1
|
Qie B, Wang Z, Jiang J, Zhang Z, Jacobse PH, Lu J, Li X, Liu F, Alexandrova AN, Louie SG, Crommie MF, Fischer FR. Synthesis and characterization of low-dimensional N-heterocyclic carbene lattices. Science 2024; 384:895-901. [PMID: 38781380 DOI: 10.1126/science.adm9814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024]
Abstract
The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC-Au-NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C-Au-C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.
Collapse
Affiliation(s)
- Boyu Qie
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ziyi Wang
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jiaming Lu
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xinheng Li
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fujia Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Steven G Louie
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael F Crommie
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felix R Fischer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Bakar Institute of Digital Materials for the Planet, Division of Computing, Data Science, and Society, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Duan JJ, Yang XQ, Li R, Li X, Chen T, Wang D. N-Heterocyclic Carbene-Derived 1,3,5-Trimethylenebenzene: On-Surface Synthesis and Electronic Structure. J Am Chem Soc 2024; 146:13025-13033. [PMID: 38693826 DOI: 10.1021/jacs.3c14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
1,3,5-Trimethylenebenzene (1,3,5-TMB), a 3-fold-symmetric triradical with a high-spin ground state, is an attractive platform for investigating the unique spin properties of π-conjugated triangular triradicals. Here, we report the on-surface synthesis of N-heterocyclic carbene (NHC)-derived 1,3,5-TMB (N-TMB) via surface-assisted C-C and C-N coupling reactions on Au(111). The chemical and electronic structures of N-TMB on the Au(111) surface are revealed with atomic precision using scanning tunneling microscopy and noncontact atomic force microscopy, combined with density functional theory (DFT) calculations. It is demonstrated that there is substantial charge transfer between N-TMB and the substrate, resulting in a positively charged N-TMB on Au(111). DFT calculations at the UB3LYP/def2-TZVP level of theory and multireference method, e.g., CASSCF/NEVPT2, indicate that N-TMB possesses a doublet ground state with reduced Cs symmetry in the gas phase, contrasting the quartet ground state of 1,3,5-TMB with D3h symmetry, and exhibits a doublet-quartet energy gap of -0.80 eV. The incorporation of NHC structures and the extended π-conjugation promote the spin-orbital overlaps in N-TMB, leading to Jahn-Teller distortion and the formation of a robust doublet state. Our results not only demonstrate the fabrication of polyradicals based on NHC but also shed light on the effect of NHC and π-conjugation on the electronic structure and spin coupling, which opens up new possibilities for precisely regulating the spin-spin exchange coupling of organic polyradicals.
Collapse
Affiliation(s)
- Jun-Jie Duan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Qing Yang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruoning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ren J, Das M, Osthues H, Nyenhuis M, Schulze Lammers B, Kolodzeiski E, Mönig H, Amirjalayer S, Fuchs H, Doltsinis NL, Glorius F. The Electron-Rich and Nucleophilic N-Heterocyclic Imines on Metal Surfaces: Binding Modes and Interfacial Charge Transfer. J Am Chem Soc 2024; 146:7288-7294. [PMID: 38456796 DOI: 10.1021/jacs.3c11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.
Collapse
Affiliation(s)
- Jindong Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Mowpriya Das
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Helena Osthues
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Marvin Nyenhuis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Elena Kolodzeiski
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Wang M, Zhang GP. Tuning the polarity of charge carriers in N-heterocyclic carbene-based single-molecule junctions via atomic manipulation. Phys Chem Chem Phys 2024; 26:9051-9059. [PMID: 38441317 DOI: 10.1039/d3cp04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
5
|
Zhang T, Khomane SB, Singh I, Crudden CM, McBreen PH. N-heterocyclic carbene adsorption states on Pt(111) and Ru(0001). Phys Chem Chem Phys 2024; 26:4083-4090. [PMID: 38226886 DOI: 10.1039/d3cp03539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
N-heterocyclic carbene ligands (NHCs) are increasingly used to tune the properties of metal surfaces. The generally greater chemical and thermal robustness of NHCs on gold, as compared to thiolate surface ligands, underscores their potential for a range of applications. While much is now known about the adsorption geometry, overlayer structure, dynamics, and stability of NHCs on coinage elements, especially gold and copper, much less is known about their interaction with the surfaces of Pt-group metals, despite the importance of such metals in catalysis and electrochemistry. In this study, reflection absorption infrared spectroscopy (RAIRS) is used to probe the structure of benzimidazolylidene NHC ligands on Pt(111) and Ru(0001). The experiments exploit the intense absorption peaks of a CF3 substituent on the phenyl ring of the NHC backbone to provide unprecedented insight into adsorption geometry and chemical stability. The results also permit comparison with literature data for NHC ligands on Au(111) and to DFT predictions for NHCs on Pt(111) and Ru(0001), thereby greatly extending the known surface chemistry of NHCs and providing much needed molecular information for the design of metal-organic hybrid materials involving strongly reactive metals.
Collapse
Affiliation(s)
- Tianchi Zhang
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Sonali B Khomane
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Ishwar Singh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Peter H McBreen
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| |
Collapse
|
6
|
Das M, Hogan C, Zielinski R, Kubicki M, Koy M, Kosbab C, Brozzesi S, Das A, Nehring MT, Balfanz V, Brühne J, Dähne M, Franz M, Esser N, Glorius F. N-Heterocyclic Olefins on a Silicon Surface. Angew Chem Int Ed Engl 2023; 62:e202314663. [PMID: 37849449 DOI: 10.1002/anie.202314663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
The adsorption of N-heterocyclic olefins (NHOs) on silicon is investigated in a combined scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory study. We find that both of the studied NHOs bind covalently, with ylidic character, to the silicon adatoms of the substrate and exhibit good thermal stability. The adsorption geometry strongly depends on the N-substituents: for large N-substituents, an upright adsorption geometry is favored, while a flat-lying geometry is found for the NHO with smaller wingtips. These different geometries strongly influence the quality and properties of the obtained monolayers. The upright geometry leads to the formation of ordered monolayers, whereas the flat-lying NHOs yield a mostly disordered, but denser, monolayer. The obtained monolayers both show large work function reductions, as the higher density of the flat-lying monolayer is found to compensate for the smaller vertical dipole moments. Our findings offer new prospects in the design of tailor-made ligand structures in organic electronics and optoelectronics, catalysis, and material science.
Collapse
Affiliation(s)
- Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Conor Hogan
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
- Dipartimento di Fisica, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Robert Zielinski
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Milan Kubicki
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Maximilian Koy
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Canan Kosbab
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Simone Brozzesi
- Dipartimento di Fisica, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ankita Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Mike Thomas Nehring
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Viktoria Balfanz
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Juls Brühne
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Mario Dähne
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Martin Franz
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Norbert Esser
- Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstrasse 36, D-10623, Berlin, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS e.V., Schwarzschildstrasse 8, 12489, Berlin, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
7
|
Mrđenović D, Cai ZF, Pandey Y, Bartolomeo GL, Zenobi R, Kumar N. Nanoscale chemical analysis of 2D molecular materials using tip-enhanced Raman spectroscopy. NANOSCALE 2023; 15:963-974. [PMID: 36541047 PMCID: PMC9851175 DOI: 10.1039/d2nr05127c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/01/2022] [Indexed: 05/10/2023]
Abstract
Two-dimensional (2D) molecular materials have attracted immense attention due to their unique properties, promising a wide range of exciting applications. To understand the structure-property relationship of these low-dimensional materials, sensitive analytical tools capable of providing structural and chemical characterisation at the nanoscale are required. However, most conventional analytical techniques fail to meet this challenge, especially in a label-free and non-destructive manner under ambient conditions. In the last two decades, tip-enhanced Raman spectroscopy (TERS) has emerged as a powerful analytical technique for nanoscale chemical characterisation by combining the high spatial resolution of scanning probe microscopy and the chemical sensitivity and specificity of surface-enhanced Raman spectroscopy. In this review article, we provide an overview of the application of TERS for nanoscale chemical analysis of 2D molecular materials, including 2D polymers, biomimetic lipid membranes, biological cell membranes, and 2D reactive systems. The progress in the structural and chemical characterisation of these 2D materials is demonstrated with key examples from our as well as other laboratories. We highlight the unique information that TERS can provide as well as point out the common pitfalls in experimental work and data interpretation and the possible ways of averting them.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Knecht P, Meier D, Reichert J, Duncan DA, Schwarz M, Küchle JT, Lee T, Deimel PS, Feulner P, Allegretti F, Auwärter W, Médard G, Seitsonen AP, Barth JV, Papageorgiou AC. N-Heterocyclic Carbenes: Molecular Porters of Surface Mounted Ru-Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202211877. [PMID: 36200438 PMCID: PMC10092334 DOI: 10.1002/anie.202211877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Ru-porphyrins act as convenient pedestals for the assembly of N-heterocyclic carbenes (NHCs) on solid surfaces. Upon deposition of a simple NHC ligand on a close packed Ru-porphyrin monolayer, an extraordinary phenomenon can be observed: Ru-porphyrin molecules are transferred from the silver surface to the next molecular layer. We have investigated the structural features and dynamics of this portering process and analysed the associated binding strengths and work function changes. A rearrangement of the molecular layer is induced by the NHC uptake: the NHC selective binding to the Ru causes the ejection of whole porphyrin molecules from the molecular layer on silver to the layer on top. This reorganisation can be reversed by thermally induced desorption of the NHC ligand. We anticipate that the understanding of such mass transport processes will have crucial implications for the functionalisation of surfaces with carbenes.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Dennis Meier
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - David A. Duncan
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes T. Küchle
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Tien‐Lin Lee
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Guillaume Médard
- Chair of Proteomics and BioanalyticsTechnical University of MunichEmil Erlenmeyer Forum 585354FreisingGermany
| | - Ari Paavo Seitsonen
- Département de ChimieÉcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Anthoula C. Papageorgiou
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Department of ChemistryLaboratory of Physical ChemistryNational and Kapodistrian University of AthensPanepistimiopolis157 71AthensGreece
| |
Collapse
|
9
|
Navarro JJ, Das M, Tosoni S, Landwehr F, Koy M, Heyde M, Pacchioni G, Glorius F, Roldan Cuenya B. Growth of N-Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): From Single Molecules to Magic-Number Islands. Angew Chem Int Ed Engl 2022; 61:e202202127. [PMID: 35468246 PMCID: PMC9401596 DOI: 10.1002/anie.202202127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/18/2022]
Abstract
N-Heterocyclic carbenes (NHCs) have superior properties as building blocks of self-assembled monolayers (SAMs). Understanding the influence of the substrate in the molecular arrangement is a fundamental step before employing these ligands in technological applications. Herein, we study the molecular arrangement of a model NHC on Cu(100) and Cu(111). While mostly disordered phases appear on Cu(100), on Cu(111) well-defined structures are formed, evolving from magic-number islands to molecular ribbons with coverage. This work presents the first example of magic-number islands formed by NHC assemblies on flat surfaces. Diffusion and commensurability are key factors explaining the observed arrangements. These results shed light on the molecule-substrate interaction and open the possibility of tuning nanopatterned structures based on NHC assemblies.
Collapse
Affiliation(s)
- Juan J. Navarro
- Fritz-Haber Institute of the Max Planck SocietyDepartment of Interface ScienceFaradayweg 4–614195BerlinGermany
| | - Mowpriya Das
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Sergio Tosoni
- Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaVia Cozzi 5520125MilanoItaly
| | - Felix Landwehr
- Fritz-Haber Institute of the Max Planck SocietyDepartment of Interface ScienceFaradayweg 4–614195BerlinGermany
| | - Maximilian Koy
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Markus Heyde
- Fritz-Haber Institute of the Max Planck SocietyDepartment of Interface ScienceFaradayweg 4–614195BerlinGermany
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaVia Cozzi 5520125MilanoItaly
| | - Frank Glorius
- Westfälische Wilhelms-UniversitätOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Beatriz Roldan Cuenya
- Fritz-Haber Institute of the Max Planck SocietyDepartment of Interface ScienceFaradayweg 4–614195BerlinGermany
| |
Collapse
|
10
|
Navarro JJ, Das M, Tosoni S, Landwehr F, Koy M, Heyde M, Pacchioni G, Glorius F, Roldan Cuenya B. Wachstum von N‐heterocyclischen Carbenen auf Cu(100) und Cu(111): von einzelnen Molekülen bis hin zu Inseln mit magischen Zahlen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan J. Navarro
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung für Grenzflächenwissenschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Mowpriya Das
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Sergio Tosoni
- Dipartimento di Scienza dei Materiali Università di Milano-Bicocca Via Cozzi 55 20125 Milano Italien
| | - Felix Landwehr
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung für Grenzflächenwissenschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Maximilian Koy
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Markus Heyde
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung für Grenzflächenwissenschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali Università di Milano-Bicocca Via Cozzi 55 20125 Milano Italien
| | - Frank Glorius
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Beatriz Roldan Cuenya
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Abteilung für Grenzflächenwissenschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
11
|
Angove E, Grillo F, Früchtl HA, Veinot AJ, Singh I, Horton JH, Crudden CM, Baddeley CJ. Highly Ordered N-Heterocyclic Carbene Monolayers on Cu(111). J Phys Chem Lett 2022; 13:2051-2056. [PMID: 35200016 PMCID: PMC9007529 DOI: 10.1021/acs.jpclett.1c04073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The benzannulated N-heterocyclic carbene, 1,3-dibenzylbenzimidazolylidene (NHCDBZ) forms large, highly ordered domains when adsorbed on Cu(111) under ultrahigh vacuum conditions. A combination of scanning tunnelling microscopy (STM), high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) calculations reveals that the overlayer consists of vertical benzannulated NHC moieties coordinating to Cu adatoms. Long-range order results from the placement of the two benzyl substituents on opposite sides of the benzimidazole moiety, with their aromatic rings approximately parallel to the surface. The organization of three surface-bound benzyl substituents from three different NHCs into a triangular array controls the formation of a highly ordered Kagome-like surface lattice. By comparison with earlier studies of NHCs on Cu(111), we show that the binding geometry and self-assembly of NHCDBZ are influenced by intermolecular and adsorbate-substrate interactions and facilitated by the flexibility of the methylene linkage between the N-heterocycle and the aromatic wingtip substituents.
Collapse
Affiliation(s)
- Eloise Angove
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St Andrews, Fife KY16
9ST, United Kingdom
| | - Federico Grillo
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St Andrews, Fife KY16
9ST, United Kingdom
| | - Herbert A. Früchtl
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St Andrews, Fife KY16
9ST, United Kingdom
| | - Alex J. Veinot
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario Canada, K7L 3N6
| | - Ishwar Singh
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario Canada, K7L 3N6
| | - J. Hugh Horton
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario Canada, K7L 3N6
| | - Cathleen M. Crudden
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario Canada, K7L 3N6
- Institute
of Transformative Bio-Molecules, ITbM-WPI, Nagoya University, Nagoya, Chikusa 464-8601, Japan
| | - Christopher J. Baddeley
- EaStCHEM
School of Chemistry, University of St. Andrews, North Haugh, St Andrews, Fife KY16
9ST, United Kingdom
| |
Collapse
|
12
|
Johnson KN, Chilukurib B, Fisherb ZE, Hippsa KW, Mazura U. Role of the Supporting Surface in the Thermodynamics and Cooperativity of Axial Ligand Binding to Metalloporphyrins at Interfaces. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220209122508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
: Metalloporphyrins have been shown to bind axial ligands in a variety of environments including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations.
Collapse
Affiliation(s)
- Kristen N. Johnson
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| | - Bhaskar Chilukurib
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Zachary E. Fisherb
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - K. W. Hippsa
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| | - Ursula Mazura
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| |
Collapse
|
13
|
Shen T, Chang Z, Liu X, Chen Q, Feng L. Palladium complex composites based on fullerene encapsulated in porous zinc porphyrin polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1964369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tieyin Shen
- Department of Bioengineering, Zunyi Medical University (Zhuhai Campus), Zhuhai, China
| | - Zhaosen Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Xin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Lijuan Feng
- Department of Bioengineering, Zunyi Medical University (Zhuhai Campus), Zhuhai, China
| |
Collapse
|
14
|
Cai ZF, Zheng LQ, Zhang Y, Zenobi R. Molecular-Scale Chemical Imaging of the Orientation of an On-Surface Coordination Complex by Tip-Enhanced Raman Spectroscopy. J Am Chem Soc 2021; 143:12380-12386. [PMID: 34329556 DOI: 10.1021/jacs.1c06366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic coordination structures at interfaces play an essential role in many biological and chemical systems. Understanding the molecular specificity, orientation, and spatial distribution of the coordination complexes at the nanometer scale is of great importance for effective molecular engineering of nanostructures and fabrication of functional devices with controllable properties. However, fundamental properties of such coordination systems are still rarely studied directly. In this work, we present a spectroscopic approach on the basis of tip-enhanced Raman spectroscopy (TERS) to investigate cobalt(II) tetraphenyl-porphyrine coordination species on the scale of a single molecule under ambient conditions. Coordination species anchored on gold surfaces modified with pyridine thiol self-assembled monolayers can be spectroscopically distinguished and mapped with ca. 2 nm resolution. In addition, in combination with density functional theory simulations, the adsorption configuration and molecular orientation of the coordination complexes are also revealed using TERS imaging.
Collapse
Affiliation(s)
- Zhen-Feng Cai
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Li-Qing Zheng
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich CH-8093, Switzerland
| |
Collapse
|
15
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew Chem Int Ed Engl 2021; 60:16561-16567. [PMID: 33938629 PMCID: PMC8362151 DOI: 10.1002/anie.202104075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 11/24/2022]
Abstract
We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru-porphyrins supported on an atomistically well-defined Ag(111) substrate. Our systematic real-space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond-resolving atomic force microscopy and X-ray standing-wave measurements characterise the geometry, X-ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature-programmed desorption the binding strength. Density-functional-theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Felix Haag
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Manuela Garnica
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco28049MadridSpain
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Paul T. P. Ryan
- Diamond Light SourceDidcotOX11 0DEUK
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
- Current address: Institute of Applied PhysicsTechnische Universität WienWiedner Hauptstraße 8-10/1341040ViennaAustria
| | | | | | - Ari Paavo Seitsonen
- Département de ChimieEcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | |
Collapse
|
16
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface‐Confined Ru‐Porphyrins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter S. Deimel
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Feulner
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Felix Haag
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Francesco Allegretti
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Manuela Garnica
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco 28049 Madrid Spain
| | - Martin Schwarz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Willi Auwärter
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Paul T. P. Ryan
- Diamond Light Source Didcot OX11 0DE UK
- Department of Materials Imperial College London Exhibition Road SW7 2AZ London UK
- Current address: Institute of Applied Physics Technische Universität Wien Wiedner Hauptstraße 8-10/134 1040 Vienna Austria
| | | | | | - Ari Paavo Seitsonen
- Département de Chimie Ecole Normale Supérieure 24 rue Lhomond 75005 Paris France
- Université de recherche Paris-Sciences-et-Lettres Sorbonne Université Centre National de la Recherche Scientifique 75005 Paris France
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|