1
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Meng Y, Lin X, Huang J, Zhang L. Recent Advances in Carborane-Based Crystalline Porous Materials. Molecules 2024; 29:3916. [PMID: 39202996 PMCID: PMC11357283 DOI: 10.3390/molecules29163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The field of carborane research has witnessed continuous development, leading to the construction and development of a diverse range of crystalline porous materials for various applications. Moreover, innovative synthetic approaches are expanding in this field. Since the first report of carborane-based crystalline porous materials (CCPMs) in 2007, the synthesis of carborane ligands, particularly through innovative methods, has consistently posed a significant challenge in discovering new structures of CCPMs. This paper provides a comprehensive summary of recent advances in various synthetic approaches for CCPMs, along with their applications in different domains. The primary challenges and future opportunities are expected to stimulate further multidisciplinary development in the field of CCPMs.
Collapse
Affiliation(s)
- Yuxuan Meng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Xi Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Jinyi Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLo-FE), Fuzhou 350017, China; (Y.M.); (X.L.); (J.H.)
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
3
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
4
|
Zhu YX, Yuan RZ, Zhang HN, Jin GX. Selective B(3)-H Activation Affording Multinuclear Ir(III) Complexes with (o-Carboranyl)dithioester Ligands. Chemistry 2024; 30:e202401154. [PMID: 38627216 DOI: 10.1002/chem.202401154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 06/19/2024]
Abstract
A method was developed to link two or three o-carborane moieties to form a series of carboranyl dithioester bridging ligands via in situ substitution of haloalkanes by tetraphenylphosphonium carboranyldithiocarboxylates. Based on these ligands, direct B-H activation without the assistance of Ag(I) and alkali was successfully achieved with half-sandwich Ir(III) substrate [Cp*IrCl2]2 to yield corresponding bimetallic or trimetallic complexes. Single crystal structure analyses of the B-H activated complexes and corresponding SnCl2-inserted derivatives confirm the selective B(3)-H activation in these complexes.
Collapse
Affiliation(s)
- Yong-Xiao Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Ki Au Y, Ma Q, Zhang J, Xie Z. Ir-Catalyzed B(3)-Amination of o-Carboranes with Amines via Acceptorless Dehydrogenative BH/NH Cross-Coupling. Chem Asian J 2023; 18:e202300611. [PMID: 37694997 DOI: 10.1002/asia.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
An efficient and convenient strategy for Ir-catalyzed selective B(3)-amination of o-carboranes with amines via acceptorless BH/NH dehydrocoupling was developed, affording a series of B(3)-aminated-o-carboranes in moderate to high isolated yields with H2 gas as a sole by-product. Such an oxidant-free system endues the protocol sustainability, atom-economy and environmental friendliness. A reaction mechanism via an Ir(I)-Ir(III)-Ir(I) catalytic cycle involving oxidative addition, dehydrogenation and reductive elimination was proposed.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Qiangqiang Ma
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R.China
| |
Collapse
|
6
|
Cui PF, Liu XR, Jin GX. Supramolecular Architectures Bearing Half-Sandwich Iridium- or Rhodium-Based Carboranes: Design, Synthesis, and Applications. J Am Chem Soc 2023; 145:19440-19457. [PMID: 37643971 DOI: 10.1021/jacs.3c05563] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The utilization of carboranes in supramolecular chemistry has attracted considerable attention. The unique spatial configuration and weak interaction forces of carboranes can help to explore the properties of supramolecular complexes, particularly via host-guest chemistry. Additionally, certain difficulties encountered in carborane development─such as controlled B-H bond activation─can be overcome by judiciously selecting metal centers and their adjacent ligands. However, few studies are being conducted in this nascent research area. With advances in this field, novel carborane-based supramolecular complexes will likely be prepared, structurally characterized, and intrinsically investigated. To expedite these efforts, we present major findings from recent studies, including π-π interactions, host-guest associations, and steric effects, which have been leveraged to implement a regioselective process for activating B(2,9)-, B(2,8)-, and B(2,7)-H bonds of para-carboranes and B(4,7)-H bonds of ortho-carboranes. Future studies should clarify the unique weak interactions of carboranes and their potential for enhancing the utility of supramolecular complexes. Although carboranes exhibit several unique weak interactions (such as dihydrogen-bond [Bδ+-Hδ-···Hδ+-Cδ-], Bδ+-Hδ-···M+, and Bδ+-Hδ-···π interactions), the manner in which they can be utilized remains unclear. Supramolecular complexes, particularly those based on host-guest chemistry, can be utilized as a platform for demonstrating potential applications of these weak interactions. Owing to the importance of alkane separation, applications related to the recognition and separation of alkane isomers via dihydrogen-bond interactions are primarily summarized. Advances in the research of unique weak interactions in carboranes will certainly lead to more possibilities for supramolecular chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, People's Republic of China
| |
Collapse
|
7
|
Park K, Han GU, Yoon S, Lee E, Noh HC, Lee K, Maeng C, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)-H Amination of o-Carboranes with Sufilimines. Org Lett 2023; 25:5989-5994. [PMID: 37540091 DOI: 10.1021/acs.orglett.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Iridium(III)-catalyzed regioselective B(4)-H amination is developed from the reaction of o-carborane acids with sulfilimines without any oxidants under mild conditions, which leads to a wide range of B(4)-H aminated o-carboranes in good yields with a broad substrate scope. Moreover, the selective B(3,6)-diamination reaction of the o-carborane acid was achieved. The present reaction is attractive from a practical point of view because dibenzothiophene is quantitatively recovered and reused.
Collapse
Affiliation(s)
- Kyeongna Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eunseo Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
8
|
Abstract
Metallacarboranes have attracted significant attention due to their unique properties. Considerable efforts have been made on the reactions around the metal centers or the metal ion itself, while transformations of functional groups of the metallacarboranes have been much less explored. We presented here the formation of imidazolium-functionalized nickelacarboranes (2), their subsequent conversion to nickelacarborane-supported N-heterocyclic carbenoids (NHCs, 3), and the reactivities of 3 toward Au(PPh3)Cl and Se powder, which resulted in the formation of bis-gold carbene complexes (4) and NHC selenium adducts (5). Cyclic voltammetry of 4 shows two reversible peaks, corresponding to the interconversion transformations NiII ↔ NiIII and NiIII ↔ NiIV. Theoretical calculations demonstrated relatively high-lying lone-pair orbitals, weak B-H···H-C interactions between the BH units and the methyl group, and weak B-H···π interactions between the BH groups and the vacant p-orbital of the carbene.
Collapse
Affiliation(s)
- Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Fan Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
- Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, Zhejiang China
| |
Collapse
|
9
|
Ma YN, Ren H, Wu Y, Li N, Chen F, Chen X. B(9)-OH- o-Carboranes: Synthesis, Mechanism, and Property Exploration. J Am Chem Soc 2023; 145:7331-7342. [PMID: 36962083 DOI: 10.1021/jacs.2c13570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Herein, we present a chemically robust and efficient synthesis route for B(9)-OH-o-carboranes by the oxidation of o-carboranes with commercially available 68% HNO3 under the assistance of trifluoromethanesulfonic acid (HOTf) and hexafluoroisopropanol (HFIP). The reaction is highly efficient with a wide scope of carboranes, and the selectivity of B(9)/B(8) is up to 98:2. The success of this transformation relies on the strong electrophilicity and oxidizability of HNO3, promoted through hydrogen bonds of the Brønsted acid HOTf and the solvent HFIP. Mechanism studies reveal that the oxidation of o-carborane involves an initial electrophilic attack of HNO3 to the hydrogen atom at the most electronegative B(9) of o-carborane. In this transformation, the hydrogen atom of the B-H bond is the nucleophilic site, which is different from the electrophilic substitution reaction, where the boron atom is the nucleophilic site. Therefore, this is an oxidation-reduction reaction of o-carborane under mild conditions in which N(V) → N(III) and H(-I) → H(I). The derivatization of 9-OH-o-carborane was further examined, and the carboranyl group was successfully introduced to an amino acid, polyethylene glycol, biotin, deoxyuridine, and saccharide. Undoubtedly, this approach provides a selective way for the rapid incorporation of carborane moieties into small molecules for application in boron neutron capture therapy, which requires the targeted delivery of boron-rich groups.
Collapse
Affiliation(s)
- Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
10
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Guo ST, Cui PF, Liu XR, Jin GX. Synthesis of Carborane-Backbone Metallacycles for Highly Selective Capture of n-Pentane. J Am Chem Soc 2022; 144:22221-22228. [PMID: 36442076 DOI: 10.1021/jacs.2c10201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The specific recognition and separation of alkanes with similar molecular structures and close boiling points face significant scientific challenges and industrial demands. Here, rectangular carborane-based metallacycles were designed to selectively encapsulate n-pentane from n-pentane, iso-pentane, and cyclo-pentane mixtures in a simple-to-operate and more energy-efficient way. Metallacycle 1, bearing 1,2-di(4-pyridyl) ethylene, can selectively separate n-pentane from these three-component mixtures with a purity of 97%. The selectivity is ascribed to the capture of the preferred guest with matching size, C-H···π interactions, and potential B-Hδ-···Hδ+-C interactions. Besides, the removal of n-pentane gives rise to original guest-free carborane-based metallacycles, which can be recycled without losing performance. Considering the variety of substituted carborane derivatives, metal ions, and organic linkers, these new carborane-based supramolecular coordination complexes (SCCs) may be broadly applicable to other challenging recognition and separation systems with good performance.
Collapse
Affiliation(s)
- Shu-Ting Guo
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
13
|
Mohapatra S, Gayen S, Bag R, Das A, Ramalakshmi R, Cordier M, Ghosh S. Structures and Bonding of Early Transition Metallaborane Clusters. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stutee Mohapatra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sourav Gayen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ranjit Bag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arpita Das
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Rongala Ramalakshmi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Marie Cordier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, F-35000 Rennes, France
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
14
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site-Selective Functionalization of Carboranes at the Electron-Rich Boron Vertex: Photocatalytic B-C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022; 61:e202205672. [PMID: 35670361 DOI: 10.1002/anie.202205672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshi Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Songlin Tian
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Sun F, Tan S, Cao H, Xu J, Bregadze VI, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022; 61:e202207125. [DOI: 10.1002/anie.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hou‐Ji Cao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences Moscow 119991 Russia
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
16
|
Tang W, He Y, Li H. Migration Mechanism of the B–H Activation of Carboranes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wanyong Tang
- North Minzu University College of Chemistry and Chemical Engineering CHINA
| | - Yuhan He
- North Minzu University College of Chemistry and Chemical Engineering CHINA
| | - Hui Li
- North Minzu University Chemical science and engineering college No.204, North Wenchang Street, Xixia District, Yinchuan City, Ningxia, China 750021 Yinchuan CHINA
| |
Collapse
|
17
|
Chen M, Xu J, Zhao D, Sun F, Tian S, Tu D, Lu C, Yan H. Site‐Selective Functionalization of Carboranes at Electron‐Rich Boron Vertex: Photocatalytic B‐C Coupling via a Carboranyl Cage Radical. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Chen
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshi Zhao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Songlin Tian
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
18
|
Sun F, Tan S, Cao HJ, Xu J, Bregadze V, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Shuaimin Tan
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ji Cao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Vladimir Bregadze
- Russian Academy of Science A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) RUSSIAN FEDERATION
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
19
|
Ma YN, Gao Y, Ma Y, Wang Y, Ren H, Chen X. Palladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources. J Am Chem Soc 2022; 144:8371-8378. [PMID: 35499359 DOI: 10.1021/jacs.2c03031] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amination of carboranes has a good application prospect in organic and pharmaceutical synthesis. However, the current methods used for this transformation suffer from limitations. Herein, we report a practical method for a highly regioselective formation of a B-N bond by Pd(II)-catalyzed B(9)-H amination of o- and m-carboranes in hexafluoroisopropanol (HFIP) with different nitrogen sources under air atmosphere. The silver salt and HFIP solvent play critical roles in the present protocol. The mechanistic study reveals that the silver salt acts as a Lewis acid to promote the electrophilic palladation step by forming a heterobimetallic active catalyst PdAg(OAc)3; the strong hydrogen-bond-donating ability and low nucleophilicity of HFIP enhance the electrophilic ability of Pd(II). It is believed that these N-containing carboranes are potentially of great importance in the synthesis of new pharmaceuticals.
Collapse
Affiliation(s)
- Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yubin Ma
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
20
|
Cui PF, Liu XR, Lin YJ, Li ZH, Jin GX. Highly Selective Separation of Benzene and Cyclohexane in a Spatially Confined Carborane Metallacage. J Am Chem Soc 2022; 144:6558-6565. [PMID: 35357171 DOI: 10.1021/jacs.2c01668] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Separation of light hydrocarbons (C1-C9) represents one of the "seven chemical separations to change the world". Boron clusters can potentially play an important role in chemical separation, due to their unique three-dimensional structures and their ability to promote a potentially rich array of weak noncovalent interactions. Herein, we report the rational design of metallacages with carborane functionality and cooperative dihydrogen binding sites for the highly selective capture of cyclohexane molecules. The metallacage 1, bearing the ligand 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT), can produce cyclohexane with a purity of 98.5% in a single adsorption-desorption cycle from an equimolar mixture of benzene and cyclohexane. In addition, cyclohexene molecules can be also encapsulated inside the metallacage 1. This selective encapsulation was attributed to spatial confinement effects, C-H···π interactions, and particularly dihydrogen-bond interactions. This work suggests exciting future applications of carborane cages in supramolecular chemistry for the selective adsorption and separation of alkane molecules and may open up a new research direction in host-guest chemistry.
Collapse
Affiliation(s)
- Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Zhen-Hua Li
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
21
|
Guo W, Guo C, Ma YN, Chen X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg Chem 2022; 61:5326-5334. [PMID: 35311288 DOI: 10.1021/acs.inorgchem.2c00074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The B(9)-H halogenation of o-carborane and m-carborane was achieved with excellent selectivities in hexafluoroisopropanol (HFIP) under simple reaction conditions: single reagent [trichloroisocyanuric acid (TCCA), tribromoisocyanuric acid (TBCA) or N-iodosuccinimide (NIS)], catalyst-free, air-/moisture-tolerant, and convenient work-up. With this method, a variety of 9-halogenated o-carboranes and m-carboranes were obtained in good to excellent yields with broad tolerance of functional groups.
Collapse
Affiliation(s)
- Wenjing Guo
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chenyang Guo
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Na Ma
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
22
|
Ge Y, Qiu Z, Xie Z. Pd-Catalyzed One-Pot Synthesis of Difunctionalized o-Carboranes via Construction of B—C and B—Heteroatom Bonds ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Cao HJ, Wei X, Sun F, Zhang X, Lu C, Yan H. Metal-catalyzed B-H acylmethylation of pyridylcarboranes: access to carborane-fused indoliziniums and quinoliziniums. Chem Sci 2021; 12:15563-15571. [PMID: 35003585 PMCID: PMC8654026 DOI: 10.1039/d1sc05296a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-catalyzed mono-acylmethylation of pyridylcarboranes has been realized using α-carbonyl sulfoxonium ylides as a coupling partner. The reaction features high efficiency, excellent site-selectivity and good functional group tolerance. In the presence of pyridyl and enolizable acylmethyl groups, a post-coordination mode has been proposed and validated by in situ high resolution mass spectroscopy (HRMS) to rationalize the unique mono-substitution. Post-functionalization at the newly incorporated alkyl site provides additional utility of this method, including the construction of carborane-fused indoliziniums and quinoliziniums. We believe that these mono-alkylated carboranes, together with their post-functionalized derivatives, may find applications in luminescent materials and drug discovery in the near future.
Collapse
Affiliation(s)
- Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
24
|
Tao G, Bai M, Liu Z, Duan Z. Intermolecular Cyclization between Carboranylphosphines and Electron-Deficient Alkynes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guanyu Tao
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengyang Bai
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenxing Liu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
25
|
Luo S, Qiu F, Shi H, Yu W. Design, Characterizations and Host‐Guest Properties of a New Metal‐Organic Cage Based on Half‐Sandwich Rhodium Moieties. ChemistrySelect 2021. [DOI: 10.1002/slct.202103116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shi‐Ting Luo
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Feng‐Yi Qiu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Hua‐Tian Shi
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| | - Weibin Yu
- Analysis and Testing Central Facility Institutes of Molecular Engineering and Applied Chemistry Anhui University of Technology Ma'anshan 243002 P. R. China
| |
Collapse
|
26
|
Druzina AA, Zhidkova OB, Dudarova NV, Nekrasova NA, Suponitsky KY, Timofeev SV, Bregadze VI. Synthesis of Zwitter-Ionic Conjugate of Nido-Carborane with Cholesterol. Molecules 2021; 26:molecules26216687. [PMID: 34771096 PMCID: PMC8588508 DOI: 10.3390/molecules26216687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
9-HC≡CCH2Me2N-nido-7,8-C2B9H11, a previously described carboranyl terminal alkyne, was used for the copper(I)-catalyzed azide-alkyne cycloaddition with azido-3β-cholesterol to form a novel zwitter-ionic conjugate of nido-carborane with cholesterol, bearing a 1,2,3-triazol fragment. The conjugate of nido-carborane with cholesterol, containing a charge-compensated group in the linker, can be used as a precursor for the preparation of liposomes for BNCT (Boron Neutron Capture Therapy). The solid-state molecular structure of a nido-carborane derivative with the 9-Me2N(CH2)2Me2N-nido-7,8-C2B9H11 terminal dimethylamino group was determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia
| | - Kyrill Yu. Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
- Basic Department of Chemistry of Innovative Materials and Technologies, G.V. Plekhanov Russian University of Economics, 36 Stremyannyi Line, 117997 Moscow, Russia
| | - Sergey V. Timofeev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (O.B.Z.); (N.V.D.); (N.A.N.); (K.Y.S.); (S.V.T.); (V.I.B.)
| |
Collapse
|
27
|
Cao HJ, Chen M, Sun F, Zhao Y, Lu C, Zhang X, Shi Z, Yan H. Variable Metal Chelation Modes and Activation Sequence in Pd-Catalyzed B–H Poly-arylation of Carboranes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04473] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hou-ji Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
28
|
Sivaev IB. Functional Group Directed B–H Activation of Polyhedral Boron Hydrides by Transition Metal Complexes (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621090151] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Liu XR, Cui PF, Guo ST, Yuan RZ, Jin GX. Stepwise B–H bond activation of a meta-carborane. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00732g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stepwise multiple B–H bond activation is a major challenge in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Peng-Fei Cui
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Shu-Ting Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|