1
|
Geers M, Fabelo O, Cliffe MJ, Cañadillas-Delgado L. Tuning structural modulation and magnetic properties in metal-organic coordination polymers [CH 3NH 3]Co xNi 1-x(HCOO) 3. IUCRJ 2024; 11:910-920. [PMID: 39315728 PMCID: PMC11533998 DOI: 10.1107/s2052252524008583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Three solid solutions of [CH3NH3]CoxNi1-x(HCOO)3, with x = 0.25 (1), x = 0.50 (2) and x = 0.75 (3), were synthesized and their nuclear structures and magnetic properties were characterized using single-crystal neutron diffraction and magnetization measurements. At room temperature, all three compounds crystallize in the Pnma orthorhombic space group, akin to the cobalt and nickel end series members. On cooling, each compound undergoes a distinct series of structural transitions to modulated structures. Compound 1 exhibits a phase transition to a modulated structure analogous to the pure Ni compound [Cañadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodríguez-Carvajal, J. & Petricek, V. (2020). Inorg. Chem. 59, 17896-17905], whereas compound 3 maintains the behaviour observed in the pure Co compound reported previously [Canadillas-Delgado, L., Mazzuca, L., Fabelo, O., Rodriguez-Velamazan, J. A. & Rodriguez-Carvajal, J. (2019). IUCrJ, 6, 105-115], although in both cases the temperatures at which the phase transitions occur differ slightly from the pure phases. Monochromatic neutron diffraction measurements showed that the structural evolution of 2 diverges from that of either parent compound, with competing hydrogen bond interactions that drive the modulation throughout the series, producing a unique sequence of phases. It involves two modulated phases below 96 (3) and 59 (3) K, with different q vectors, similar to the pure Co compound (with modulated phases below 128 and 96 K); however, it maintains the modulated phase below magnetic order [at 22.5 (7) K], resembling the pure Ni compound (which presents magnetic order below 34 K), resulting in an improper modulated magnetic structure. Despite these large-scale structural changes, magnetometry data reveal that the bulk magnetic properties of these solid solutions form a linear continuum between the end members. Notably, doping of the metal site in these solid solutions allows for tuning of bulk magnetic properties, including magnetic ordering temperature, transition temperatures and the nature of nuclear phase transitions, through adjustment of metal ratios.
Collapse
Affiliation(s)
- Madeleine Geers
- Diffraction GroupInstitut Laue Langevin71 avenue des MartyrsGrenoble38042France
- School of Chemistry, University Park, NottinghamNG7 2RD, United Kingdom
| | - Oscar Fabelo
- Diffraction GroupInstitut Laue Langevin71 avenue des MartyrsGrenoble38042France
| | - Matthew J. Cliffe
- School of Chemistry, University Park, NottinghamNG7 2RD, United Kingdom
| | | |
Collapse
|
2
|
Wang C, Zhang XW, Chen XX, Zhang WX, Zhang JP. Isomeric Porous Cu(I) Triazolate Frameworks Showing Periodic and Aperiodic Flexibility for Efficient CO Separation. J Am Chem Soc 2024; 146:13886-13893. [PMID: 38739909 DOI: 10.1021/jacs.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and β-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Rabbani MG, Sasse RK, Behera S, Jena P, Liu J, Thallapally PK, Islamoglu T, Shehab MK, Kaid MM, Farha OK, El-Kaderi HM. High-Performance Porous Organic Polymers for Environmental Remediation of Toxic Gases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8024-8034. [PMID: 38574282 PMCID: PMC11025134 DOI: 10.1021/acs.langmuir.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Sulfur dioxide (SO2) is a harmful acidic gas generated from power plants and fossil fuel combustion and represents a significant health risk and threat to the environment. Benzimidazole-linked polymers (BILPs) have emerged as a promising class of porous solid adsorbents for toxic gases because of their chemical and thermal stability as well as the chemical nature of the imidazole moiety. The performance of BILPs in SO2 capture was examined by synergistic experimental and theoretical studies. BILPs exhibit a significantly high SO2 uptake of up to 8.5 mmol g-1 at 298 K and 1.0 bar. The density functional theory (DFT) calculations predict that this high SO2 uptake is due to the dipole-dipole interactions between SO2 and the functionalized polymer frames through O2S(δ+)···N(δ-)-imine and O═S═O(δ-)···H(δ+)-aryl and intermolecular attraction between SO2 molecules (O═S═O(δ-)···S(δ+)O2). Moderate isosteric heats of adsorption (Qst ≈ 38 kJ mol-1) obtained from experimental SO2 uptake studies are well supported by the DFT calculations (≈40 kJ mol-1), which suggests physisorption processes enabling rapid adsorbent regeneration for reuse. Repeated adsorption experiments with almost identical SO2 uptake confirm the easy regeneration and robustness of BILPs. Moreover, BILPs possess very high SO2 adsorption selectivity at low concentration over carbon dioxide (CO2), methane (CH4), and nitrogen (N2): SO2/CO2, 19-24; SO2/CH4, 118-113; SO2/N2, 600-674. This study highlights the potential of BILPs in the desulfurization of flue gas or other gas mixtures through capturing trace levels of SO2.
Collapse
Affiliation(s)
- Mohammad G. Rabbani
- Department
of Chemistry, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, United States
| | - Riley K. Sasse
- Department
of Chemistry, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, United States
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Swayamprabha Behera
- Department
of Physics, Kennesaw State University, Marietta Campus, 1100 South Marietta
Pkwy, Marietta, Georgia 30060, United States
| | - Puru Jena
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Jian Liu
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Timur Islamoglu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad K. Shehab
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mahmoud M. Kaid
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hani M. El-Kaderi
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
4
|
Wang Z, Sheveleva AM, Li J, Zhou Z, Sapchenko S, Whitehead G, Warren MR, Collison D, Sun J, Schröder M, McInnes EJL, Yang S, Tuna F. Analysis of a Cu-Doped Metal-Organic Framework, MFM-520(Zn 1-x Cu x ), for NO 2 Adsorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305542. [PMID: 37964415 PMCID: PMC10767414 DOI: 10.1002/advs.202305542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Indexed: 11/16/2023]
Abstract
MFM-520(Zn) confines dimers of NO2 with a high adsorption of 4.52 mmol g-1 at 1 bar at 298 K. The synthesis and the incommensurate structure of Cu-doped MFM-520(Zn) are reported. The introduction of paramagnetic Cu2+ sites allows investigation of the electronic and geometric structure of metal site by in situ electron paramagnetic resonance (EPR) spectroscopy upon adsorption of NO2 . By combining continuous wave and electron-nuclear double resonance spectroscopy, an unusual reverse Berry distorted coordination geometry of the Cu2+ centers is observed. Interestingly, Cu-doped MFM-520(Zn0.95 Cu0.05 ) shows enhanced adsorption of NO2 of 5.02 mmol g-1 at 1 bar at 298 K. Whereas MFM-520(Zn) confines adsorbed NO2 as N2 O4 , the presence of monomeric NO2 at low temperature suggests that doping with Cu2+ centers into the framework plays an important role in tuning the dimerization of NO2 molecules in the pore via the formation of specific host-guest interactions.
Collapse
Affiliation(s)
- Zi Wang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Alena M. Sheveleva
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Zhengyang Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Sergei Sapchenko
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - George Whitehead
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Mark R. Warren
- Diamond Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - David Collison
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Eric J. L. McInnes
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Floriana Tuna
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
5
|
Zhang T, Yong X, Yu J, Wang Y, Wu M, Yang Q, Hou X, Liu Z, Wang K, Yang X, Lu S, Zou B. Brightening Blue Photoluminescence in Nonemission MOF-2 by Pressure Treatment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211729. [PMID: 36960911 DOI: 10.1002/adma.202211729] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Indexed: 05/17/2023]
Abstract
As equally essential as the synthesis of new materials, maneuvering new structure configurations can endow the brand-new functional properties to existing materials, which is also one of the core goals in the synthesis community. In this respect, pressure-induced emission (PIE) that triggers photoluminescence (PL) in nonemission materials is an emerging stimuli-responsive smart materials technology. In the PIE paradigms, harvesting bright PL at ambient conditions, however, has remained elusive. Herein, a remarkable PIE phenomenon is reported in initially nonemission Zn(BDC)(DMF)(H2 O) (MOF-2), which shows bright blue-emission at 455 nm under pressure. Intriguingly, the bright blue PL with an excellent photoluminescence quantum yield up to 70.4% is unprecedentedly retained to ambient conditions upon decompression from 16.2 GPa. The detailed structural analyses combined with density functional theory calculations reveal that hydrogen bonding cooperativity effect elevates powerfully the rotational barrier of the linker rotor to 3.87 eV mol-1 from initial 0.91 eV mol-1 through pressure treatment. The downgrade rotational freedom turns on PL of MOF-2 after releasing pressure completely. This is the first case of harvesting PIE to ambient conditions. These findings offer a new platform for the creation of promising alternatives to high-performance PL materials based on initially nonemission counterparts.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xue Yong
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Jingkun Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Min Wu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xuyuan Hou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Zhaodong Liu
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, 130012, Changchun, China
| |
Collapse
|
6
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
7
|
Cui J, Qiu Z, Yang L, Zhang Z, Cui X, Xing H. Kinetic‐Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angew Chem Int Ed Engl 2022; 61:e202208756. [DOI: 10.1002/anie.202208756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jiyu Cui
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhensong Qiu
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Lifeng Yang
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zhaoqiang Zhang
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Xili Cui
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| | - Huabin Xing
- Key laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
8
|
Li J, Smith GL, Chen Y, Ma Y, Kippax‐Jones M, Fan M, Lu W, Frogley MD, Cinque G, Day SJ, Thompson SP, Cheng Y, Daemen LL, Ramirez‐Cuesta AJ, Schröder M, Yang S. Structural and Dynamic Analysis of Sulphur Dioxide Adsorption in a Series of Zirconium-Based Metal-Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202207259. [PMID: 35735124 PMCID: PMC9546045 DOI: 10.1002/anie.202207259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/02/2022]
Abstract
We report reversible high capacity adsorption of SO2 in robust Zr-based metal-organic framework (MOF) materials. Zr-bptc (H4 bptc=biphenyl-3,3',5,5'-tetracarboxylic acid) shows a high SO2 uptake of 6.2 mmol g-1 at 0.1 bar and 298 K, reflecting excellent capture capability and removal of SO2 at low concentration (2500 ppm). Dynamic breakthrough experiments confirm that the introduction of amine, atomically-dispersed CuII or heteroatomic sulphur sites into the pores enhance the capture of SO2 at low concentrations. The captured SO2 can be converted quantitatively to a pharmaceutical intermediate, aryl N-aminosulfonamide, thus converting waste to chemical values. In situ X-ray diffraction, infrared micro-spectroscopy and inelastic neutron scattering enable the visualisation of the binding domains of adsorbed SO2 molecules and host-guest binding dynamics in these materials at the atomic level. Refinement of the pore environment plays a critical role in designing efficient sorbent materials.
Collapse
Affiliation(s)
- Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Gemma L. Smith
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yujie Ma
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Meredydd Kippax‐Jones
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Diamond of Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - Mengtian Fan
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Wanpeng Lu
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Mark D. Frogley
- Diamond of Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - Gianfelice Cinque
- Diamond of Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
- Department of Engineering SciencesUniversity of OxfordOxfordOX1 3PJUK
| | - Sarah J. Day
- Diamond of Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | | | - Yongqiang Cheng
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | - Luke L. Daemen
- Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeTN 37831USA
| | | | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
9
|
Skorupskii G, Le KN, Cordova DLM, Yang L, Chen T, Hendon CH, Arguilla MQ, Dincă M. Porous lanthanide metal-organic frameworks with metallic conductivity. Proc Natl Acad Sci U S A 2022; 119:e2205127119. [PMID: 35969747 PMCID: PMC9407220 DOI: 10.1073/pnas.2205127119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Metallic charge transport and porosity appear almost mutually exclusive. Whereas metals demand large numbers of free carriers and must have minimal impurities and lattice vibrations to avoid charge scattering, the voids in porous materials limit the carrier concentration, provide ample space for impurities, and create more charge-scattering vibrations due to the size and flexibility of the lattice. No microporous material has been conclusively shown to behave as a metal. Here, we demonstrate that single crystals of the porous metal-organic framework Ln1.5(2,3,6,7,10,11-hexaoxytriphenylene) (Ln = La, Nd) are metallic. The materials display the highest room-temperature conductivities of all porous materials, reaching values above 1,000 S/cm. Single crystals of the compounds additionally show clear temperature-deactivated charge transport, a hallmark of a metallic material. Lastly, a structural transition consistent with charge density wave ordering, present only in metals and rare in any materials, provides additional conclusive proof of the metallic nature of the materials. Our results provide an example of a metal with porosity intrinsic to its structure. We anticipate that the combination of porosity and chemical tunability that these materials possess will provide a unique handle toward controlling the unconventional states that lie within them, such as charge density waves that we observed, or perhaps superconductivity.
Collapse
Affiliation(s)
- Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Khoa N. Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403
| | | | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| | | | - Maxx Q. Arguilla
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
10
|
Cui J, Qiu Z, Yang L, Zhang Z, Cui X, Xing H. Kinetic‐Sieving of Carbon Dioxide from Acetylene through a Novel Sulfonic Ultramicroporous Material. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiyu Cui
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Zhensong Qiu
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Lifeng Yang
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Zhaoqiang Zhang
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Xili Cui
- Zhejiang University College of Chemical and Biological Engineering biaohua building 201, Zheda Road No.38, Yuquan Campus, Zhejiang University 310027 Hangzhou CHINA
| | - Huabin Xing
- Zhejiang University College of Chemical and Biological Engineering 38 Zheda Road 310027 Hangzhou CHINA
| |
Collapse
|
11
|
Li J, Smith GL, Chen Y, Ma Y, Kippax-Jones M, Fan M, Lu W, Frogley MD, Cinque G, Day SJ, Thompson SP, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Schröder M, Yang S. Structural and dynamic analysis of adsorption of sulphur dioxide in a series of Zr‐based metal‐organic frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiangnan Li
- Manchester University Chemistry UNITED KINGDOM
| | | | - Yinlin Chen
- Manchester University Chemistry UNITED KINGDOM
| | - Yujie Ma
- Manchester University Chemistry UNITED KINGDOM
| | | | | | - Wanpeng Lu
- Manchester University Chemistry UNITED KINGDOM
| | - Mark D. Frogley
- Diamond Light Source Ltd Diamond Light Source UNITED KINGDOM
| | | | - Sarah J. Day
- Diamond Light Source Ltd Diamond Light Source UNITED KINGDOM
| | | | | | - Luke L. Daemen
- Oak Ridge National Laboratory diffraction UNITED KINGDOM
| | | | - Martin Schröder
- University of Manchester School of Chemistry Oxford Road M13 9PL Manchester UNITED KINGDOM
| | - Sihai Yang
- Manchester University Chemistry UNITED KINGDOM
| |
Collapse
|
12
|
Zhu Z, Wu K, Liu X, Zhang P, Chen S, Chen J, Deng Q, Zeng Z, Deng S, Wang J. Dense Open Metal Sites in a Microporous Metal−Organic Framework for Deep Desulfurization with Record‐high
SO
2
Storage Density. AIChE J 2022. [DOI: 10.1002/aic.17811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhenliang Zhu
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Ke Wu
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Xing Liu
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Peixin Zhang
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Shixia Chen
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Jingwen Chen
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Qiang Deng
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Zheling Zeng
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| | - Shuguang Deng
- School for Engineering of Matter Transport and Energy, Arizona State University 551 E. Tyler Mall Tempe Arizona United States
| | - Jun Wang
- Chemistry and Chemical Engineering School Nanchang University Jiangxi Nanchang China
| |
Collapse
|
13
|
Guo Z, Cui J, Li Y, Zhang P, Yang L, Chen L, Wang J, Cui X, Xing H. Responsive Porous Material for Discrimination and Selective Capture of Low-Concentration SO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhengdong Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiyu Cui
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yijian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peixin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lifeng Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liyuan Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Wang
- Chemistry and Chemical Engineering School, Nanchang University, Nanchang 330031, China
| | - Xili Cui
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
14
|
Yang Z, Li D, Ao D, Ma C, Li N, Sun Y, Qiao Z, Zhong C, Guiver MD. Self-supported membranes fabricated by a polymer‒hydrogen bonded network with a rigidified MOF framework. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Chen E, Jia L, Jia X, Wei Q, Zhang L. Understanding the adsorption and separation of sulfur dioxide in flue gas by Zeolitic imidazolate frameworks via molecular simulation. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Brandt P, Xing SH, Liang J, Kurt G, Nuhnen A, Weingart O, Janiak C. Zirconium and Aluminum MOFs for Low-Pressure SO 2 Adsorption and Potential Separation: Elucidating the Effect of Small Pores and NH 2 Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29137-29149. [PMID: 34115467 DOI: 10.1021/acsami.1c06003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Finding new adsorbents for the desulfurization of flue gases is a challenging task but is of current interest, as even low SO2 emissions impair the environment and health. Four Zr- and eight Al-MOFs (Zr-Fum, DUT-67(Zr), NU-1000, MOF-808, Al-Fum, MIL-53(Al), NH2-MIL-53(Al), MIL-53(tdc)(Al), CAU-10-H, MIL-96(Al), MIL-100(Al), NH2-MIL-101(Al)) were examined toward their SO2 sorption capability. Pore sizes in the range of about 4-8 Å are optimal for SO2 uptake in the low-pressure range (up to 0.1 bar). Pore widths that are only slightly larger than the kinetic diameter of 4.1 Å of the SO2 molecules allow for multi-side-dispersive interactions, which translate into high affinity at low pressure. Frameworks NH2-MIL-53(Al) and NH2-MIL-101(Al) with an NH2-group at the linker tend to show enhanced SO2 affinity. Moreover, from single-gas adsorption isotherms, ideal adsorbed solution theory (IAST) selectivities toward binary SO2/CO2 gas mixtures were determined with selectivity values between 35 and 53 at a molar fraction of 0.01 SO2 (10.000 ppm) and 1 bar for the frameworks Zr-Fum, MOF-808, NH2-MIL-53(Al), and Al-Fum. Stability tests with exposure to dry SO2 during ≤10 h and humid SO2 during 5 h showed full retention of crystallinity and porosity for Zr-Fum and DUT-67(Zr). However, NU-1000, MOF-808, Al-Fum, MIL-53(tdc), CAU-10-H, and MIL-100(Al) exhibited ≥50-90% retained Brunauer-Emmett-Teller (BET)-surface area and pore volume; while NH2-MIL-100(Al) and MIL-96(Al) demonstrated a major loss of porosity under dry SO2 and MIL-53(Al) and NH2-MIL-53(Al) under humid SO2. SO2 binding sites were revealed by density functional theory (DFT) simulation calculations with adsorption energies of -40 to -50 kJ·mol-1 for Zr-Fum and Al-Fum and even above -50 kJ·mol-1 for NH2-MIL-53(Al), in agreement with the isosteric heat of adsorption near zero coverage (ΔHads0). The predominant, highest binding energy noncovalent binding modes in both Zr-Fum and Al-Fum feature μ-OHδ+···δ-OSO hydrogen bonding interactions. The small pores of Al-Fum allow the interaction of two μ-OH bridges from opposite pore walls with the same SO2 molecule via OHδ+···δ-OSOδ-···δ+HO hydrogen bonds. For NH2-MIL-53(Al), the DFT high-energy binding sites involve NHδ+···δ-OS together with the also present Al-μ-OHδ+···δ-OS hydrogen bonding interactions and C6-πδ-···δ+SO2, Nδ-···δ+SO2 interactions.
Collapse
Affiliation(s)
- Philipp Brandt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Shang-Hua Xing
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Jun Liang
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Gülin Kurt
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alexander Nuhnen
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
17
|
Chemical immobilization of amino acids into robust metal–organic framework for efficient SO
2
removal. AIChE J 2021. [DOI: 10.1002/aic.17300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Drużbicki K, Gaboardi M, Fernandez-Alonso F. Dynamics & Spectroscopy with Neutrons-Recent Developments & Emerging Opportunities. Polymers (Basel) 2021; 13:1440. [PMID: 33947108 PMCID: PMC8125526 DOI: 10.3390/polym13091440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022] Open
Abstract
This work provides an up-to-date overview of recent developments in neutron spectroscopic techniques and associated computational tools to interrogate the structural properties and dynamical behavior of complex and disordered materials, with a focus on those of a soft and polymeric nature. These have and continue to pave the way for new scientific opportunities simply thought unthinkable not so long ago, and have particularly benefited from advances in high-resolution, broadband techniques spanning energy transfers from the meV to the eV. Topical areas include the identification and robust assignment of low-energy modes underpinning functionality in soft solids and supramolecular frameworks, or the quantification in the laboratory of hitherto unexplored nuclear quantum effects dictating thermodynamic properties. In addition to novel classes of materials, we also discuss recent discoveries around water and its phase diagram, which continue to surprise us. All throughout, emphasis is placed on linking these ongoing and exciting experimental and computational developments to specific scientific questions in the context of the discovery of new materials for sustainable technologies.
Collapse
Affiliation(s)
- Kacper Drużbicki
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastian, Spain;
- Polish Academy of Sciences, Center of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mattia Gaboardi
- Elettra—Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149 Trieste, Italy;
| | - Felix Fernandez-Alonso
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastian, Spain;
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
19
|
Henkelis SE, Judge PT, Hayes SE, Nenoff TM. Preferential SO x Adsorption in Mg-MOF-74 from a Humid Acid Gas Stream. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7278-7284. [PMID: 33533240 DOI: 10.1021/acsami.0c21298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preferential adsorption of SOx versus water in Mg-MOF-74 from a humid SOx gas stream has been investigated via materials studies and nuclear magnetic resonance (NMR). Mg-MOF-74 has been synthesized and subsequently loaded simultaneously with water vapor and SOx (62-96 ppm) in an adsorption chamber at room temperature over a time period of 4 days with a sample taken every 24 h. Each sample was analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA)-mass spectrometry, and scanning electron microscopy-energy-dispersive spectroscopy. The metal-organic framework (MOF) showed retained crystallinity and peak intensity in PXRD, and after 2 days, it showed no obvious degradation to the structure. Use of multiple techniques, including TGA, identified 10% by weight of SOx species, specifically H2S and SO2, within the MOF. 1H solid-state NMR shows a substantial reduction of H2O when SOx is present, which is consistent with SOx preferentially binding to the oxophilic metal site of the framework. After 14 weeks aging, the sulfur remains present in the three-dimensional MOF, with only half being desorbed after 23 weeks in air.
Collapse
Affiliation(s)
- Susan E Henkelis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Patrick T Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|