1
|
Pomowski A, Dell'Acqua S, Wüst A, Pauleta SR, Moura I, Einsle O. Revisiting the metal sites of nitrous oxide reductase in a low-dose structure from Marinobacter nauticus. J Biol Inorg Chem 2024; 29:279-290. [PMID: 38720157 DOI: 10.1007/s00775-024-02056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas N2O to yield N2. It contains two metal centers, the binuclear electron transfer site CuA, and the unique, tetranuclear CuZ center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites. Hypothesizing that many reported discrepancies in the structural data may be due to radiation damage during data collection, we determined the structure of anoxically isolated Marinobacter nauticus N2OR from diffraction data obtained with low-intensity X-rays from an in-house rotating anode generator and an image plate detector. The data set was of exceptional quality and yielded a structure at 1.5 Å resolution in a new crystal form. The CuA site of the enzyme shows two distinct conformations with potential relevance for intramolecular electron transfer, and the CuZ cluster is present in a [4Cu:2S] configuration. In addition, the structure contains three additional types of ions, and an analysis of anomalous scattering contributions confirms them to be Ca2+, K+, and Cl-. The uniformity of the present structure supports the hypothesis that many earlier analyses showed inhomogeneities due to radiation effects. Adding to the earlier description of the same enzyme with a [4Cu:S] CuZ site, a mechanistic model is presented, with a structurally flexible CuZ center that does not require the complete dissociation of a sulfide prior to N2O binding.
Collapse
Affiliation(s)
- Anja Pomowski
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Simone Dell'Acqua
- Dipartimento Di Chimica, Università Di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Anja Wüst
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Isabel Moura
- LAQV, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2529-516, Caparica, Portugal
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Albertstrasse 21, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Hau JL, Kaltwasser S, Muras V, Casutt MS, Vohl G, Claußen B, Steffen W, Leitner A, Bill E, Cutsail GE, DeBeer S, Vonck J, Steuber J, Fritz G. Conformational coupling of redox-driven Na +-translocation in Vibrio cholerae NADH:quinone oxidoreductase. Nat Struct Mol Biol 2023; 30:1686-1694. [PMID: 37710014 PMCID: PMC10643135 DOI: 10.1038/s41594-023-01099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.
Collapse
Affiliation(s)
- Jann-Louis Hau
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susann Kaltwasser
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Muras
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Marco S Casutt
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Georg Vohl
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Björn Claußen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Wojtek Steffen
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Julia Steuber
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| | - Günter Fritz
- Department of Cellular Microbiology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
3
|
Dumont R, Dowdell J, Song J, Li J, Wang S, Kang W, Li B. Control of charge transport in electronically active systems towards integrated biomolecular circuits (IbC). J Mater Chem B 2023; 11:8302-8314. [PMID: 37464922 DOI: 10.1039/d3tb00701d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.
Collapse
Affiliation(s)
- Ryan Dumont
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Juwaan Dowdell
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jisoo Song
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| | - Jiani Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Suwan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
| | - Wei Kang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Bo Li
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, USA.
| |
Collapse
|
4
|
Liu Y, Chatterjee S, Cutsail GE, Peredkov S, Gupta SK, Dechert S, DeBeer S, Meyer F. Cu 4S Cluster in "0-Hole" and "1-Hole" States: Geometric and Electronic Structure Variations for the Active Cu Z* Site of N 2O Reductase. J Am Chem Soc 2023; 145:18477-18486. [PMID: 37565682 PMCID: PMC10450684 DOI: 10.1021/jacs.3c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/12/2023]
Abstract
The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique μ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(μ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(μ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(μ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(μ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central μ4-S in the fully reduced 0-hole state.
Collapse
Affiliation(s)
- Yang Liu
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Sandeep K. Gupta
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Lycus P, Einsle O, Zhang L. Structural biology of proteins involved in nitrogen cycling. Curr Opin Chem Biol 2023; 74:102278. [PMID: 36889028 DOI: 10.1016/j.cbpa.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Microbial metabolic processes drive the global nitrogen cycle through sophisticated and often unique metalloenzymes that facilitate difficult redox reactions at ambient temperature and pressure. Understanding the intricacies of these biological nitrogen transformations requires a detailed knowledge that arises from the combination of a multitude of powerful analytical techniques and functional assays. Recent developments in spectroscopy and structural biology have provided new, powerful tools for addressing existing and emerging questions, which have gained urgency due to the global environmental implications of these fundamental reactions. The present review focuses on the recent contributions of the wider area of structural biology to understanding nitrogen metabolism, opening new avenues for biotechnological applications to better manage and balance the challenges of the global nitrogen cycle.
Collapse
Affiliation(s)
- Pawel Lycus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
6
|
Gupta SK, Banerjee S, Prabhakaran EN. Understanding the anomaly of cis-trans isomerism in Pro-His sequence. Bioorg Med Chem Lett 2022; 76:128985. [PMID: 36165914 DOI: 10.1016/j.bmcl.2022.128985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
The anomalous absence of cisPro stabilizing CαHαXaa···πAro interactions at Xaa-Pro-Aro exclusively when Aro is His, is understood by NMR structural analyses of model peptides, as due to i → i backbone-side chain C6 H-bond that forms uniquely when Aro is His, which significantly decreases its χ1-g- population essential for CαHαXaa···πAro formation.
Collapse
Affiliation(s)
- Sunil K Gupta
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shreya Banerjee
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Erode N Prabhakaran
- Department of Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
7
|
Guo J, Fisher OS. Orchestrating copper binding: structure and variations on the cupredoxin fold. J Biol Inorg Chem 2022; 27:529-540. [PMID: 35994119 DOI: 10.1007/s00775-022-01955-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
A large number of copper binding proteins coordinate metal ions using a shared three-dimensional fold called the cupredoxin domain. This domain was originally identified in Type 1 "blue copper" centers but has since proven to be a common domain architecture within an increasingly large and diverse group of copper binding domains. The cupredoxin fold has a number of qualities that make it ideal for coordinating Cu ions for purposes including electron transfer, enzyme catalysis, assembly of other copper sites, and copper sequestration. The structural core does not undergo major conformational changes upon metal binding, but variations within the coordination environment of the metal site confer a range of Cu-binding affinities, reduction potentials, and spectroscopic properties. Here, we discuss these proteins from a structural perspective, examining how variations within the overall cupredoxin fold and metal binding sites are linked to distinct spectroscopic properties and biological functions. Expanding far beyond the blue copper proteins, cupredoxin domains are used by a growing number of proteins and enzymes as a means of binding copper ions, with many more likely remaining to be identified.
Collapse
Affiliation(s)
- Jing Guo
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Oriana S Fisher
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
8
|
Rajbongshi J, Das DK, Mazumdar S. Spectroscopic and electrochemical studies of the pH-Induced transition in the CuA centre from Thermus thermophilus. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ding M, Shan BQ, Peng B, Zhou JF, Zhang K. Dynamic Pt-OH -·H 2O-Ag species mediate coupled electron and proton transfer for catalytic hydride reduction of 4-nitrophenol at the confined nanoscale interface. Phys Chem Chem Phys 2022; 24:7923-7936. [PMID: 35311880 DOI: 10.1039/d2cp00673a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Generally, the catalytic transformation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) at heterogeneous metal surfaces follows a Langmuir-Hinshelwood (L-H) mechanism when sodium borohydride (NaBH4) is used as the sacrificial reductant. Herein, with Pt-Ag bimetallic nanoparticles confined in dendritic mesoporous silica nanospheres (DMSNs) as a model catalyst, we demonstrated that the conversion of 4-NP did not pass through the direct hydrogen transfer route with the hydride equivalents being supplied by borohydride via the bimolecular L-H mechanism, since Fourier transform infrared (FTIR) spectroscopy with the use of isotopically labeled reactants (NaBD4 and D2O) showed that the final product of 4-AP was composed of protons (or deuterons) that originated from the solvent water (or heavy water). Combined characterization by X-ray photoelectron spectroscopy (XPS), 1H nuclear magnetic resonance (NMR) and the optical excitation and photoluminescence spectrum evidenced that the surface hydrous hydroxide complex bound to the metal surface (also called structural water molecules, SWs), due to the space overlap of p orbitals of two O atoms in SWs, could form an ensemble of dynamic interface transient states, which provided the alternative electron and proton transfer channels for selective transformation of 4-NP. The cationic Pt species in the Ag-Pt bimetallic catalyst mainly acts as a dynamic adsorption center to temporally anchor SWs and related reactants, and not as the active site for hydrogen activation.
Collapse
Affiliation(s)
- Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, 69364 Lyon cedex 07, France.,Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China.,Institute of Eco-Chongming, Shanghai 202162, China
| |
Collapse
|
10
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
11
|
Zou W, Zhu Q, Fettinger JC, Power PP. Dimeric Copper and Lithium Thiolates: Comparison of Copper Thiolates with Their Lithium Congeners. Inorg Chem 2021; 60:17641-17648. [PMID: 34812614 DOI: 10.1021/acs.inorgchem.1c02226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The direct reactions of the large terphenyl thiols HSAriPr4 (AriPr4= -C6H3-2,6-(C6H3-2,6-iPr2)2) and HSAriPr6 (AriPr6= -C6H3-2,6-(C6H2-2,4,6-iPr3)2) with stoichiometric amounts of mesitylcopper(I) in THF at ca. 80 °C afforded the first well-characterized dimeric copper thiolato species {CuSAriPr4}2 (1) and {CuSAriPr6}2 (2) with elimination of mesitylene. The complexes 1 and 2 were characterized by NMR and electronic spectroscopy as well as by X-ray crystallography. They have dimeric Cu2S2 core structures in which the two copper atoms are bridged by the sulfurs from the thiolato ligands and feature short Cu--Cu distances near 2.4 Å as well as a weak copper-flanking aryl ring interaction from a terphenyl substituent. The structures of the planar Cu2S2 cores bear a resemblance to the CuA site in nitrous oxide reductase in which two cysteines also bridge two copper atoms. The related dimeric Li2S2 structural motif was also observed in the lithium congeners {LiSAriPr4}2 (3) and {LiSAriPr6}2 (4) which were synthesized directly from the thiols and n-BuLi in hexanes. However, despite the very similar effective ionic radii of the Li+ (0.59 Å) and Cu+ (0.60 Å) ions, the Li--Li structures display very much longer (by more than ca. 0.5 Å) separations than the corresponding Cu--Cu distances in 1 and 2, which may be due to weaker dispersion interactions.
Collapse
Affiliation(s)
- Wenxing Zou
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Qihao Zhu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Philip P Power
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
12
|
Shan BQ, Zhou JF, Ding M, Hu XD, Zhang K. Surface electronic states mediate concerted electron and proton transfer at metal nanoscale interfaces for catalytic hydride reduction of -NO 2 to -NH 2. Phys Chem Chem Phys 2021; 23:12950-12957. [PMID: 34086019 DOI: 10.1039/d1cp01792f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Concerted electron and proton transfer is a key step for the reversible conversion of molecular hydrogen in both heterogeneous nanocatalysis and metalloenzyme catalysis. However, its activation mechanism involving electron and proton transfer kinetics remains elusive. With the most widely used catalytic hydride reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) as a model reaction, we evaluate the catalytic activity of noble metal nanoparticles (NPs) trapped in porous silica in aqueous NaBH4 solution. By virtue of a novel combination of catalyst design, reaction kinetics, isotope labeling, and multiple spectroscopic techniques, the real catalytic site for the conversion of -NO2 to -NH2 is identified to be the water-hydroxyl transition metal complex, which could further react with NaBH4 to form a new triangular configuration metal complex of H3B-water-hydroxyl with dynamic features. It yields an ensemble of surface electronic states (SESs) though space overlapping of p orbitals of one B and several O atoms (including the O atoms of 4-NP), which could act as an alternative channel for concerted electron and proton transfer. This work highlights the critical role of the conceptual SESs model in heterogeneous catalysis to tune the chemical reactivity and also sheds light on the intricate working of the [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jia-Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Meng Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xiao-Dan Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Laboratory of Interface and Water Science, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China. and Laboratoire de chimie, Ecole Normale Supérieure de Lyon, Institut de Chimie de Lyon, Université de Lyon, 46 Allée d'italie, Lyon cedex 07 69364, France and Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, P. R. China
| |
Collapse
|
13
|
Uchida T, Omura I, Umetsu S, Ishimori K. Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. J Inorg Biochem 2021; 219:111422. [PMID: 33756393 DOI: 10.1016/j.jinorgbio.2021.111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Dye-decolorizing peroxidase (DyP) is a heme-containing enzyme that catalyzes the degradation of anthraquinone dyes. A main feature of DyP is the acidic optimal pH for dye-decolorizing activity. In this study, we constructed several mutant DyP enzymes from Vibrio cholerae (VcDyP), with a view to identifying the decisive factor of the low pH preference of DyP. Initially, distal Asp144, a conserved residue, was replaced with His, which led to significant loss of dye-decolorizing activity. Introduction of His into a position slightly distant from heme resulted in restoration of activity but no shift in optimal pH, indicating that distal residues do not contribute to the pH dependence of catalytic activity. His178, an essential residue for dye decolorization, is located near heme and forms hydrogen bonds with Asp138 and Thr278. While Trp and Tyr mutants of His178 were inactive, the Phe mutant displayed ~35% activity of wild-type VcDyP, indicating that this position is a potential radical transfer route from heme to the active site on the protein surface. The Thr278Val mutant displayed similar enzymatic properties as WT VcDyP, whereas the Asp138Val mutant displayed significantly increased activity at pH 6.5. On the basis of these findings, we propose that neither distal amino acid residues, including Asp144, nor hydrogen bonds between His178 and Thr278 are responsible while the hydrogen bond between His178 and Asp138 plays a key role in the pH dependence of activity.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|