1
|
Saha S, Mitra S, Kharwar YP, Annadata HV, Roy S, Dutta A. A Molecular Catalyst-Driven Sustainable Zinc-Air Battery Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411021. [PMID: 39639183 DOI: 10.1002/smll.202411021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Bidirectional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are key for molecular oxygen-centric renewable energy transduction via metal-air batteries. Here, a molecular cobalt complex is covalently tethered on a strategically functionalized silica surface that displayed both ORR and OER in alkaline media. The detailed X-ray absorbance spectroscopy (XAS) studies indicate that this catalyst retains its intrinsic molecular features while playing a central role during bidirectional electrocatalysis and demonstrating a relatively lower energy gap between O2/H2O interconversions. This robust molecular catalyst-silica composite (deposited on a porous carbon paper) is assembled along with a zinc foil and polymeric gel membrane to devise an active single-stack quasi-solid zinc-air battery (ZAB) setup. This quasi-solid ZAB assembly displayed impressive power density (60 mW cm-2@100 mA cm-2), specific capacity (818 mAh g-1@ 5mA cm-2), energy density (757 Whkg-1 @5mA cm-2), and elongated charging/discharging life (28 h). An appropriate assembly of these ZAB units is able to power practical electronic appliances, requiring ≈1.6-6.0V potential requirements.
Collapse
Affiliation(s)
- Sukanta Saha
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Sampurna Mitra
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Yashwant Pratap Kharwar
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Harshini V Annadata
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, Houston, TX, 77005, USA
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- Interdisciplinary Program Climate Studies, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
- National Centre of Excellence in Carbon Capture and Utilization, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
2
|
Li Y, Luan D, Lou XWD. Engineering of Single-Atomic Sites for Electro- and Photo-Catalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412386. [PMID: 39460391 DOI: 10.1002/adma.202412386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
3
|
Nayak P, Singh AK, Nayak M, Kar S, Sahu K, Meena K, Topwal D, Indra A, Kar S. Structural modification of nickel tetra(thiocyano)corroles during electrochemical water oxidation. Dalton Trans 2024; 53:14922-14932. [PMID: 39194402 DOI: 10.1039/d4dt01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, we present two fully characterized nickel tetrathiocyanocorroles, representing a novel class of 3d-metallocorroles. These nickel(II) ions form square planar complexes, exhibiting a d8-electronic configuration. These anionic complexes are stabilized by the electron-withdrawing SCN groups on the bipyrrole unit of the corrole. The reduced aromaticity in these anionic nickel(II) corrole complexes is evidenced by single crystal X-ray diffraction (XRD) data and a markedly altered absorption profile, with stronger Q bands compared to Soret bands. Notably, the UV-Vis and electrochemical data exhibit significant differences from previously reported nickel(II) corrole radical cation and nickel(II) porphyrin complexes. While these electrochemical data bear a resemblance to those of the anionic nickel(II) corrole by Gross et al., the UV-Vis data show substantial distinctions. Additionally, we explore the utilization of nickel(II)-corrole@CC (where CC denotes carbon cloth) as an electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium. During electrochemical water oxidation, the molecular catalyst is partially converted to nickel (oxy)hydroxide, Ni(O)OH. The structure reveals the coexistence of the molecular complex and Ni(O)OH in the active catalyst, achieving a turnover frequency (TOF) of 3.32 × 10-2 s-1. The synergy between the homogeneous and heterogeneous phases improves the OER activity, providing more active sites and edge sites and enhancing interfacial charge transfer.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Ajit Kumar Singh
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Subhajit Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Dinesh Topwal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
- Institute of Physics, Bhubaneswar 751005, India
| | - Arindam Indra
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
4
|
Wang T, Li W, Wu G. Bioinspired Tetranuclear Manganese Cubane Complex as an Efficient Molecular Electrocatalyst for Two-Electron Water Oxidation Towards Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202406701. [PMID: 38740950 DOI: 10.1002/anie.202406701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Stable homogeneous two-electron water oxidation electrocatalysts are highly demanded to understand the precise mechanism and reaction intermediates of electrochemical H2O2 production. Here we report a tetranuclear manganese complex with a cubane structure which can electrocatalyze water oxidation to hydrogen peroxide under alkaline and neutral conditions. Such a complex demonstrates an optimal Faradaic efficiency (FE) of 87 %, which is amongst (if not) the highest FE(H2O2) of reported homogeneous and heterogeneous electrocatalysts. In addition, active species were identified and co-catalysts were excluded through ESI-MS characterization. Furthermore, we identified water binding sites and isolated one-electron oxidation intermediate by chemical oxidation of the catalyst in the presence of water substrates. It is evident that efficient proton-accepting electrolytes avoid rapid proton building-up at electrode and substantially improve reaction rate and selectivity. Accordingly, we propose a two-electron catalytic cycle model for water oxidation to hydrogen peroxide with the bioinspired molecular electrocatalyst. The present work is expected to provide an ideal platform to elucidate the two-electron WOR mechanism at the atomic level.
Collapse
Affiliation(s)
- Tongshuai Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wenxiu Li
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Gang Wu
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Wu YT, Kumbhar SV, Tsai RF, Yang YC, Zeng WQ, Wang YH, Hsu WC, Chiang YW, Yang T, Lu IC, Wang YH. Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands. ACS ORGANIC & INORGANIC AU 2024; 4:306-318. [PMID: 38855334 PMCID: PMC11157513 DOI: 10.1021/acsorginorgau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (1-3) bearing bis(benzimidazole)pyrazolide ligands (H 2 L1-H 2 L3). H 2 L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co2 III(μ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 1-3 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sharad V. Kumbhar
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Feng Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Ching Yang
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Qin Zeng
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Han Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wan-Chi Hsu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzuhsiung Yang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Chung Lu
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Heng Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
6
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Chen J, Liu Y, Duan R, Huang Q, Li C. Binuclear Metal Phthalocyanines with Enhanced Activity in the Oxygen Evolution Reaction: A First-Principles Study. J Phys Chem Lett 2024:3336-3344. [PMID: 38498308 DOI: 10.1021/acs.jpclett.4c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rational design of efficient catalysts for the electrochemical oxygen evolution reaction (OER) critically relies on a comprehensive understanding of the reaction mechanisms. Herein, the alkaline OER on planar mononuclear metal phthalocyanines (MPc, where M = Mn, Co, Fe, and Ni) and binuclear metal phthalocyanines (bi-MPc) is studied using density functional theory (DFT) methods. Both FePc and bi-CoPc exhibit enhanced stability and OER activity, with the energy required for the leaching of central metal being as high as 2.28 and 2.45 eV and the overpotentials of the OER being 0.48 and 0.57 V, respectively. Through electronic structure analysis, it is found that, in the OER process of bi-MPc, the large macrocyclic ligand and metal ions not bonding with the intermediate can serve as hole reservoirs. Intermediate species are further stabilized by the dispersal of a positive charge, reducing the free energy. These findings underscore the significance of macrocyclic ligands in the rate-determining step of the OER catalyst.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Key Laboratory of Advanced Catalysis of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
8
|
Anferov SW, Boyn JN, Mazziotti DA, Anderson JS. Selective Cobalt-Mediated Formation of Hydrogen Peroxide from Water under Mild Conditions via Ligand Redox Non-Innocence. J Am Chem Soc 2024; 146:5855-5863. [PMID: 38375752 DOI: 10.1021/jacs.3c11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Despite the broad importance of hydrogen peroxide (H2O2) in oxidative transformations, there are comparatively few viable routes for its production. The majority of commercial H2O2 is currently produced by the stepwise reduction of dioxygen (O2) via the anthraquinone process, but direct electrochemical formation from water (H2O) would have several advantages─namely, avoiding flammable gases or stepwise separations. However, the selective oxidation of H2O to form H2O2 over the thermodynamically favored product of O2 is a difficult synthetic challenge. Here, we present a molecular H2O oxidation system with excellent selectivity for H2O2 that functions both stoichiometrically and catalytically. We observe high efficiency for electrocatalytic H2O2 production at low overpotential with no O2 observed under any conditions. Mechanistic studies with both calculations and kinetic analyses from isolated intermediates suggest that H2O2 formation occurs in a bimolecular fashion via a dinuclear H2O2-bridged intermediate with an important role for a redox non-innocent ligand. This system showcases the ability of metal-ligand cooperativity and strategic design of the secondary coordination sphere to promote kinetically and thermodynamically challenging selectivity in oxidative catalysis.
Collapse
Affiliation(s)
- Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - David A Mazziotti
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60627, United States
| |
Collapse
|
9
|
Chen QF, Xian KL, Zhang HT, Su XJ, Liao RZ, Zhang MT. Pivotal Role of Geometry Regulation on O-O Bond Formation Mechanism of Bimetallic Water Oxidation Catalysts. Angew Chem Int Ed Engl 2024; 63:e202317514. [PMID: 38179807 DOI: 10.1002/anie.202317514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
In this study, we highlight the impact of catalyst geometry on the formation of O-O bonds in Cu2 and Fe2 catalysts. A series of Cu2 complexes with diverse linkers are designed as electrocatalysts for water oxidation. Interestingly, the catalytic performance of these Cu2 complexes is enhanced as their molecular skeletons become more rigid, which contrasts with the behavior observed in our previous investigation with Fe2 analogs. Moreover, mechanistic studies reveal that the reactivity of the bridging O atom results in distinct pathways for O-O bond formation in Cu2 and Fe2 catalysts. In Cu2 systems, the coupling takes place between a terminal CuIII -OH and a bridging μ-O⋅ radical. Whereas in Fe2 systems, it involves the coupling of two terminal Fe-oxo entities. Furthermore, an in-depth structure-activity analysis uncovers the spatial geometric prerequisites for the coupling of the terminal OH with the bridging μ-O⋅ radical, ultimately leading to the O-O bond formation. Overall, this study emphasizes the critical role of precisely adjusting the spatial geometry of catalysts to align with the O-O bonding pathway.
Collapse
Affiliation(s)
- Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ke-Lin Xian
- Key Laboratory for Large-Format Battery Materials and System, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xiao-Jun Su
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
10
|
Dan M, Zhang X, Yang Y, Yang J, Wu F, Zhao S, Liu ZQ. Dual-axial engineering on atomically dispersed catalysts for ultrastable oxygen reduction in acidic and alkaline solutions. Proc Natl Acad Sci U S A 2024; 121:e2318174121. [PMID: 38289955 PMCID: PMC10861853 DOI: 10.1073/pnas.2318174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.
Collapse
Affiliation(s)
- Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
- College of Materials Science & Engineering, Taiyuan University of Technology, Shanxi030024, People’s Republic of China
| | - Xiting Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Yongchao Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| |
Collapse
|
11
|
Khan S, Sengupta S, Khan MA, Sk MP, Jana NC, Naskar S. Electrocatalytic Water Oxidation by Mononuclear Copper Complexes of Bis-amide Ligands with N4 Donor: Experimental and Theoretical Investigation. Inorg Chem 2024; 63:1888-1897. [PMID: 38232755 DOI: 10.1021/acs.inorgchem.3c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The present work describes electrocatalytic water oxidation of three monomeric copper complexes [CuII(L1)] (1), [CuII(L2)(H2O)] (2), and [CuII(L3)] (3) with bis-amide tetradentate ligands: L1 = N,N'-(1,2-phenylene)dipicolinamide, L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(pyrazine-2-carboxamide), L3 = N,N'-(1,2-phenylene)bis(pyrazine-2-carboxamide), for the production of molecular oxygen by the oxidation of water at pH 13.0. Ligands and all complexes have been synthesized and characterized by single crystal XRD, analytical, and spectroscopic techniques. X-ray crystallographic data show that the ligand coordinates to copper in a dianionic fashion through deprotonation of two -NH protons. Cyclic voltammetry study shows a reversible copper-centered redox couple with one ligand-based oxidation event. The electrocatalytic water oxidation occurs at an onset potential of 1.16 (overpotential, η ≈ 697 mV), 1.2 (η ≈ 737 mV), and 1.23 V (η ≈ 767 mV) for 1, 2, and 3 respectively. A systematic variation of the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. The results of the theoretical (density functional theory) studies show the stepwise ligand-centered oxidation process and the formation of the O-O bond during water oxidation passes through the water nucleophilic attack for all the copper complexes. At pH = 13, the turnover frequencies have been experimentally obtained as 88, 1462, and 10 s-1 (peak current measurements) for complexes 1, 2, and 3, respectively. Production of oxygen gas during controlled potential electrolysis was detected by gas chromatography.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Adnan Khan
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| | - Md Palashuddin Sk
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Narayan Ch Jana
- School of Chemical Sciences, NISER, An OCC of Homi Bhabha National Institute, Bhubaneswar 752050, India
| | - Subhendu Naskar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi 835215, India
| |
Collapse
|
12
|
Yadav I, Sankar M. Panchromatic and Perturbed Absorption Spectral Features and Multiredox Properties of Dicyanovinyl- and Dicyanobutadienyl-Appended Cobalt Corroles. Inorg Chem 2023. [PMID: 38010211 DOI: 10.1021/acs.inorgchem.3c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Four new β-functionalized π-extended cobalt corroles with one and two dicyanovinyl (DCV) or dicyanobutadienyl (DCBD) moieties at the 3- and 3,17-positions have been synthesized and characterized by various spectroscopic techniques. Interestingly, the synthesized DCV- and DCBD-appended cobalt corroles displayed panchromatic and near-infrared absorption in the range 300-1100 nm in CH2Cl2 and pyridine solvents. (MN)2-(Cor)Co and A2MN2-(Cor)Co exhibited 8-9 times enhancement in the molar absorptivity of the Q band compared to the parent corrole ((Cor)Co). The unique absorption spectral features of these β-functionalized cobalt corroles are splitting, broadening, and red-shifting in the Soret and Q bands. One DCV unit brings a 30-46 nm red shift, whereas one DCBD unit brings a 40-75 nm red shift in the Q band compared to the corresponding precursors. This is rare that the intensity of the longest Q band is greater than or equal to the Soret-like bands. These corrole derivatives exhibit UV-vis spectral features similar to those of chlorophyll a. A 220 mV positive shift per DCV group and 160 mV positive shift per DCBD group were observed in the first oxidation potentials compared to (Cor)Co in the desired direction for the utility of these cobalt complexes in electrocatalysis. DFT studies revealed that HOMO and LUMO were stabilized after appending DCV and DCBD groups on the corrole macrocycle and exhibited a "push-pull" behavior leading to promising material applications in nonlinear optics (NLO) and catalysis.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
13
|
Biswas S, Chowdhury SN, Lepcha P, Sutradhar S, Das A, Paine TK, Paul S, Biswas AN. Electrochemical generation of high-valent oxo-manganese complexes featuring an anionic N5 ligand and their role in O-O bond formation. Dalton Trans 2023; 52:16616-16630. [PMID: 37882084 DOI: 10.1039/d3dt02740f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Generation of high-valent oxomanganese complexes through controlled removal of protons and electrons from low-valent congeners is a crucial step toward the synthesis of functional analogues of the native oxygen evolving complex (OEC). In-depth studies of the water oxidation activity of such biomimetic compounds help in understanding the mechanism of O-O bond formation presumably occurring in the last step of the photosynthetic cycle. Scarce reports of reactive high-valent oxomanganese complexes underscore the impetus for the present work, wherein we report the electrochemical generation of the non-heme oxomanganese(IV) species [(dpaq)MnIV(O)]+ (2) through a proton-coupled electron transfer (PCET) process from the hydroxomanganese complex [(dpaq)MnIII(OH)]ClO4 (1). Controlled potential spectroelectrochemical studies of 1 in wet acetonitrile at 1.45 V vs. NHE revealed quantitative formation of 2 within 10 min. The high-valent oxomanganese(IV) transient exhibited remarkable stability and could be reverted to the starting complex (1) by switching the potential to 0.25 V vs. NHE. The formation of 2via PCET oxidation of 1 demonstrates an alternate pathway for the generation of the oxomanganese(IV) transient (2) without the requirement of redox-inactive metal ions or acid additives as proposed earlier. Theoretical studies predict that one-electron oxidation of [(dpaq)MnIV(O)]+ (2) forms a manganese(V)-oxo (3) species, which can be oxidized further by one electron to a formal manganese(VI)-oxo transient (4). Theoretical analyses suggest that the first oxidation event (2 to 3) takes place at the metal-based d-orbital, whereas, in the second oxidation process (3 to 4), the electron eliminates from an orbital composed of equitable contribution from the metal and the ligand, leaving a single electron in the quinoline-dominant orbital in the doublet ground spin state of the manganese(VI)-oxo species (4). This mixed metal-ligand (quinoline)-based oxidation is proposed to generate a formal Mn(VI) species (4), a non-heme analogue of the species 'compound I', formed in the catalytic cycle of cytochrome P-450. We propose that the highly electrophilic species 4 catches water during cyclic voltammetry experiments and results in O-O bond formation leading to electrocatalytic oxidation of water to hydrogen peroxide.
Collapse
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Srijan Narayan Chowdhury
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| | - Subhankar Sutradhar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19, Rajkumar Chakraborty Sarani, Kolkata-700009, India
| | - Achintesh N Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, Sikkim 737139, India.
| |
Collapse
|
14
|
Pain T, Singh AK, Tarai A, Mondal S, Indra A, Kar S. C-H Bond Activation by an Antimony(V) Oxo Intermediate Accessed through Electrochemical Oxidation of Antimony(III) Tetrakis(thiocyano)corrole. Inorg Chem 2023; 62:18779-18788. [PMID: 37933554 DOI: 10.1021/acs.inorgchem.3c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A new class of antimony(III) corroles has been described. The photophysical properties of these newly synthesized tetrakis(thiocyano)corrolatoantimony(III) derivatives having four SCN groups on the bipyrrole unit of corrole are drastically altered compared to their β-unsubstituted corrolatoantimony(III) analogues. The UV-vis and emission spectra of tetrakis(thiocyano)corrolatoantimony(III) derivatives are significantly red-shifted (roughly 30-40 nm) in comparison with their β-unsubstituted corrolatoantimony(III) derivatives. The Q bands are significantly strengthened. The intensity of the most prominent Q band is roughly 70% that of the Soret band and absorbs strongly at the far-red region, i.e., at 700-720 nm. These molecules emit light in the near-infrared region (700-900 nm). Tetrakis(thiocyano)corrolatoantimony(III) undergoes electrochemical anodic oxidation to form SbV═O species, which facilitates electrocatalytic oxygen evolution reaction (OER) and the activation of benzylic C-H to produce benzoic acid selectively. Under optimized conditions, SbIII-corrole@NF (NF = nickel foam) required an overpotential of 380 mV to reach a 50 mA cm-2 current density, comparable with those of other transition-metal-based complexes. On the other hand, replacing the anodic OER with benzyl alcohol oxidation lowered the required potential by 150 mV (at 300 mA cm-2) to improve the energy efficiency of the electrochemical process.
Collapse
Affiliation(s)
- Tanmoy Pain
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arup Tarai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
15
|
Lv H, Zhang XP, Guo K, Han J, Guo H, Lei H, Li X, Zhang W, Apfel UP, Cao R. Coordination Tuning of Metal Porphyrins for Improved Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202305938. [PMID: 37550259 DOI: 10.1002/anie.202305938] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
The nucleophilic attack of water or hydroxide on metal-oxo units forms an O-O bond in the oxygen evolution reaction (OER). Coordination tuning to improve this attack is intriguing but has been rarely realized. We herein report on improved OER catalysis by metal porphyrin 1-M (M=Co, Fe) with a coordinatively unsaturated metal ion. We designed and synthesized 1-M by sterically blocking one porphyrin side with a tethered tetraazacyclododecane unit. With this protection, the metal-oxo species generated in OER can maintain an unoccupied trans axial site. Importantly, 1-M displays a higher OER activity in alkaline solutions than analogues lacking such an axial protection by decreasing up to 150-mV overpotential to achieve 10 mA/cm2 current density. Theoretical studies suggest that with an unoccupied trans axial site, the metal-oxo unit becomes more positively charged and thus is more favoured for the hydroxide nucleophilic attack as compared to metal-oxo units bearing trans axial ligands.
Collapse
Affiliation(s)
- Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
16
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
17
|
Bidirectional O2 reduction/H2O oxidation boosted by a pentadentate pyridylalkylamine copper(II) complex. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
18
|
Hsu WC, Zeng WQ, Lu IC, Yang T, Wang YH. Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Non-Innocent Ligand. CHEMSUSCHEM 2022; 15:e202201317. [PMID: 36083105 DOI: 10.1002/cssc.202201317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, dinuclear cobalt complexes (1 and 2) featuring bis(benzimidazole)pyrazolide-type ligands (H2 L and Me2 L) were prepared and evaluated as molecular electrocatalysts for water oxidation. Notably, 1 bearing a non-innocent ligand (H2 L) displayed faster catalytic turnover than 2 under alkaline conditions, and the base dependence of water oxidation and kinetic isotope effect analysis indicated that the reaction mediated by 1 proceeded by a different mechanism relative to 2. Spectroelectrochemical, cold-spray ionization mass spectrometric and computational studies found that double deprotonation of 1 under alkaline conditions cathodically shifted the catalysis-initiating potential and further altered the turnover-limiting step from nucleophilic water attack on (H2 L)CoIII 2 (superoxo) to deprotonation of (L)CoIII 2 (OH)2 . The rate-overpotential analysis and catalytic Tafel plots showed that 1 exhibited a significantly higher rate than previously reported Ru-based dinuclear electrocatalysts at similar overpotentials. These observations suggest that using non-innocent ligands is a valuable strategy for designing effective metal-based molecular water oxidation catalysts.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Wan-Qin Zeng
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., South Dist., 402, Taichung, Taiwan
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., 30013, Hsinchu, Taiwan
| |
Collapse
|
19
|
Dong K, Le T, Nakibli Y, Schleusener A, Wächtler M, Amirav L. Molecular Metallocorrole-Nanorod Photocatalytic System for Sustainable Hydrogen Production. CHEMSUSCHEM 2022; 15:e202200804. [PMID: 35789067 PMCID: PMC9540064 DOI: 10.1002/cssc.202200804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Solar-driven photocatalytic generation of hydrogen from water is a potential source of clean and renewable fuel. Yet systems that are sufficiently stable and efficient for practical use have not been realized. Here, nanorod photocatalysts that have proven record activity for the water reduction half reaction were successfully combined with molecular metallocorroles suitable for catalyzing the accompanying oxidation reactions. Utilization of OH- /⋅OH redox species as charge transfer shuttle between freely mixed metallocorroles and rods resulted in quantum efficiency that peaked as high as 17 % for hydrogen production from water in the absence of sacrificial hole scavengers. While typically each sacrificial scavenger is able to extract but a single hole, here the molecular metallocorrole catalysts were found to successfully handle nearly 300,000 holes during their lifespan. The implications of the new system on the prospects of realizing practical overall water splitting and direct solar-to-fuel energy conversion were discussed.
Collapse
Affiliation(s)
- Kaituo Dong
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Trung‐Anh Le
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Yifat Nakibli
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| | - Alexander Schleusener
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Current address of Dr. A. Schleusener: Istituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Maria Wächtler
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Current address of Dr. A. Schleusener: Istituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsAlbert-Einstein-Straße 607745JenaGermany
| | - Lilac Amirav
- Schulich Faculty of ChemistryTechnion – Israel Institute of TechnologyHaifa32000Israel
- Current address of T.-A. Le: Faculty of science and engineeringÅbo Akademi UniversityTurku20500Finland
| |
Collapse
|
20
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202208143. [PMID: 35730106 DOI: 10.1002/anie.202208143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Abstract
A cobalt porphyrin complex with a pendant imidazole base ([(L1 )CoII ]) is an efficient catalyst for the homogeneous catalytic two-electron reduction of dioxygen by 1,1'-dimethylferrocene (Me2 Fc) in the presence of triflic acid (HOTf), as compared with a cobalt porphyrin complex without a pendant imidazole base ([(L2 )CoII ]). The pendant imidazole ligand plays a crucial role not only to provide an imidazolinium proton for proton-coupled electron transfer (PCET) from [(L1 )CoII ] to O2 in the presence of HOTf but also to facilitate electron transfer (ET) from [(L1 )CoII ] to O2 in the absence of HOTf. The kinetics analysis and the detection of intermediates in the stoichiometric and catalytic reduction of O2 have provided clues to clarify the crucial roles of the pendant imidazole ligand of [(L1 )CoII ] for the first time.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Ping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ni Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
21
|
Huang Q, Chen J, Luan P, Ding C, Li C. Understanding the factors governing the water oxidation reaction pathway of mononuclear and binuclear cobalt phthalocyanine catalysts. Chem Sci 2022; 13:8797-8803. [PMID: 35975146 PMCID: PMC9350663 DOI: 10.1039/d2sc02213c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The rational design of efficient catalysts for electrochemical water oxidation highly depends on the understanding of reaction pathways, which still remains a challenge. Herein, mononuclear and binuclear cobalt phthalocyanine (mono-CoPc and bi-CoPc) with a well-defined molecular structure are selected as model electrocatalysts to study the water oxidation mechanism. We found that bi-CoPc on a carbon support (bi-CoPc/carbon) shows an overpotential of 357 mV at 10 mA cm-2, much lower than that of mono-CoPc/carbon (>450 mV). Kinetic analysis reveals that the rate-determining step (RDS) of the oxygen evolution reaction (OER) over both electrocatalysts is a nucleophilic attack process involving a hydroxy anion (OH-). However, the substrate nucleophilically attacked by OH- for bi-CoPc is the phthalocyanine cation-radical species (CoII-Pc-Pc˙+-CoII-OH) that is formed from the oxidation of the phthalocyanine ring, while cobalt oxidized species (Pc-CoIII-OH) is involved in mono-CoPc as evidenced by the operando UV-vis spectroelectrochemistry technique. DFT calculations show that the reaction barrier for the nucleophilic attack of OH- on CoII-Pc-Pc˙+-CoII-OH is 1.67 eV, lower than that of mono-CoPc with Pc-CoIII-OH nucleophilically attacked by OH- (1.78 eV). The good agreement between the experimental and theoretical results suggests that bi-CoPc can effectively stabilize the accumulated oxidative charges in the phthalocyanine ring, and is thus bestowed with a higher OER performance.
Collapse
Affiliation(s)
- Qing'e Huang
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jun Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Peng Luan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Li
- Department of Chemical Physics, University of Science and Technology of China Hefei 230026 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
22
|
Yang J, Li P, Li X, Xie L, Wang N, Lei H, Zhang C, Zhang W, Lee YM, Zhang W, Cao R, Fukuzumi S, Nam W. Crucial Roles of a Pendant Imidazole Ligand of a Cobalt Porphyrin Complex in the Stoichiometric and Catalytic Reduction of Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jindou Yang
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Ping Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Lisi Xie
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ni Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chaochao Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yong-Min Lee
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| | - Weiqiang Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Shunichi Fukuzumi
- Osaka University Department of Material and Life Science 2-1 Yamada-oka 565-0871 Suita JAPAN
| | - Wonwoo Nam
- Ewha Womans University Department of Chemistry and Nanoscience KOREA, REPUBLIC OF
| |
Collapse
|
23
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel UP, Cao R. Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022; 61:e202201104. [PMID: 35355376 DOI: 10.1002/anie.202201104] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/21/2022]
Abstract
Integrating molecular catalysts into designed frameworks often enables improved catalysis. Compared with porphyrin-based frameworks, metal-corrole-based frameworks have been rarely developed, although monomeric metal corroles are usually more efficient than porphyrin counterparts for the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). We herein report on metal-corrole-based porous organic polymers (POPs) as ORR and OER electrocatalysts. M-POPs (M=Mn, Fe, Co, Cu) were synthesized by coupling metal 10-phenyl-5,15-(4-iodophenyl)corrole with tetrakis(4-ethynylphenyl)methane. Compared with metal corrole monomers, M-POPs displayed significantly enhanced catalytic activity and stability. Co-POP outperformed other M-POPs by achieving four-electron ORR with a half-wave potential of 0.87 V vs. RHE and reaching 10 mA cm-2 OER current density at 340 mV overpotential. This work is unparalleled to develop and explore metal-corrole-based POPs as electrocatalysts.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
24
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
25
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel U, Cao R. Metal‐Corrole‐Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
26
|
Boer DD, Siberie Q, Siegler MA, Ferber TH, Moritz DC, Hofmann JP, Hetterscheid DGH. On the Homogeneity of a Cobalt-Based Water Oxidation Catalyst. ACS Catal 2022; 12:4597-4607. [PMID: 35465245 PMCID: PMC9016703 DOI: 10.1021/acscatal.2c01299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/21/2022] [Indexed: 01/01/2023]
Abstract
![]()
The homogeneity of
molecular Co-based water oxidation catalysts
(WOCs) has been a subject of debate over the last 10 years as assumed
various homogeneous Co-based WOCs were found to actually form CoOx under operating conditions. The homogeneity
of the Co(HL) (HL = N,N-bis(2,2′-bipyrid-6-yl)amine) system was investigated
with cyclic voltammetry, electrochemical quartz crystal microbalance,
and X-ray photoelectron spectroscopy. The obtained experimental results
were compared with heterogeneous CoOx.
Although it is shown that Co(HL) interacts with the electrode
during electrocatalysis, the formation of CoOx was not observed. Instead, a molecular deposit of Co(HL) was found to be formed on the electrode surface. This study
shows that deposition of catalytic material is not necessarily linked
to the decomposition of homogeneous cobalt-based water oxidation catalysts.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Quentin Siberie
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, RA, Leiden 2300, The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore 21218 Maryland, United States
| | - Thimo H. Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Dominik C. Moritz
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | - Jan P. Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, Darmstadt 64287, Germany
| | | |
Collapse
|
27
|
Cai Q, Tran LK, Qiu T, Eddy JW, Pham TN, Yap GPA, Rosenthal J. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e -/4H + Peractivation of O 2 to Water. Inorg Chem 2022; 61:5442-5451. [PMID: 35358381 DOI: 10.1021/acs.inorgchem.1c03766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective 4e-/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) or Co(III) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. However, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e-/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based on a nonaromatic isocorrole scaffold that is competent for 4e-/4H+ oxygen reduction reaction (ORR). This Co(II) 10,10-dimethyl isocorrole (Co[10-DMIC]) is obtained in just four simple steps and has excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co porphyrin (cobalt 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, [Co(TPFPP)]) and corrole (cobalt 5,10,15-tris(pentafluorophenyl)corrole triphenylphosphine, Co[TPFPC](PPh3)) homologues demonstrated that the spectroscopic and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, the investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ∼85% selective for the 4e-/4H+ reduction of O2 to H2O over the more kinetically facile 2e-/2H+ process that delivers H2O2. In contrast, the same ORR evaluations conducted for the Co porphyrin and corrole homologues demonstrated that these traditional aromatic systems catalyze the 2e-/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups or ditopic molecular clefts or that impose cofacially oriented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and shows a privileged performance for the 4e-/4H+ peractivation of O2 to water as compared to other simple cobalt containing tetrapyrroles.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Linh K Tran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tian Qiu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer W Eddy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
28
|
Black phosphorus incorporated cobalt oxide: Biomimetic channels for electrocatalytic water oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63937-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
den Hartog S, Neukermans S, Samanipour M, Ching HV, Breugelmans T, Hubin A, Ustarroz J. Electrocatalysis under a magnetic lens: A combined electrochemistry and electron paramagnetic resonance review. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Bera M, Keshari K, Bhardwaj A, Gupta G, Mondal B, Paria S. Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Inorg Chem 2022; 61:3152-3165. [PMID: 35119860 DOI: 10.1021/acs.inorgchem.1c03537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two molecular copper(II) complexes, (NMe4)2[CuII(L1)] (1) and (NMe4)2[CuII(L2)] (2), ligated by a N2O2 donor set of ligands [L1 = N,N'-(1,2-phenylene)bis(2-hydroxy-2-methylpropanamide), and L2 = N,N'-(4,5-dimethyl-1,2-phenylene)bis(2-hydroxy-2-methylpropanamide)] have been synthesized and thoroughly characterized. An electrochemical study of 1 in a carbonate buffer at pH 9.2 revealed a reversible copper-centered redox couple at 0.51 V, followed by two ligand-based oxidation events at 1.02 and 1.25 V, and catalytic water oxidation at an onset potential of 1.28 V (overpotential of 580 mV). The electron-rich nature of the ligand likely supports access to high-valent copper species on the CV time scale. The results of the theoretical electronic structure investigation were quite consistent with the observed stepwise ligand-centered oxidation process. A constant potential electrolysis experiment with 1 reveals a catalytic current density of >2.4 mA cm-2 for 3 h. A one-electron-oxidized species of 1, (NMe4)[CuIII(L1)] (3), was isolated and characterized. Complex 2, on the contrary, revealed copper and ligand oxidation peaks at 0.505, 0.90, and 1.06 V, followed by an onset water oxidation (WO) at 1.26 V (overpotential of 560 mV). The findings show that the ligand-based oxidation reactions strongly depend upon the ligand's electronic substitution; however, such effects on the copper-centered redox couple and catalytic WO are minimal. The energetically favorable mechanism has been established through the theoretical calculation of stepwise reaction energies, which nicely explains the experimentally observed electron transfer events. Furthermore, as revealed by the theoretical calculations, the O-O bond formation process occurs through a water nucleophilic attack mechanism with an easily accessible reaction barrier. This study demonstrates the importance of redox-active ligands in the development of molecular late-transition-metal electrocatalysts for WO reactions.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akhil Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Geetika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bhaskar Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
31
|
Vaillard VA, Nieres PD, Vaillard SE, Doctorovich F, Sarkar B, Neuman NI. Cobalt, Iron, and Manganese Metallocorroles in Catalytic Oxidation of Water. An Overview of the Synthesis, Selected Redox and Electronic Properties, and Catalytic Activities. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Pablo D. Nieres
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ciudad Universitaria, Pabellón II Buenos Aires C1428EHA Argentina
| | - Biprajit Sarkar
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Nicolás I. Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC UNL-CONICET Predio CONICET Santa Fe Dr. Alberto Cassano Ruta Nacional N° 168, Km 0 Paraje El Pozo S3000ZAA Santa Fe Argentina
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
32
|
Di Natale C, Gros CP, Paolesse R. Corroles at work: a small macrocycle for great applications. Chem Soc Rev 2022; 51:1277-1335. [PMID: 35037929 DOI: 10.1039/d1cs00662b] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corrole chemistry has witnessed an impressive boost in studies in the last 20 years, thanks to the possibility of preparing corrole derivatives by simple synthetic procedures. The investigation of a large number of corroles has highlighted some peculiar characteristics of these macrocycles, having features different from those of the parent porphyrins. With this progress in the elucidation of corrole properties, attention has been focused on the potential for the exploitation of corrole derivatives in different important application fields. In some areas, the potential of corroles has been studied in certain detail, for example, the use of corrole metal complexes as electrocatalysts for energy conversion. In some other areas, the field is still in its infancy, such as in the exploitation of corroles in solar cells. Herein, we report an overview of the different applications of corroles, focusing on the studies reported in the last five years.
Collapse
Affiliation(s)
- Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Viale del Politecnico, 00133 Rome, Italy.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France.
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| |
Collapse
|
33
|
Zhang X, Zhang X, Zhu W, Liang X. Boosting Electrocatalyzed Hydrogen Evolutions with Electropolymerized Thiophene Substituted CoIIICorroles. Dalton Trans 2022; 51:6177-6185. [DOI: 10.1039/d2dt00515h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a A3 type and a A2B type meso-thiophene-substituted CoIIIcorroles are prepared and the electronic structures are investigated. Interestingly, these two CoIIIcorroles are facilely polymerized under electrochemical conditions, and are...
Collapse
|
34
|
Water oxidation and oxygen reduction reactions: A mechanistic perspective. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Liu C, Geer AM, Webber C, Musgrave CB, Gu S, Johnson G, Dickie DA, Chabbra S, Schnegg A, Zhou H, Sun CJ, Hwang S, Goddard WA, Zhang S, Gunnoe TB. Immobilization of “Capping Arene” Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ana M. Geer
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Christopher Webber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Shunyan Gu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William A. Goddard
- Materials and Process Simulation Center, Department of Chemistry, California Institute of Technology, Pasadena, California 91125, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
36
|
|
37
|
Chen G, Chen ZW, Wang YM, He P, Liu C, Tong HX, Yi XY. Efficient Electrochemical Water Oxidation Mediated by Pyridylpyrrole-Carboxylate Ruthenium Complexes. Inorg Chem 2021; 60:15627-15634. [PMID: 34613720 DOI: 10.1021/acs.inorgchem.1c02251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spurred by the rapid growth of Ru-based complexes as molecular water oxidation catalysts (WOCs), we propose novel ruthenium(II) complexes bearing pyridylpyrrole-carboxylate (H2ppc) ligands as members of the WOC family. The structure of these complexes has 4-picoline (pic)/dimethyl sulfoxide (DMSO) in [Ru(ppc)(pic)2(dmso)] and pic/pic in [Ru(ppc)(pic)3] as axial ligands. Another ppc2- ligand and one pic ligand are located at the equatorial positions. [Ru(ppc)(pic)2(dmso)] behaves as a WOC as determined by electrochemical measurement and has an ultrahigh electrocatalytic current density of 8.17 mA cm-2 at 1.55 V (vs NHE) with a low onset potential of 0.352 V (vs NHE), a turnover number of 241, a turnover frequency of 203.39 s-1, and kcat of 16.34 s-1 under neutral conditions. The H2O/pic exchange of the complexes accompanied by oxidation of a ruthenium center is the initial step in the catalytic cycle. The cyclic voltametric measurements of [Ru(ppc)(pic)2(dmso)] at various scan rates, Pourbaix diagrams (plots of E vs pH), and kinetic studies suggested a water nucleophilic attack mechanism. HPO42- in a phosphate buffer solution is invoked in water oxidation as the proton acceptor.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Ze-Wen Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Yuan-Mei Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China
| |
Collapse
|
38
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|