1
|
Delattre V, Goual N, Retailleau P, Marinetti A, Voituriez A. Synthesis of Halogenated Dibenzo[1,2,6]triazonines and Late-Stage Functionalization of the Triazonine Ring. J Org Chem 2024; 89:10939-10945. [PMID: 39037737 DOI: 10.1021/acs.joc.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
Collapse
Affiliation(s)
- Vincent Delattre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| |
Collapse
|
2
|
Yu Y, O'Neill RT, Boulatov R, Widenhoefer RA, Craig SL. Allosteric control of olefin isomerization kinetics via remote metal binding and its mechanochemical analysis. Nat Commun 2023; 14:5074. [PMID: 37604905 PMCID: PMC10442431 DOI: 10.1038/s41467-023-40842-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Allosteric control of reaction thermodynamics is well understood, but the mechanisms by which changes in local geometries of receptor sites lower activation reaction barriers in electronically uncoupled, remote reaction moieties remain relatively unexplored. Here we report a molecular scaffold in which the rate of thermal E-to-Z isomerization of an alkene increases by a factor of as much as 104 in response to fast binding of a metal ion to a remote receptor site. A mechanochemical model of the olefin coupled to a compressive harmonic spring reproduces the observed acceleration quantitatively, adding the studied isomerization to the very few reactions demonstrated to be sensitive to extrinsic compressive force. The work validates experimentally the generalization of mechanochemical kinetics to compressive loads and demonstrates that the formalism of force-coupled reactivity offers a productive framework for the quantitative analysis of the molecular basis of allosteric control of reaction kinetics. Important differences in the effects of compressive vs. tensile force on the kinetic stabilities of molecules are discussed.
Collapse
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Robert T O'Neill
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | | | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Craig SL. Concluding remarks: Fundamentals, applications and future of mechanochemistry. Faraday Discuss 2023; 241:485-491. [PMID: 36472143 DOI: 10.1039/d2fd00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper provides a summary of the Faraday Discussions meeting on "Mechanochemistry: fundamentals, applications, and future" in the context of broad themes whose exploration might contribute to a unified framework of mechanochemical phenomena.
Collapse
Affiliation(s)
- Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA.
| |
Collapse
|
4
|
Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, Imae I, Ooyama Y. Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. J Org Chem 2022; 87:15762-15770. [PMID: 36378160 DOI: 10.1021/acs.joc.2c01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
5
|
Yu Y, Zheng X, Duan C, Craig SL, Widenhoefer RA. Force-Modulated Selectivity of the Rhodium-Catalyzed Hydroformylation of 1-Alkenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chenghao Duan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ross A. Widenhoefer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Ma W, Cheng T, Liu FZ, Liu Y, Yan K. Allosteric Binding-Induced Intramolecular Mechanical-Strain Engineering. Angew Chem Int Ed Engl 2022; 61:e202202213. [PMID: 35212101 DOI: 10.1002/anie.202202213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Abstract
Recently, polymer mechanochemistry has attracted much scientific interest due to its potential to develop degradable polymers. When the two ends of a polymer chain experience a linear pulling stress, molecular strain builds up, at sufficiently strong force, a bond scission of the weakest covalent bond results. In contrast, bond-breaking events triggered by conformational stress are much less explored. Here, we discovered that a Zn salen complex would undergo conformational switching upon allosteric complexation with alkanediammonium guests. By controlling the guest chain length, the torsional strain experienced by Zn complex can be modulated to induce bond cleavage with chemical stimulus, and reactivity trend is predicted by conformational analysis derived by DFT calculation. Such strain-release reactivity by a Zn(salen) complex initiated by guest binding is reminiscent of conformation-induced reactivity of enzymes to enable chemical events that are otherwise inhibited.
Collapse
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Cheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
7
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022; 61:e202200638. [DOI: 10.1002/anie.202200638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
8
|
Ma W, Cheng T, Liu F, Liu Y, Yan K. Allosteric Binding‐Induced Intramolecular Mechanical‐Strain Engineering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenxian Ma
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Cheng
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Yan Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
9
|
Tang Y, Luo Y, Xiang J, He Y, Fan Q. Rhodium‐Catalyzed ON‐OFF Switchable Hydrogenation Using a Molecular Shuttle Based on a [2]Rotaxane with a Phosphine Ligand. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yu‐Ping Tang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi‐Er Luo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun‐Feng Xiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Mei He
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
| | - Qing‐Hua Fan
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences (CAS) Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Overholts AC, McFadden ME, Robb MJ. Quantifying Activation Rates of Scissile Mechanophores and the Influence of Dispersity. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna C. Overholts
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Molly E. McFadden
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Villarón D, Duindam N, Wezenberg SJ. Push-Pull Stiff-Stilbene: Proton-Gated Visible-Light Photoswitching and Acid-Catalyzed Isomerization. Chemistry 2021; 27:17346-17350. [PMID: 34605565 PMCID: PMC9298359 DOI: 10.1002/chem.202103052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 01/03/2023]
Abstract
Donor-acceptor substituted stiff-stilbene is shown to undergo isomerization induced by visible light avoiding the need for harmful UV light. This visible-light photoswitching is inhibited by protonation of the dimethylamino-donor unit, disrupting the push-pull character and thus, gating of the photochromic properties is allowed by acid/base addition. Remarkably, the addition of a mild acid also triggers fast thermal back-isomerization, which is unprecedented for stiff-stilbene photoswitches usually having a very high energy barrier for this process. These combined features offer unique orthogonal control over switching behavior by light and protonation, which is investigated in detail by 1 H NMR and UV/Vis spectroscopy. In addition, TD-DFT calculations are used to gain further insight into the absorption properties. Our results will help elevating the level of control over dynamic behavior in stiff-stilbene applications.
Collapse
Affiliation(s)
- David Villarón
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Nol Duindam
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sander J. Wezenberg
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
12
|
O’Neill RT, Boulatov R. The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry. Synlett 2021. [DOI: 10.1055/a-1710-5656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThe exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.
Collapse
Affiliation(s)
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University
| |
Collapse
|
13
|
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing Coupled Motion with Light: A Key Step Toward Machine-Like Function. Chem Rev 2021; 121:13213-13237. [PMID: 34533944 PMCID: PMC8587610 DOI: 10.1021/acs.chemrev.1c00340] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/26/2022]
Abstract
Molecular photoactuators can control shape and chemical or physical properties of the responsive system they are embedded in. These effects are usually mediated by supramolecular interactions and can be amplified to perform work at the micro- and macroscopic scale, for instance, in materials and biomimetic systems. While many studies focus on the observable outcome of these events, photoresponsive structures can also translate their conformational change to molecular components and perform work against random Brownian motion. Stereochemical cascades can amplify light-generated motion to a distant moiety of the same molecule or molecular assembly, via conformationally restricted stereogenic elements. Being able to control the conformation or motion of molecular systems remotely provides prospects for the design of the smallest machines imaginable. This Focus Review emphasizes the emergence of directed, coupled motion of remote functionalities triggered by light-powered switches and motors as a tool to control molecular topology and function.
Collapse
Affiliation(s)
| | | | - Stefano Crespi
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Nadja A. Simeth
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry,
Faculty of Science and Engineering, University
of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Yu Y, Wang C, Wang L, Sun CL, Boulatov R, Widenhoefer RA, Craig SL. Force-modulated reductive elimination from platinum(ii) diaryl complexes. Chem Sci 2021; 12:11130-11137. [PMID: 34522310 PMCID: PMC8386663 DOI: 10.1039/d1sc03182a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp2)-C(sp2) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∼290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but 31P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P-P)PtAr2 complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis.
Collapse
Affiliation(s)
- Yichen Yu
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Chenxu Wang
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Liqi Wang
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Cai-Li Sun
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Stephen L Craig
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
15
|
Cazorla C, Casimiro L, Arif T, Deo C, Goual N, Retailleau P, Métivier R, Xie J, Voituriez A, Marinetti A, Bogliotti N. Synthesis and properties of photoswitchable diphosphines and gold(I) complexes derived from azobenzenes. Dalton Trans 2021; 50:7284-7292. [PMID: 33955431 DOI: 10.1039/d1dt01080h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphines displaying azobenzene scaffolds and the corresponding bis-gold chloride complexes have been prepared and fully characterized by photophysical, spectroscopic and X-ray diffraction studies. DFT calculations provide complementary information on their electronic, structural and spectroscopic properties. Comparative investigations have been carried out on compounds featuring phosphorus functions in the meta- and para-positions, respectively, with respect to the azo functions, as well as on diphosphines with an ortho-tetrafluoro substituted azobenzene core. The effects of the substitution patterns on structural and spectroscopic properties are discussed.
Collapse
Affiliation(s)
- Clément Cazorla
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. and Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Lorenzo Casimiro
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Tanzeel Arif
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France. and Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Claire Deo
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | - Nicolas Bogliotti
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France.
| |
Collapse
|