1
|
Mahato A, Mahato A, Ghoshal S, Pramanik A, Sarkar P. Understanding asymmetric hydrogenation of alkenes catalyzed by the first-row transition metal Fe: a first-principles exploration. Phys Chem Chem Phys 2025; 27:1100-1111. [PMID: 39688024 DOI: 10.1039/d4cp03583f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
First-principles analyses were performed for understanding the mechanistic details of Fe-catalysed asymmetric hydrogenation of alkenes in the presence of silane that has recently been experimentally realized. The catalytic hydrogenation is expected to proceed through initial hydride transfer from Fe-H to the CC bond of alkene, followed by σ-bond metathesis of hydrosilane to afford a chiral alkane product and an iron silyl species, which then reacts with H2 to regenerate the iron hydride species via another σ-bond metathesis. The mechanistic details and the origin of the regioselectivity and stereoselectivity of these reactions are understood on the basis of detailed potential energy surface analysis, charge transfer and noncovalent interactions involved therein, strain energy and isodesmic studies in the solvated stage. Finally, general aspects are highlighted for guiding further experimental studies to precisely control the reaction scheme.
Collapse
Affiliation(s)
- Akhilesh Mahato
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Anupama Mahato
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal-731235, India.
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, West Bengal-723104, India.
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal-731235, India.
| |
Collapse
|
2
|
Taguchi J, Fukaya S, Fujino H, Inoue M. Total Synthesis of Euphorbialoid A. J Am Chem Soc 2024; 146:34221-34230. [PMID: 39620709 DOI: 10.1021/jacs.4c14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Euphorbialoid A (1) belongs to the rare diterpenoid family of premyrsinanes and exhibits potent anti-inflammatory effects. The 5/7/6/3-membered carbocycle (ABCD-ring) of 1 contains 11 contiguous stereocenters and seven oxygen-containing functional groups. Moreover, four of the six hydroxy groups of 1 are concentrated in the southern sector and flanked by four structurally different acyl groups. The dense array of various functional groups with disparate reactivities on the tetracyclic ABCD-ring presents a daunting challenge for the chemical synthesis of 1. As a reflection of its formidable complexity, synthesis of 1 or any other premyrsinane diterpenoids has not yet been reported. Here, we devised a novel strategy comprising two stages and achieved the first total synthesis of 1 (35 steps as the longest linear sequence). In the first stage, the ABCD-ring was expeditiously assembled by integrating three powerful transformations: (1) Pt-doped TiO2-catalyzed radical coupling to attach a northern chain to a 6/3-membered CD-ring, (2) Pd-catalyzed decarboxylative asymmetric allylation to construct a quaternary carbon with a southern chain, and (3) a Co-mediated Pauson-Khand reaction to cyclize the two chains into the 5/7-membered AB-ring. In the second stage, three-dimensional structures of the ABCD-ring intermediates were utilized to stereoselectively fabricate the A-ring and site-selectively append the four different acyl groups. In the present total synthesis, we revealed the significance of orchestrating the multistep reaction sequence and incorporating cyclic protective groups. The overall strategy and tactics provide new insights into designing synthetic routes to premyrsinanes and densely oxygenated terpenoids decorated with diverse acyl groups.
Collapse
Affiliation(s)
- Junichi Taguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shintaro Fukaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruka Fujino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
West JG. Building Catalytic Reactions One Electron at a Time. Acc Chem Res 2024; 57:3068-3078. [PMID: 39317431 DOI: 10.1021/acs.accounts.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ConspectusClassical education in organic chemistry and catalysis, not the least my own, has centered on two-electron transformations, from nucleophilic attack to oxidative addition. The focus on two-electron chemistry is well-founded, as this brand of chemistry has enabled incredible feats of synthesis, from the development of life-saving pharmaceuticals to the production of ubiquitous commodity chemicals. With that said, this approach is in many ways complementary to the approach of nature, where enzymes frequently make use of single-electron "radical" steps to achieve challenging reactions with exceptional selectivity, including light detection and C-H hydroxylation. While the power of radical elementary steps is undeniable, the fundamental understanding of─and ability to apply─these in catalysis remains underdeveloped, constraining the palette with which chemists can make new reactions.Motivation to remedy this traditional underemphasis on radical catalysis has been intensified by the runaway success of outer-sphere photoredox catalysis, not only confirming the versatility of radicals in anthropogenic catalysis but also teaching the value of robust and well-understood catalytic cycles for reaction design. Indeed, I would argue the success of outer-sphere photoredox catalysis has been fueled by strong fundamental understanding of its underlying radical elementary steps, with consideration of single-electron transfer (SET) energetics allowing new reactions to be designed de novo with enviable confidence. However, outer-sphere photoredox catalysis is an outlier in this regard, with other mechanistic approaches remaining underexplored.Our research group is part of a growing movement to expand the vocabulary of synthetic radical catalysis beyond the traditional outer-sphere photoredox SET manifold, assembling new cycles comprised of hydrogen atom transfer (HAT), light-induced homolysis (LIH), and radical ligand transfer (RLT) steps in new combinations to achieve challenging transformations. These efforts have been made possible by the ever-growing understanding of these radical elementary steps and discovery of catalyst systems with significant mechanistic flexibility, most recently iron/thiol (Fe/S) cocatalysis.In this Account, I will focus on our efforts applying HAT and LIH steps in Fe/S cocatalysis, sharing broad guidelines we have found helpful for using these steps and demonstrating how they can be combined to make new reactions using three case studies: radical hydrogenation (HAT + HAT), decarboxylative protonation (LIH + HAT), and alkene hydrofluoroalkylation (LIH + HAT, with an intervening radical alkene addition). These efforts have highlighted the importance of several key parameters, including bond dissociation energy (BDE) and radical polarity, and I hope our findings similarly provide a valuable framework to others designing new radical catalytic reactions.
Collapse
Affiliation(s)
- Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Buzsaki SR, Mason SM, Kattamuri PV, Serviano JMI, Rodriguez DN, Wilson CV, Hood DM, Ellefsen JD, Lu YC, Kan J, West JG, Miller SJ, Holland PL. Fe/Thiol Cooperative Hydrogen Atom Transfer Olefin Hydrogenation: Mechanistic Insights That Inform Enantioselective Catalysis. J Am Chem Soc 2024; 146:17296-17310. [PMID: 38875703 PMCID: PMC11209773 DOI: 10.1021/jacs.4c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Asymmetric hydrogenation of activated olefins using transition metal catalysis is a powerful tool for the synthesis of complex molecules, but traditional metal catalysts have difficulty with enantioselective reduction of electron-neutral, electron-rich, and minimally functionalized olefins. Hydrogenation based on radical, metal-catalyzed hydrogen atom transfer (mHAT) mechanisms offers an outstanding opportunity to overcome these difficulties, enabling the mild reduction of these challenging olefins with selectivity that is complementary to traditional hydrogenations with H2. Further, mHAT presents an opportunity for asymmetric induction through cooperative hydrogen atom transfer (cHAT) using chiral thiols. Here, we report insights from a mechanistic study of an iron-catalyzed achiral cHAT reaction and leverage these insights to deliver stereocontrol from chiral thiols. Kinetic analysis and variation of silane structure point to the transfer of hydride from silane to iron as the likely rate-limiting step. The data indicate that the selectivity-determining step is quenching of the alkyl radical by thiol, which becomes a more potent H atom donor when coordinated to iron(II). The resulting iron(III)-thiolate complex is in equilibrium with other iron species, including FeII(acac)2, which is shown to be the predominant off-cycle species. The enantiodetermining nature of the thiol trapping step enables enantioselective net hydrogenation of olefins through cHAT using a commercially available glucose-derived thiol catalyst with up to 80:20 enantiomeric ratio. To the best of our knowledge, this is the first demonstration of asymmetric hydrogenation via iron-catalyzed mHAT. These findings advance our understanding of cooperative radical catalysis and act as a proof of principle for the development of enantioselective iron-catalyzed mHAT reactions.
Collapse
Affiliation(s)
- Sarah R. Buzsaki
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Savannah M. Mason
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Juan M. I. Serviano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Dinora N. Rodriguez
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Conner V. Wilson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Drew M. Hood
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jonathan D. Ellefsen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Jolie Kan
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
5
|
Zhang YY, Zhang Y, Xue XS, Qing FL. Reversal of the Regioselectivity of Iron-Promoted Hydrogenation and Hydrohalogenation of gem-Difluoroalkenes. Angew Chem Int Ed Engl 2024; 63:e202406324. [PMID: 38637292 DOI: 10.1002/anie.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The reaction regioselectivity of gem-difluoroalkenes is dependent on the intrinsic polarity. Thus, the reversal of the regioselectivity of the addition reaction of gem-difluoroalkenes remains a formidable challenge. Herein, we described an unprecedented reversal of regioselectivity of hydrogen atom transfer (HAT) to gem-difluoroalkenes triggered by Fe-H species for the formation of difluoroalkyl radicals. Hydrogenation of the in situ generated radicals gave difluoromethylated products. Mechanism experiments and theoretical studies revealed that the kinetic effect of the irreversible HAT process resulted in the reversal of the regioselectivity of this scenario, leading to the formation of a less stable α-difluoroalkyl radical regioisomer. On basis of this new reaction of gem-difluoroalkene, the iron-promoted hydrohalogenation of gem-difluoroalkenes for the efficient synthesis of aliphatic chlorodifluoromethyl-, bromodifluoromethyl- and iododifluoromethyl-containing compounds was developed. Particularly, this novel hydrohalogenation of gem-difluoroalkenes provided an effect and large-scale access to various iododifluoromethylated compounds of high value for synthetic application.
Collapse
Affiliation(s)
- Yu-Yang Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Yuchen Zhang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
6
|
Chen F, Zhang Q, Li Y, Yu ZX, Chu L. Selective Hydrofunctionalization of Alkenyl Fluorides Enabled by Nickel-Catalyzed Hydrogen Atoms and Group Transfer: Reaction Development and Mechanistic Study. J Am Chem Soc 2024. [PMID: 38621358 DOI: 10.1021/jacs.4c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Due to the unique effect of fluorine atoms, the efficient construction of high-value alkyl fluorides has attracted significant interest in modern drug development. However, enantioselective catalytic strategies for the efficient assembly of highly functionalized chiral C(sp3)-F scaffolds from simple starting materials have been underutilized. Herein, we demonstrate a nickel-catalyzed radical transfer strategy for the efficient, modular, asymmetric hydrogenation and hydroalkylation of alkenyl fluorides with primary, secondary, and tertiary alkyl halides under mild conditions. The transformation provides facile access to various structurally complex secondary and tertiary α-fluoro amide products from readily available starting materials with excellent substrate compatibility and distinct selectivity. Furthermore, the utility of this method is demonstrated by late-stage modifications and product derivatizations. Detailed mechanistic studies and DFT calculations have been conducted, showing that the rate-determining step for asymmetric hydrogenation reaction is NiH-HAT toward alkenyl fluorides and the stereo-determining step is alcohol coordination to Ni-enolates followed by a barrierless protonation. The mechanism for the asymmetric hydroalkylation reaction is also delivered in this investigation.
Collapse
Affiliation(s)
- Fan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Qianwei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Wang Y, Wang Q, Wu L, Jia K, Wang M, Qiu Y. Electroreduction of unactivated alkenes using water as hydrogen source. Nat Commun 2024; 15:2780. [PMID: 38555370 PMCID: PMC10981685 DOI: 10.1038/s41467-024-47168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Herein, we report an electroreduction of unactivated alkyl alkenes enabled by [Fe]-H, which is provided through the combination of anodic iron salts and the silane generated in situ via cathodic reduction, using H2O as an H-source. The catalytic amounts of Si-additive work as an H-carrier from H2O to generate a highly active silane species in situ under continuous electrochemical conditions. This approach shows a broad substrate scope and good functional group compatibility. In addition to hydrogenation, the use of D2O instead of H2O provides the desired deuterated products in good yields with excellent D-incorporation (up to >99%). Further late-stage hydrogenation of complex molecules and drug derivatives demonstrate potential application in the pharmaceutical industry. Mechanistic studies are performed and provide support for the proposed mechanistic pathway.
Collapse
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Qian Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lei Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
8
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
9
|
Abuhafez N, Ehlers AW, de Bruin B, Gramage-Doria R. Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202316825. [PMID: 38037901 DOI: 10.1002/anie.202316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h-1 ) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | - Andreas W Ehlers
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Nasrallah D, Garg NK. Studies Pertaining to the Emerging Cannabinoid Hexahydrocannabinol (HHC). ACS Chem Biol 2023; 18:2023-2029. [PMID: 37578929 PMCID: PMC10510108 DOI: 10.1021/acschembio.3c00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/03/2023] [Indexed: 08/16/2023]
Abstract
We report studies pertaining to two isomeric hexahydrocannabinols (HHCs), (9R)-HHC and (9S)-HHC, which are derivatives of the psychoactive cannabinoids Δ9- and Δ8-THC. HHCs have been known since the 1940s, but have become increasingly available to the public in the United States and are typically sold as a mixture of isomers. We show that (9R)-HHC and (9S)-HHC can be prepared using hydrogen-atom transfer reduction, with (9R)-HHC being accessed as the major diastereomer. In addition, we report the results of cannabinoid receptor studies for (9R)-HHC and (9S)-HHC. The binding affinity and activity of isomer (9R)-HHC are similar to that of Δ9-THC, whereas (9S)-HHC binds strongly in cannabinoid receptor studies but displays diminished activity in functional assays. This is notable, as our examination of the certificates of analysis for >60 commercially available HHC products show wide variability in HHC isomer ratios (from 0.2:1 to 2.4:1 of (9R)-HHC to (9S)-HHC). These studies suggest the need for greater research and systematic testing of new cannabinoids. Such efforts would help inform cannabis-based policies, ensure the safety of cannabinoids, and potentially lead to the discovery of new medicines.
Collapse
Affiliation(s)
- Daniel
J. Nasrallah
- Department of Chemistry Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department of Chemistry Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Chen K, Zeng Q, Xie L, Xue Z, Wang J, Xu Y. Functional-group translocation of cyano groups by reversible C-H sampling. Nature 2023; 620:1007-1012. [PMID: 37364765 DOI: 10.1038/s41586-023-06347-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Chemical transformations that introduce, remove or manipulate functional groups are ubiquitous in synthetic chemistry1. Unlike conventional functional-group interconversion reactions that swap one functionality for another, transformations that alter solely the location of functional groups are far less explored. Here, by photocatalytic, reversible C-H sampling, we report a functional-group translocation reaction of cyano (CN) groups in common nitriles, allowing for the direct positional exchange between a CN group and an unactivated C-H bond. The reaction shows high fidelity for 1,4-CN translocation, frequently contrary to inherent site selectivity in conventional C-H functionalizations. We also report the direct transannular CN translocation of cyclic systems, providing access to valuable structures that are non-trivial to obtain by other methods. Making use of the synthetic versatility of CN and a key CN translocation step, we showcase concise syntheses of building blocks of bioactive molecules. Furthermore, the combination of C-H cyanation and CN translocation allows access to unconventional C-H derivatives. Overall, the reported reaction represents a way to achieve site-selective C-H transformation reactions without requiring a site-selective C-H cleavage step.
Collapse
Affiliation(s)
- Ken Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qingrui Zeng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhuan Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zisheng Xue
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yan Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
12
|
Mondal B, Hazra S, Chatterjee A, Patel M, Saha J. Fe-Catalyzed Hydroallylation of Unactivated Alkenes with Vinyl Cyclopropanes. Org Lett 2023. [PMID: 37481744 DOI: 10.1021/acs.orglett.3c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Catalytic, reductive C-C bond formation between alkenes and vinyl cyclopropane (VCP) through hydrogen atom transfer (MHAT) is developed. Despite VCP's use as probes in radical-clock experiments, translation of this manifold into synthetic methods for accessing elusive C-C bonds remains largely unexplored. This work represents the first foray into this front where the high chemoselectivity of MHAT for alkene over VCP was pivotal for realizing the strategy. This method exhibits a broad scope, high functional group tolerance, and useful applications.
Collapse
Affiliation(s)
- Biplab Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Subhadeep Hazra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Ayan Chatterjee
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Manveer Patel
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Lucknow 226014, India
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India
| |
Collapse
|
13
|
Sun D, Chen R, Tang D, Xia Q, Zhao Y, Liu CH, Ding H. Total Synthesis of (-)-Retigeranic Acid A: A Reductive Skeletal Rearrangement Strategy. J Am Chem Soc 2023. [PMID: 37224289 DOI: 10.1021/jacs.3c03178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The asymmetric total synthesis of (-)-retigeranic acid A was described, which relies on a crucial reductive skeletal rearrangement cascade for the controllable assembly of diverse angular triquinane subunits. Taken together with an intramolecular Michael/aldol cyclization, an ODI-[5 + 2] cycloaddition/pinacol rearrangement cascade, a Wolff ring contraction and a stereoselective HAT reduction, our synthetic approach has enabled the access to (-)-retigeranic acid A in a concise and practical manner.
Collapse
Affiliation(s)
- Dongyu Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Dongmin Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qidong Xia
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chun-Hui Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Kong L, Yu H, Deng M, Wu F, Chen SC, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids and (+)-Kalmanol: Evolution of the Bridgehead Carbocation-Based Cyclization and Late-Stage Functional Group Manipulation Strategies. J Org Chem 2023; 88:6017-6038. [PMID: 37094797 DOI: 10.1021/acs.joc.3c00365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Grayanane diterpenoids contain over 300 highly oxidized and structurally complex members, many of which possess important biological activities. Full details are provided for the development of the concise, enantioselective and divergent total syntheses of grayanane diterpenoids and (+)-kalmanol. The unique 7-endo-trig cyclization based on a bridgehead carbocation was designed and implemented to construct the 5/7/6/5 tetracyclic skeleton, demonstrating the practical value of the bridgehead carbocation-based cyclization strategy. Extensive studies of late-stage functional group manipulation were performed to forge the C1 stereogenic center, during which a photoexcited intramolecular hydrogen atom transfer reaction was discovered and the mechanism was further studied through density functional theory (DFT) calculations. The biomimetic 1,2-rearrangement from the grayanoid skeleton provided a 5/8/5/5 tetracyclic framework and resulted in the first total synthesis of (+)-kalmanol.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Funk BE, Pauze M, Lu YC, Moser AJ, Wolf G, West JG. Vitamin B 12 and hydrogen atom transfer cooperative catalysis as a hydride nucleophile mimic in epoxide ring opening. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101372. [PMID: 37235063 PMCID: PMC10210593 DOI: 10.1016/j.xcrp.2023.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Epoxide ring-opening reactions have long been utilized to furnish alcohol products that are valuable in many subfields of chemistry. While many epoxide-opening reactions are known, the hydrogenative opening of epoxides via ionic means remains challenging because of harsh conditions and reactive hydride nucleophiles. Recent progress has shown that radical chemistry can achieve hydrogenative epoxide ring opening under relatively mild conditions; however, these methods invariably require oxophilic metal catalysts and sensitive reagents. In response to these challenges, we report a new approach to epoxide ring-opening hydrogenation using bio-inspired Earth-abundant vitamin B12 and thiol-centric hydrogen atom transfer (HAT) co-catalysis to produce Markovnikov alcohols under visible light irradiation. This powerful reaction system exhibits a broad substrate scope, including a number of electrophilic and reductively labile functionalities that would otherwise be susceptible to reduction or cleavage by hydride nucleophiles, and preliminary mechanistic experiments are consistent with a radical process.
Collapse
Affiliation(s)
- Brian E. Funk
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Martin Pauze
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Austin J. Moser
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Gemma Wolf
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
16
|
Tran HN, West JG. RECENT ADVANCES IN BASE METAL-CATALYZED COOPERATIVE TRANSFER HYDROGENATION AND HYDRODEUTERATION OF ALKENES. Tetrahedron Lett 2023; 118:154404. [PMID: 38505129 PMCID: PMC10947216 DOI: 10.1016/j.tetlet.2023.154404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Catalytic alkene hydrogenation is a powerful method that has been widely used in the syntheses of valuable products ranging from commodity chemicals to pharmaceuticals. Hydrogenation has also been a key strategy for selectively introducing heavy hydrogen isotopes to small molecules, a key strategy for metabolism studies and even the synthesis of "heavy drugs," where the hydrogen isotope is a key element of the active pharmaceutical ingredient. Traditional hydrogenations with pressurized H2 gas are atom economic but often require complex reaction setups or expensive metal catalysts. Further, use of diatomic hydrogen necessarily limits the ability to incorporate different hydrogen isotopes at each alkene position, with H2, D2, and T2 each resulting in compete labeling of the alkene. In response to these challenges, a recent and growing movement has sought to develop transfer hydrogenation methods using non-H2 hydrogen sources and earth abundant element catalysts to simplify reaction operation. Excitingly, recent developments have delivered transfer hydrogenations that proceed using cooperative hydrogen donor reagents, permitting the controllable incorporation of different hydrogen isotopes at each position of the alkene via reagent control. In this Digest, we disclose recent advances in Earth-abundant metal-catalyzed cooperative transfer hydrogenation of alkenes with various combinations of two distinct transfer hydrogen reagents as non-H2 hydrogen sources.
Collapse
Affiliation(s)
- Hai N. Tran
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX, USA 77005
| | - Julian G. West
- Department of Chemistry, Rice University, 6100 Main St MS 602, Houston, TX, USA 77005
| |
Collapse
|
17
|
Trouvé J, Youssef K, Kasemthaveechok S, Gramage-Doria R. Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
| | - Khalil Youssef
- Univ Rennes, CNRS, ISCR-UMR6226, FR-35000 Rennes, France
| | | | | |
Collapse
|
18
|
Yu M, Jiang Q, Liu X, Chen Y, Sun K, Tian M, Wang W. Regiospecificity C(sp 2)-C(sp 3) Bond Construction between Purines and Alkenes to Synthesize C 6-Alkylpurines and Purine Nucleosides Using O 2 as the Oxidant. J Org Chem 2023; 88:1411-1423. [PMID: 36634372 DOI: 10.1021/acs.joc.2c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A highly site-selective and Markovnikov-type radical C6-H alkylation of purines with alkenes is achieved, allowing fast construction of the C(sp2)-C(sp3) bond at the C-6-position of purines and purine nucleosides using O2 as a green oxidant and alkenes as cheap alkylation reagents. The route was also a radical route to synthesize C6-alkyl-N7-substituted purines with potential steric hindrance between C6-alkyl groups and N7-substituted groups. This reaction is easily scaled up and has excellent functional group compatibility and broad substrate scopes. Moreover, the unstable intermediate was also separated, which was the key evidence for the reaction mechanism.
Collapse
Affiliation(s)
- Mingwu Yu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Qingsong Jiang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yiwen Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Miao Tian
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264025, Shandong, P. R. China
| | - Weili Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
19
|
Lu YC, West JG. Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis. Angew Chem Int Ed Engl 2023; 62:e202213055. [PMID: 36350328 PMCID: PMC9839625 DOI: 10.1002/anie.202213055] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Decarboxylative protonation is a general deletion tactic to replace polar carboxylic acid groups with hydrogen or its isotope. Current methods rely on the pre-activation of acids, non-sustainable hydrogen sources, and/or expensive/highly oxidizing photocatalysts, presenting challenges to their wide adoption. Here we show that a cooperative iron/thiol catalyst system can readily achieve this transformation, hydrodecarboxylating a wide range of activated and unactivated carboxylic acids and overcoming scope limitations in previous direct methods. The reaction is readily scaled in batch configuration and can be directly performed in deuterated solvent to afford high yields of d-incorporated products with excellent isotope incorporation efficiency; characteristics not attainable in previous photocatalyzed approaches. Preliminary mechanistic studies indicate a radical mechanism and kinetic results of unactivated acids (KIE=1) are consistent with a light-limited reaction.
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
20
|
Suzuki A, Kamei Y, Yamashita M, Seino Y, Yamaguchi Y, Yoshino T, Kojima M, Matsunaga S. Photocatalytic Deuterium Atom Transfer Deuteration of Electron-Deficient Alkenes with High Functional Group Tolerance. Angew Chem Int Ed Engl 2023; 62:e202214433. [PMID: 36394187 DOI: 10.1002/anie.202214433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Due to its mild reaction conditions and unique chemoselectivity, hydrogen atom transfer (HAT) hydrogenation represents an indispensable method for the synthesis of complex molecules. Its analog using deuterium, deuterium atom transfer (DAT) deuteration, is expected to enable access to complex deuterium-labeled compounds. However, DAT deuteration has been scarcely studied for synthetic purposes, and a method that possesses the favorable characteristics of HAT hydrogenations has remained elusive. Herein, we report a protocol for the photocatalytic DAT deuteration of electron-deficient alkenes. In contrast to the previous DAT deuteration, this method tolerates a variety of synthetically useful functional groups including haloarenes. The late-stage deuteration also allows access to deuterated amino acids as well as donepezil-d2 . Thus, this work demonstrates the potential of DAT chemistry to become the alternative method of choice for preparing deuterium-containing molecules.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaaki Yamashita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
21
|
Kourgiantaki M, Demertzidou VP, Zografos AL. Short Scalable Route to Apiaceae Sesquiterpene Scaffolds: Total Synthesis of 4- epi-Epiguaidiol A. Org Lett 2022; 24:8476-8480. [PMID: 36264031 DOI: 10.1021/acs.orglett.2c03215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxy-Cope/ene reaction cascade to form a locked elemane conformer allows the short scalable synthesis of versatile Apiaceae scaffolds. The divergent fate of the obtained macrocyclic germacrane is surveyed under cationic and dioxygen-induced Prins-type reaction conditions to allow the diastereoselective synthesis of oxidized Apiaceae guaiane congeners and the total synthesis of 4-epi-epiguaidiol A. Additionally, the unprecedented reduction of a hydrogen-bond-biased guaiane substrate permits the chemoselective synthesis of desoxo-jungiaguaiane.
Collapse
Affiliation(s)
- Maria Kourgiantaki
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Vera P Demertzidou
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L Zografos
- Department of Chemistry, Laboratory of Organic Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
22
|
Abstract
We report a total synthesis of the Myrioneuron alkaloid myrioneurinol enabled by the recognition of hidden symmetry within its polycyclic structure. Our approach traces myrioneurinol's complex framework back to a symmetrical diketone precursor, a double reductive amination of which forges its central piperidine unit. By employing an inexpensive chiral amine in this key desymmetrizing event, four stereocenters of the natural product including the core quaternary stereocenter are set in an absolute sense, providing the first asymmetric entry to this target. Other noteworthy strategic maneuvers include utilizing a bicyclic alkene as a latent cis-1,3-bis(hydroxymethyl) synthon and a topologically controlled alkene hydrogenation. Overall, our synthesis proceeds in 18 steps and ∼1% yield from commercial materials.
Collapse
Affiliation(s)
- Jake M Aquilina
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Myles W Smith
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
23
|
Yamaguchi Y, Seino Y, Suzuki A, Kamei Y, Yoshino T, Kojima M, Matsunaga S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ-Lactams Using Cobalt-Photoredox Dual Catalysis. Org Lett 2022; 24:2441-2445. [DOI: 10.1021/acs.orglett.2c00700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
Kong L, Yu H, Deng M, Wu F, Jiang Z, Luo T. Enantioselective Total Syntheses of Grayanane Diterpenoids: (-)-Grayanotoxin III, (+)-Principinol E, and (-)-Rhodomollein XX. J Am Chem Soc 2022; 144:5268-5273. [PMID: 35297610 DOI: 10.1021/jacs.2c01692] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enantioselective total syntheses of (-)-grayanotoxin III, (+)-principinol E, and (-)-rhodomollein XX were accomplished based on a convergent strategy. The left- and right-wing fragments were assembled via the diastereoselective Mukaiyama aldol reaction catalyzed by a chiral hydrogen bond donor. The unique 7-endo-trig cyclization based on a bridgehead carbocation forged the 5/7/6/5 tetracyclic skeleton that underwent redox manipulations and 1,2-migration to access different grayanane diterpenoids.
Collapse
Affiliation(s)
- Lingran Kong
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hang Yu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengping Deng
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanrui Wu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Jiang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
25
|
Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. Co-Mabiq Flies Solo: Light-Driven Markovnikov-Selective C- and N-Alkylation of Indoles and Indazoles without a Cocatalyst. J Am Chem Soc 2022; 144:2994-3004. [PMID: 35157421 DOI: 10.1021/jacs.1c10930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indoles and indazoles are common moieties in pharmaceuticals and naturally occurring bioactive compounds. The development of light-driven methods using earth-abundant transition-metal catalysts offers an attractive route for functionalization of such compounds. Herein, we report a visible-light-induced method for the C3- and N-alkylation of indoles and indazoles with styrenes, catalyzed by Co complexes based on the macrocyclic Mabiq ligand (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N6). The photochemical behavior of two CoIII catalysts was examined: Co(Mabiq)Cl2 and the newly synthesized Co(MabiqBr)Cl2, which contains the Br-modified ligand. Both complexes undergo visible-light-induced homolysis that is significant to their activity but exhibit differences in reactivity. The alkylation reactions are regioselective, furnishing the alkylated indole and indazole products in a Markovnikov fashion with excellent yields of up to 96% across a broad range of substrates. Notably, in contrast to dual-transition-metal and photoredox-catalyzed cross-coupling reactions, our studies reveal that the Co complex plays a dual role─as a photosensitizer and catalytically active metal center with the Mabiq ligand offering regiocontrol.
Collapse
Affiliation(s)
- Oaikhena Zekeri Esezobor
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Wenyi Zeng
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Grübel
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Corinna R Hess
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
26
|
Liu R, Xia M, Ling C, Fu S, Liu B. Construction of the Tetracyclic Core Structure of Dysiherbols A–C. Org Lett 2022; 24:1642-1646. [DOI: 10.1021/acs.orglett.2c00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cichang Ling
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
27
|
Zhu T, Zhang XJ, Zhou Z, Xu Z, Ma M, Zhao B. Synthesis of functionalized malononitriles via Fe-catalysed hydrogen atom transfers of alkenes. Org Biomol Chem 2022; 20:1480-1487. [PMID: 35103271 DOI: 10.1039/d1ob02332b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a practical and convenient approach that enabled radical-mediated conjugate addition of unreactive alkenes to electron-deficient alkenes leading to a broad range of substituted malononitriles. These reactions are believed to proceed by Fe-catalysed hydrogen atom transfer (HAT) onto the alkenes affording carbon-centered radical intermediates with Markovnikov selectivity, followed by the capture of electron-deficient alkenes. We explored this synthesis approach under mild conditions with high efficiency and broad substrate scope and the utility is highlighted by the further synthetic transformations of the obtained substituted malononitriles.
Collapse
Affiliation(s)
- Tianxiang Zhu
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xue-Jun Zhang
- Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zihan Zhou
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Zitong Xu
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Huang HM, Bellotti P, Erchinger JE, Paulisch TO, Glorius F. Radical Carbonyl Umpolung Arylation via Dual Nickel Catalysis. J Am Chem Soc 2022; 144:1899-1909. [PMID: 35041782 DOI: 10.1021/jacs.1c12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The formation of carbon-carbon bonds lies at the heart of synthetic organic chemistry and is widely applied to construct complex drugs, polymers, and materials. Despite its importance, catalytic carbonyl arylation remains comparatively underdeveloped, due to limited scope and functional group tolerance. Herein we disclose an umpolung strategy to achieve radical carbonyl arylation via dual catalysis. This redox-neutral approach provides a complementary method to construct Grignard-type products from (hetero)aryl bromides and aliphatic aldehydes, without the need for pre-functionalization. A sequential activation, hydrogen-atom transfer, and halogen atom transfer process could directly convert aldehydes to the corresponding ketyl-type radicals, which further react with aryl-nickel intermediates in an overall polarity-reversal process. This radical strategy tolerates─among others─acidic functional groups, heteroaryl motifs, and sterically hindered substrates and has been applied in the late-stage modification of drugs and natural products.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tiffany O Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
29
|
Zhang M, Han B, Ma H, Zhao L, Wang J, Zhang Y. Hydrosilanes as Hydrogen Source: Iridium-Catalyzed Hydrogenation of N-Heteroarenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Puls F, Seewald F, Grinenko V, Klauß H, Knölker H. Mechanistic Studies on the Hexadecafluorophthalocyanine-Iron-Catalyzed Wacker-Type Oxidation of Olefins to Ketones*. Chemistry 2021; 27:16776-16787. [PMID: 34546596 PMCID: PMC9298363 DOI: 10.1002/chem.202102848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/15/2022]
Abstract
The hexadecafluorophthalocyanine-iron complex FePcF16 was recently shown to convert olefins into ketones in the presence of stoichiometric amounts of triethylsilane in ethanol at room temperature under an oxygen atmosphere. Herein, we describe an extensive mechanistic investigation for the conversion of 2-vinylnaphthalene into 2-acetylnaphthalene as model reaction. A variety of studies including deuterium- and 18 O2 -labeling experiments, ESI-MS, and 57 Fe Mössbauer spectroscopy were performed to identify the intermediates involved in the catalytic cycle of the oxidation process. Finally, a detailed and well-supported reaction mechanism for the FePcF16 -catalyzed Wacker-type oxidation is proposed.
Collapse
Affiliation(s)
- Florian Puls
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Felix Seewald
- Institute of Solid State and Materials Physics Fakultät PhysikTechnische Universität DresdenZellescher Weg 1601069DresdenGermany
| | - Vadim Grinenko
- Institute of Solid State and Materials Physics Fakultät PhysikTechnische Universität DresdenZellescher Weg 1601069DresdenGermany
| | - Hans‐Henning Klauß
- Institute of Solid State and Materials Physics Fakultät PhysikTechnische Universität DresdenZellescher Weg 1601069DresdenGermany
| | | |
Collapse
|
31
|
|
32
|
Zhu K, Xu X, Xu M, Deng P, Wu W, Ye W, Weng Z, Su Y, Wang H, Xiao F, Fang Z, Gao P. One‐Pot Synthesis of Tensile‐Strained PdRuCu Icosahedra toward Electrochemical Hydrogenation of Alkene. ChemElectroChem 2021. [DOI: 10.1002/celc.202100827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaili Zhu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Xudong Xu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Mengqiu Xu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Ping Deng
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Wenbo Wu
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Wei Ye
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Zihui Weng
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Yue Su
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Huijie Wang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Fei Xiao
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Zeping Fang
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| | - Peng Gao
- College of Material, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou, Zhejiang 311121 China
| |
Collapse
|
33
|
Zhang T, Yu M, Huang H. Fe-catalyzed Fukuyama-type indole synthesis triggered by hydrogen atom transfer. Chem Sci 2021; 12:10501-10505. [PMID: 34447542 PMCID: PMC8356753 DOI: 10.1039/d1sc03058b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 02/03/2023] Open
Abstract
Fe, Co, and Mn hydride-initiated radical olefin additions have enjoyed great success in modern synthesis, yet the extension of other hydrogen radicalophiles instead of olefins remains largely elusive. Herein, we report an efficient Fe-catalyzed intramolecular isonitrile-olefin coupling reaction delivering 3-substituted indoles, in which isonitrile was firstly applied as the hydrogen atom acceptor in the radical generation step by MHAT. The protocol features low catalyst loading, mild reaction conditions, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Tianze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| | - Min Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
34
|
Buono F, Nguyen T, Qu B, Wu H, Haddad N. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
35
|
Puls F, Linke P, Kataeva O, Knölker HJ. Iron-Catalyzed Wacker-type Oxidation of Olefins at Room Temperature with 1,3-Diketones or Neocuproine as Ligands*. Angew Chem Int Ed Engl 2021; 60:14083-14090. [PMID: 33856090 PMCID: PMC8251641 DOI: 10.1002/anie.202103222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 11/11/2022]
Abstract
Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3 ] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3 ) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.
Collapse
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, 420088, Russia
| | - Hans-Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
36
|
Puls F, Linke P, Kataeva O, Knölker H. Iron‐Catalyzed Wacker‐type Oxidation of Olefins at Room Temperature with 1,3‐Diketones or Neocuproine as Ligands**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Florian Puls
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Philipp Linke
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center Russian Academy of Sciences Arbuzov Str. 8 Kazan 420088 Russia
| | - Hans‐Joachim Knölker
- Fakultät Chemie und Lebensmittelchemie Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| |
Collapse
|
37
|
Abstract
AbstractHydrogen atom transfer (HAT) is one of the fundamental transformations of organic chemistry, allowing the interconversion of open- and closed-shell species through the concerted movement of a proton and an electron. Although the value of this transformation is well appreciated in isolation, with it being used for homolytic C–H activation via abstractive HAT and radical reduction via donative HAT, cooperative HAT (cHAT) reactions, in which two hydrogen atoms are removed or donated to vicinal reaction centers in succession through radical intermediates, are comparatively unknown outside of the mechanism of desaturase enzymes. This tandem reaction scheme has important ramifications in the thermochemistry of each HAT, with the bond dissociation energy (BDE) of the C–H bond adjacent to the radical center being significantly lowered relative to that of the parent alkane, allowing each HAT to be performed by different species. Herein, we discuss the thermodynamic basis of this bond strength differential in cHAT and demonstrate its use as a design principle in organic chemistry for both dehydrogenative (application 1) and hydrogenative (application 2) reactions. We hope that this overview will highlight the exciting reactivity that is possible with cHAT and inspire further developments with this mechanistic approach.1 Introduction and Theory2 Application: Dehydrogenative Transformations3 Application: Alkene Hydrogenation4 Future Applications of cHAT
Collapse
|
38
|
Kamei Y, Seino Y, Yamaguchi Y, Yoshino T, Maeda S, Kojima M, Matsunaga S. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nat Commun 2021; 12:966. [PMID: 33574227 PMCID: PMC7878493 DOI: 10.1038/s41467-020-20872-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022] Open
Abstract
Hydrogen atom transfer (HAT) hydrogenation has recently emerged as an indispensable method for the chemoselective reduction of unactivated alkenes. However, the hitherto reported systems basically require stoichiometric amounts of silanes and peroxides, which prevents wider applications, especially with respect to sustainability and safety concerns. Herein, we report a silane- and peroxide-free HAT hydrogenation using a combined cobalt/photoredox catalysis and ascorbic acid (vitamin C) as a sole stoichiometric reactant. A cobalt salophen complex is identified as the optimal cocatalyst for this environmentally benign HAT hydrogenation in aqueous media, which exhibits high functional-group tolerance. In addition to its applicability in the late-stage hydrogenation of amino-acid derivatives and drug molecules, this method offers unique advantage in direct transformation of unprotected sugar derivatives and allows the HAT hydrogenation of unprotected C-glycoside in higher yield compared to previously reported HAT hydrogenation protocols. The proposed mechanism is supported by experimental and theoretical studies.
Collapse
Affiliation(s)
- Yuji Kamei
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yusuke Seino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yuto Yamaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Sapporo, 060-0810, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, 060-0812, Japan.
| |
Collapse
|
39
|
Ohuchi S, Koyama H, Shigehisa H. Catalytic Synthesis of Cyclic Guanidines via Hydrogen Atom Transfer and Radical-Polar Crossover. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shunya Ohuchi
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|