semiconductor nanocrystals (NCs) interfaced with molecular ligands that function as charge and energy acceptors are an emerging platform for the design of light-harvesting, photon-upconverting, and photocatalytic materials. However, NC systems explored for these applications often feature high concentrations of bound acceptor ligands, which can lead to ligand-ligand interactions that may alter each system's ability to undergo charge and energy transfer. Here, we demonstrate that aggregation of acceptor ligands impacts the rate of photoinduced NC-to-ligand charge transfer between lead(II) sulfide (PbS) NCs and perylenediimide (PDI) electron acceptors. As the concentration of PDI acceptors is increased, we find the average electron transfer rate from PbS to PDI ligands decreases by nearly an order of magnitude. The electron transfer rate slowdown with increasing PDI concentration correlates strongly with the appearance of PDI aggregates in steady-state absorption spectra. Electronic structure calculations and molecular dynamics (MD) simulations suggest PDI aggregation slows the rate of electron transfer by reducing orbital overlap between PbS charge donors and PDI charge acceptors. While we find aggregation slows electron transfer in this system, the computational models we employ predict ligand aggregation could also be used to speed electron transfer by producing delocalized states that exhibit improved NC-molecule electronic coupling and energy alignment with NC conduction band states. Our results demonstrate that ligand aggregation can alter rates of photoinduced electron transfer between NCs and organic acceptor ligands and should be considered when designing hybrid NC:molecule systems for charge separation.
Collapse
Affiliation(s)
- Danielle M Cadena
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Center for Adapting Flaws into Features, Rice University, Houston, Texas77251, United States
| | - Jakub K Sowa
- Center for Adapting Flaws into Features, Rice University, Houston, Texas77251, United States.,Department of Chemistry, Rice University, Houston, Texas77251, United States
| | - Daniel E Cotton
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Cole L Hoffman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Jessica T Boette
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Emily K Raulerson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States
| | - Peter J Rossky
- Center for Adapting Flaws into Features, Rice University, Houston, Texas77251, United States.,Department of Chemistry, Rice University, Houston, Texas77251, United States
| | - Sean T Roberts
- Department of Chemistry, The University of Texas at Austin, Austin, Texas78712, United States.,Center for Adapting Flaws into Features, Rice University, Houston, Texas77251, United States
| |
Collapse
|
14
|
Gray V, Drake W, Allardice JR, Zhang Z, Xiao J, Congrave DG, Royakkers J, Zeng W, Dowland S, Greenham NC, Bronstein H, Anthony JE, Rao A. Triplet transfer from PbS quantum dots to tetracene ligands: is faster always better? JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:16321-16329. [PMID: 36562020 PMCID: PMC9648495 DOI: 10.1039/d2tc03470k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 06/17/2023]
Abstract
Quantum dot-organic semiconductor hybrid materials are gaining increasing attention as spin mixers for applications ranging from solar harvesting to spin memories. Triplet energy transfer between the inorganic quantum dot (QD) and organic semiconductor is a key step to understand in order to develop these applications. Here we report on the triplet energy transfer from PbS QDs to four energetically and structurally similar tetracene ligands. Even with similar ligands we find that the triplet energy transfer dynamics can vary significantly. For TIPS-tetracene derivatives with carboxylic acid, acetic acid and methanethiol anchoring groups on the short pro-cata side we find that triplet transfer occurs through a stepwise process, mediated via a surface state, whereas for monosubstituted TIPS-tetracene derivative 5-(4-benzoic acid)-12-triisopropylsilylethynyl tetracene (BAT) triplet transfer occurs directly, albeit slower, via a Dexter exchange mechanism. Even though triplet transfer is slower with BAT the overall yield is greater, as determined from upconverted emission using rubrene emitters. This work highlights that the surface-mediated transfer mechanism is plagued with parasitic loss pathways and that materials with direct Dexter-like triplet transfer are preferred for high-efficiency applications.
Collapse
Affiliation(s)
- Victor Gray
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
- Department of Chemistry - Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
| | - William Drake
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - Jesse R Allardice
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - James Xiao
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - Daniel G Congrave
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jeroen Royakkers
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Simon Dowland
- Cambridge Photon Technology J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| | - Hugo Bronstein
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - John E Anthony
- University of Kentucky Center for Applied Energy Research 2582 Research Park Dr Lexington Kentucky 40511 USA
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
| |
Collapse
|
15
|
Mavrommati S, Skourtis SS. Molecular Wires for Efficient Long-Distance Triplet Energy Transfer. J Phys Chem Lett 2022; 13:9679-9687. [PMID: 36215956 PMCID: PMC9589895 DOI: 10.1021/acs.jpclett.2c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We propose design rules for building organic molecular bridges that enable coherent long-distance triplet-exciton transfer. Using these rules, we describe example polychromophoric structures with low inner-sphere exciton reorganization energies, low static and dynamic disorder, and enhanced π-stacking interactions between nearest-neighbor chromophores. These features lead to triplet-exciton eigenstates that are delocalized over several units at room temperature. The use of such bridges in donor-bridge-acceptor assemblies enables fast triplet-exciton transport over very long distances that is rate-limited by the donor-bridge injection and bridge-acceptor trapping rates.
Collapse
|
16
|
Weiss R, VanOrman ZA, Sullivan CM, Nienhaus L. A Sensitizer of Purpose: Generating Triplet Excitons with Semiconductor Nanocrystals. ACS MATERIALS AU 2022; 2:641-654. [PMID: 36855545 PMCID: PMC9928406 DOI: 10.1021/acsmaterialsau.2c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
The process of photon upconversion promises importance for many optoelectronic applications, as it can result in higher efficiencies and more effective photon management. Upconversion via triplet-triplet annihilation (TTA) occurs at low incident powers and at high efficiencies, requirements for integration into existing optoelectronic devices. Semiconductor nanocrystals are a diverse class of triplet sensitizers with advantages over traditional molecular sensitizers such as energetic tunability and minimal energy loss during the triplet sensitization process. In this Perspective, we review current progress in semiconductor nanocrystal triplet sensitization, specifically focusing on the nanocrystal, the ligand shell which surrounds the nanocrystal, and progress in solid-state sensitization. Finally, we discuss potential areas of improvement which could result in more efficient upconversion systems sensitized by semiconductor nanocrystals. Specifically, we focus on the development of solid-state TTA upconversion systems, elucidation of the energy transfer mechanisms from nanocrystal to transmitter ligand which underpin the upconversion process and propose novel configurations of nanocrystal-sensitized systems.
Collapse
|
17
|
Brett MW, Gordon CK, Hardy J, Davis NJLK. The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials. ACS PHYSICAL CHEMISTRY AU 2022; 2:364-387. [PMID: 36855686 PMCID: PMC9955269 DOI: 10.1021/acsphyschemau.2c00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications. This Review presents a brief introduction to the components of HNs, before expanding on the characterization and applications of HNs. Finally, the future of HN applications is discussed.
Collapse
|
18
|
Imperiale CJ, Green PB, Hasham M, Wilson MWB. Ultra-small PbS nanocrystals as sensitizers for red-to-blue triplet-fusion upconversion. Chem Sci 2021; 12:14111-14120. [PMID: 34760195 PMCID: PMC8565365 DOI: 10.1039/d1sc04330g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Photon upconversion is a strategy to generate high-energy excitations from low-energy photon input, enabling advanced architectures for imaging and photochemistry. Here, we show that ultra-small PbS nanocrystals can sensitize red-to-blue triplet-fusion upconversion with a large anti-Stokes shift (ΔE = 1.04 eV), and achieve max-efficiency upconversion at near-solar fluences (I th = 220 mW cm-2) despite endothermic triplet sensitization. This system facilitates the photo-initiated polymerization of methyl methacrylate using only long-wavelength light (λ exc: 637 nm); a demonstration of nanocrystal-sensitized upconversion photochemistry. Time-resolved spectroscopy and kinetic modelling clarify key loss channels, highlighting the benefit of long-lifetime nanocrystal sensitizers, but revealing that many (48%) excitons that reach triplet-extracting carboxyphenylanthracene ligands decay before they can transfer to free-floating acceptors-emphasizing the need to address the reduced lifetimes that we determine for molecular triplets near the nanocrystal surface. Finally, we find that the inferred thermodynamics of triplet sensitization from these ultra-small PbS quantum dots are surprisingly favourable-completing an advantageous suite of properties for upconversion photochemistry-and do not vary significantly across the ensemble, which indicates minimal effects from nanocrystal heterogeneity. Together, our demonstration and study of red-to-blue upconversion using ultra-small PbS nanocrystals in a quasi-equilibrium, mildly endothermic sensitization scheme offer design rules to advance implementations of triplet fusion, especially where large anti-Stokes wavelength shifts are sought.
Collapse
Affiliation(s)
| | - Philippe B Green
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| | - Minhal Hasham
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| | - Mark W B Wilson
- University of Toronto, Department of Chemistry Toronto ON M5S 3H6 Canada
| |
Collapse
|
19
|
Brown D, Deng HY. Hydrodynamic effects on the energy transfer from dipoles to metal slab. J Chem Phys 2021; 155:114109. [PMID: 34551526 DOI: 10.1063/5.0062708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A systematic study of nonlocal and size effects on the energy transfer of a dipole (e.g., a molecule or a quantum dot) induced by the proximity of a metal slab is presented. Nonlocal effects are accounted for using the hydrodynamic model (HDM). We derive a general relation that connects the energy transfer rate to the linear charge density-density response function of the slab. This function is explicitly evaluated for the HDM and the local Drude model. We show that a thin metal slab can support a series of higher-frequency surface plasma wave (SPW) modes in addition to the normal SPW modes, thanks to the nonlocal effects. These modes markedly alter the response and the energy transfer process, as revealed in the structure of the energy transfer rate in the parameter space. Our findings are important for applications such as the recently developed metal-induced energy transfer imaging, which relies on accurate modeling of the energy transfer rate.
Collapse
Affiliation(s)
- Daniel Brown
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA, Wales, United Kingdom
| | - Hai-Yao Deng
- School of Physics and Astronomy, Cardiff University, 5 The Parade, Cardiff CF24 3AA, Wales, United Kingdom
| |
Collapse
|
20
|
Rigsby EM, Miyashita T, Fishman DA, Roberts ST, Tang ML. CdSe nanocrystal sensitized photon upconverting film. RSC Adv 2021; 11:31042-31046. [PMID: 35498919 PMCID: PMC9041432 DOI: 10.1039/d1ra06562a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Here, films using CdSe nanocrystal (NC) triplet photosensitizers in conjunction with diphenylanthracene (DPA) emitters were assembled to address several challenges to practical applications for solution-based photon upconversion. By using poly(9-vinylcarbazole) as a phosphorescent host in this film, volatile organic solvents are eliminated, the spontaneous crystallization of the emitter is significantly retarded, and ∼1.5% photon upconversion quantum yield (out of a maximum of 50%) is obtained. Transient absorption spectroscopy on nanosecond-to-microsecond time scales reveals this efficiency is enabled by an exceptionally long triplet lifetime of 3.4 ± 0.3 ms. Ultimately, we find the upconversion efficiency is limited by incomplete triplet–triplet annihilation, which occurs with a rate 3–4 orders of magnitude slower than in solution-phase upconversion systems. Here, films using CdSe nanocrystal (NC) triplet photosensitizers in conjunction with diphenylanthracene (DPA) emitters doe for the conversion of green to blue light.![]()
Collapse
Affiliation(s)
- Emily M Rigsby
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| | - Tsumugi Miyashita
- Department of Bioengineering, University of California Riverside Riverside CA 92521 USA
| | - Dmitry A Fishman
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Sean T Roberts
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Ming L Tang
- Department of Chemistry, University of California Riverside Riverside CA 92521 USA
| |
Collapse
|
21
|
Lai R, Liu Y, Luo X, Chen L, Han Y, Lv M, Liang G, Chen J, Zhang C, Di D, Scholes GD, Castellano FN, Wu K. Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer. Nat Commun 2021; 12:1532. [PMID: 33750766 PMCID: PMC7943758 DOI: 10.1038/s41467-021-21561-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Conventional wisdom posits that spin-triplet energy transfer (TET) is only operative over short distances because Dexter-type electronic coupling for TET rapidly decreases with increasing donor acceptor separation. While coherent mechanisms such as super-exchange can enhance the magnitude of electronic coupling, they are equally attenuated with distance. Here, we report endothermic charge-transfer-mediated TET as an alternative mechanism featuring shallow distance-dependence and experimentally demonstrated it using a linked nanocrystal-polyacene donor acceptor pair. Donor-acceptor electronic coupling is quantitatively controlled through wavefunction leakage out of the core/shell semiconductor nanocrystals, while the charge/energy transfer driving force is conserved. Attenuation of the TET rate as a function of shell thickness clearly follows the trend of hole probability density on nanocrystal surfaces rather than the product of electron and hole densities, consistent with endothermic hole-transfer-mediated TET. The shallow distance-dependence afforded by this mechanism enables efficient TET across distances well beyond the nominal range of Dexter or super-exchange paradigms.
Collapse
Affiliation(s)
- Runchen Lai
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangyi Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Xiao Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Lv
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Art and Science, Xiangyang, Hubei, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, China
| | - Dawei Di
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gregory D Scholes
- Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| |
Collapse
|
22
|
Zhao G, Chen Z, Xiong K, Liang G, Zhang J, Wu K. Triplet energy migration pathways from PbS quantum dots to surface-anchored polyacenes controlled by charge transfer. NANOSCALE 2021; 13:1303-1310. [PMID: 33409530 DOI: 10.1039/d0nr07837a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensitization of molecular triplets using PbS quantum dots (QDs), followed by efficient triplet fusion, has been developed as a novel route to near-infrared-to-visible photon upconversion. Fundamentally, however, the mechanisms of triplet energy transfer (TET) from PbS QDs to surface-anchored polyacence acceptors remain highly debated. Here we study and side-by-side compare the kinetic pathways of TET from photoexcited PbS QDs to surface-anchored tetracene and pentacene derivatives using broad-band transient absorption spectroscopy spanning multiple decades of timescales. We find that the TET pathways are dictated by charge-transfer energetics at the QD/molecule interface. Charge transfer from QDs to tetracene was strongly endothermic, and hence spectroscopy showed one-step transformation from QD excited states to tetracene triplets in 302 ns. In contrast, hole transfer from QDs to pentacene was thermodynamically favoured and was confirmed by the formation of pentacene cation radicals in 13 ps, which subsequently evolved into pentacene triplets through a 101 ns electron transfer process. These results not only are consistent with a recently-established framework of charge-transfer-mediated TET, but also provide a route to manipulate triplet sensitization using lead-salt QDs for efficient upconversion of near-infrared photons.
Collapse
Affiliation(s)
- Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China. and University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zongwei Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - Kao Xiong
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - Jianbing Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
23
|
Xu Z, Huang Z, Jin T, Lian T, Tang ML. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion. Acc Chem Res 2021; 54:70-80. [PMID: 33141563 DOI: 10.1021/acs.accounts.0c00526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The semiconductor-nanocrystal-sensitized, three-component upconversion system has made great strides over the past 5 years. The three components (i.e., triplet photosensitizer, mediator, and emitter) each play critical roles in determining the input and output photon energy and overall quantum efficiency (QE). The nanocrystal photosensitizer converts the absorbed photon into singlet excitons and then triplet excitons via intersystem crossing. The mediator accepts the triplet exciton via either direct Dexter-type triplet energy transfer (TET) or sequential charge transfer (CT) while extending the exciton lifetime. Through a second triplet energy-transfer step from the mediator to the emitter, the latter is populated in its lowest excited triplet state. Triplet-triplet annihilation (TTA) between two triplet emitters generates the emitter in its bright singlet state, which then emits the upconverted photon. Quantum dots (QD) have a tunable band gap, large extinction coefficient, and small singlet-triplet energy losses compared to metal-ligand charge-transfer complexes. This high triplet exciton yield makes QDs good candidates for photosensitizers. In terms of driving triplet energy transfer, the triplet energy of the mediator should be slightly lower than the triplet exciton energy of the QD sensitizer for a downhill energy landscape with minimal energy loss. The same energy cascade is also required for the transfer from the mediator to the emitter. Finally, the triplet energy of the emitter must be slightly larger than one-half of its singlet energy to ensure that TTA is exothermic. Optimization of the sensitizer, mediator, and emitter will lead to an increase in the anti-Stokes shift and the total quantum efficiency. Evaluating each individual step's efficiency and kinetics is necessary for the understanding of the limiting factors in existing systems.This review summarizes chalcogenide QD-based photon upconversion systems with a focus on the mechanistic aspects of triplet energy transfer conducted by the Tang and Lian groups. Via time-resolved spectroscopy, the rates and major loss pathways associated with the two triplet energy-transfer steps were identified. The studies are focused on the near-infrared (NIR) to visible (VIS) PbS-tetracene-based systems as they allow systematic control of the QD, mediator, and emitter. Our results show that the mediator triplet state is mostly formed by direct TET from the QD and the transfer rate is influenced by the density of bound mediator molecules. Charge transfer, a loss pathway, does not produce triplet excitons and can be minimized by adding an inert shell to the QD. This transfer rate decreases exponentially with the distance between the QD and mediator molecule. The second TET rate was found to be much slower than the diffusion-limited collision rate, which results in the triplet lifetime of the mediator being the main factor limiting its efficiency. Finally, the total quantum efficiency can be calculated using these measured quantities including the TET1 and TET2 efficiencies. The agreement between calculated and measured quantum efficiencies suggests a firm understanding of QD-sensitized photon upconversion. We believe the above conclusions are general and should be widely applicable to similar systems, including singlet fission in hybrid organic-nanocrystal materials.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Zhiyuan Huang
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| | - Tao Jin
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming L. Tang
- Department of Chemistry, University of California—Riverside, Riverside, California 92521, United States
| |
Collapse
|
24
|
Sherrie B, Funston AM, Frazer L. Optimal quantum dot size for photovoltaics with fusion. NANOSCALE 2020; 12:24362-24367. [PMID: 33313628 DOI: 10.1039/d0nr07061k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light fusion increases the efficiency of solar cells by converting photons with lower energy than the bandgap into higher energy photons. The solar cell converts the product photons to current. We use Monte Carlo simulation to predict that lead sulfide (PbS) quantum dot sensitizers will enable fusion with a figure of merit on the mA cm-2 scale, exceeding current records, while enabling silicon cell compatibility. Performance is highly sensitive to quantum dot size, on the order of mA cm-2 nm-1.
Collapse
Affiliation(s)
- Benedicta Sherrie
- ARC Centre of Excellence in Exciton Science and School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|