1
|
Li H, Pang J, Hu W, Caballero V, Sun J, Tan M, Hu JZ, Ni Y, Wang Y. Confined dual Lewis acid centers for selective cascade C-C coupling and deoxygenation. Chem Sci 2024; 15:8031-8037. [PMID: 38817567 PMCID: PMC11134334 DOI: 10.1039/d3sc06921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
The selective formation of C-C bonds, coupled with effective removal of oxygen, plays a crucial role in the process of upgrading biomass-derived oxygenates into fuels and chemicals. However, co-feeding reactants with water is sometimes necessary to assist binding sites in catalytic reactions, thereby achieving desirable performance. Here, we report the design of a CeSnBeta catalyst featuring dual Lewis acidic sites for the efficient production of isobutene from acetone via C-C coupling followed by deoxygenation. By incorporating Ce species onto SnBeta, which was synthesized through liquid-phase grafting of dealuminated Beta, we created confined dual Lewis acidic centers within Beta zeolites. The cooperative action of Ce species and framework Sn sites within this confined environment enabled selective catalysis of the acetone-to-isobutene cascade reactions, showcasing enhanced stability even without the presence of water.
Collapse
Affiliation(s)
- Houqian Li
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Pullman WA 99164 USA
| | - Jifeng Pang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences No. 457 Zhongshan Road Dalian 116023 P.R. China
| | - Wenda Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Pullman WA 99164 USA
- Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Vannessa Caballero
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Pullman WA 99164 USA
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Pullman WA 99164 USA
| | - Mingwu Tan
- Institute of Sustainability for Chemicals, Energy and Environment 1 Pesek Road Jurong Island 627833 Singapore
| | - Jian Zhi Hu
- Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Yelin Ni
- Pacific Northwest National Laboratory Richland WA 99352 USA
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University Pullman WA 99164 USA
- Pacific Northwest National Laboratory Richland WA 99352 USA
| |
Collapse
|
2
|
Maqbool M, Akhter T, Hassan SU, Mahmood A, Al-Masry W, Razzaque S. Development of a chromium oxide loaded mesoporous silica as an efficient catalyst for carbon dioxide-free production of ethylene oxide. RSC Adv 2023; 13:32424-32432. [PMID: 37928848 PMCID: PMC10623106 DOI: 10.1039/d3ra05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Ethylene oxide (EO) is a significant raw material used in many commodities for consumers, particularly ethoxylates, polymers, and certain other glycol derivatives. We synthesized a catalyst by incorporation of chromium oxide into a mesoporous silica material (Cr/MSM) via the hydrothermal method, an effective catalyst for partial ethylene oxidation for producing carbon dioxide (CO2) free EO. Subsequently, XRD, BET, XPS, and TEM were used to analyse the structural characteristics of the Cr/MSM catalyst. The catalytic performance of the synthesized catalyst was assessed in the liquid-phase epoxidation (LPE) of ethylene, utilizing peracetic acid (PAA) as an oxidant. This approach not only circumvented the generation of CO2 but also mitigated the risk of metal leaching. Confirmation of the successful production of EO was achieved through GC chromatography, where the presence of a peak with a retention time (RT) of 8.91 minutes served as conclusive evidence. We systematically explored a range of reaction parameters, including temperature, catalyst concentration, the molar ratio of ethylene to PAA, and solvent effect. This comprehensive investigation aimed to fine-tune the reaction conditions, ultimately improving ethylene conversion and enhancing the selectivity of the catalyst for EO production. This approach can effectively resolve the issues of greenhouse gas emissions and metal leaching that had been associated with previously reported catalysts.
Collapse
Affiliation(s)
- Muhammad Maqbool
- Department of Chemistry, University of Management and Technology C-II, Johar Town 54770 Lahore Pakistan
| | - Toheed Akhter
- Department of Chemistry, University of Management and Technology C-II, Johar Town 54770 Lahore Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus Lahore Pakistan
| | - Asif Mahmood
- Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Waheed Al-Masry
- Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Shumaila Razzaque
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka, 44/51 01-224 Warszawa Poland
| |
Collapse
|
3
|
Sun W, Zhang T, Li J, Zhu X. Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si-OH and interlayer under synergistic modification with H 2O 2 and tetramethylammonium bromide. CHEMOSPHERE 2023; 321:138114. [PMID: 36773681 DOI: 10.1016/j.chemosphere.2023.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Montmorillonite (Mt) is a potential adsorbent for volatile organic vapor removal from contaminated soils because of its rich reserves and porous nature, but its inertia surface property has limited its application for polar compounds. In this study, modifications of Mt were carried out by high energy ball milling with H2O2 and tetramethylammonium bromide (TMAB) to obtain adsorbents with both high porosity and abundant Si-OH groups (BHTMt). The microporous structure produced by TMAB insertion as well as the silanol (Si-OH) groups formed by H2O2 oxidation improved the adsorption of acetone by the modified material. The adsorption capacity of BHTMt for acetone was increased by 80% compared to the original Mt. The effect of H2O2 dosage on the adsorption performance for gaseous acetone was investigated by dynamic adsorption experiments. The adsorption kinetic results demonstrated that the adsorption of acetone by the modified material was subject to both physical and chemical adsorption. Density functional theory calculations indicated that there was no obvious interaction between TMAB and acetone, and the materials adsorbed acetone mainly through hydrogen bonding interaction of Si-OH as well as pore filling effects.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Lu B, Ma S, Liang S, Wang Z, Liu Y, Mao S, Ban H, Wang L, Wang Y. Efficient Conversion of Ethanol to 1-Butanol over Adjacent Acid–Base Dual Sites via Enhanced C–H Activation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Liu H, Zhou J, Chen T, Hu P, Xiong C, Sun Q, Chen S, Lo TWB, Ji H. Isolated Pt Species Anchored by Hierarchical-like Heteroatomic Fe-Silicalite-1 Catalyze Propane Dehydrogenation near the Thermodynamic Limit. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Hao Liu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Zhou
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianxiang Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Peng Hu
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingdi Sun
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shenwei Chen
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tsz Woon Benedict Lo
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, China
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Qi L, Das S, Zhang Y, Nozik D, Gates BC, Bell AT. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta. J Am Chem Soc 2023; 145:2911-2929. [PMID: 36715296 DOI: 10.1021/jacs.2c11075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Catalysts for hydroformylation of ethene were prepared by grafting Rh into nests of ≡SiOZn-OH or ≡SiOCo-OH species prepared in dealuminated BEA zeolite. X-ray absorption spectra and infrared spectra of adsorbed CO were used to characterize the dispersion of Rh. The Rh dispersion was found to increase markedly with increasing M/Rh (M = Zn or Co) ratio; further increases in Rh dispersion occurred upon use for ethene hydroformylation catalysis. The turnover frequency for ethene hydroformylation measured for a fixed set of reaction conditions increased with the fraction of atomically dispersed Rh. The ethene hydroformylation activity is 15.5-fold higher for M = Co than for M = Zn, whereas the propanal selectivity is slightly greater for the latter catalyst. The activity of the Co-containing catalyst exceeds that of all previously reported Rh-containing bimetallic catalysts. The rates of ethene hydroformylation and ethene hydrogenation exhibit positive reaction orders in ethene and hydrogen but negative orders in carbon monoxide. In situ IR spectroscopy and the kinetics of the catalytic reactions suggest that ethene hydroformylation is mainly catalyzed by atomically dispersed Rh that is influenced by Rh-M interactions, whereas ethene hydrogenation is mainly catalyzed by Rh nanoclusters. In situ IR spectroscopy also indicates that the ethene hydroformylation is rate limited by formation of propionyl groups and by their hydrogenation, a conclusion supported by the measured H/D kinetic isotope effect. This study presents a novel method for creating highly active Rh-containing bimetallic sites for ethene hydroformylation and provides new insights into the mechanism and kinetics of this process.
Collapse
Affiliation(s)
- Liang Qi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sonali Das
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yanfei Zhang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Danna Nozik
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexis T Bell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Zhang Y, Gao P, Jiao F, Chen Y, Ding Y, Hou G, Pan X, Bao X. Chemistry of Ketene Transformation to Gasoline Catalyzed by H-SAPO-11. J Am Chem Soc 2022; 144:18251-18258. [PMID: 36191129 DOI: 10.1021/jacs.2c03478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although ketene has been proposed to be an active intermediate in a number of reactions including OXZEO (metal oxide-zeolite)-catalyzed syngas conversion, dimethyl ether carbonylation, methanol to hydrocarbons, and CO2 hydrogenation, its chemistry and reaction pathway over zeolites are not well understood. Herein, we study the pathway of ketene transformation to gasoline range hydrocarbons over the molecular sieve H-SAPO-11 by kinetic analysis, in situ infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It is demonstrated that butene is the reaction intermediate on the paths toward gasoline products. Ketene transforms to butene on the acid sites via either acetyl species following an acetic acid ketonization pathway or acetoacetyl species with keto-enol tautomerism following an acetoacetic acid decarboxylation pathway when in the presence of water. This study reveals experimentally for the first time insights into ketene chemistry in zeolite catalysis.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Pan Gao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Feng Jiao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yuxiang Chen
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yilun Ding
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| |
Collapse
|
8
|
Wang G, Ke X, Sui M. Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Qi L, Zhang Y, Babucci M, Chen C, Lu P, Li J, Dun C, Hoffman AS, Urban JJ, Tsapatsis M, Bare SR, Han Y, Gates BC, Bell AT. Dehydrogenation of Propane and n-Butane Catalyzed by Isolated PtZn 4 Sites Supported on Self-Pillared Zeolite Pentasil Nanosheets. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liang Qi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfei Zhang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- Department of Materials Science and Engineering, Solar Cell Technology, Uppsala University, Uppsala 75103, Sweden
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Peng Lu
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jingwei Li
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jeffrey J. Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bruce C. Gates
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Alexis T. Bell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Fang L, Yan S, Wu H, Wang M, Du T, Wang T, Liu J, Meng C, Guo X, Ren L. Defect-Guided Synthesis of Hierarchical Sn-B-Beta Zeolite with Highly Exposed Sn Sites. Inorg Chem 2022; 61:11939-11948. [PMID: 35857023 DOI: 10.1021/acs.inorgchem.2c01673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectively anchoring active centers on the external surface for forming highly exposed acid sites is a highly desirable but challenging task in zeolite catalyst synthesis. Herein, a defect-guided etching-regrowth strategy is rationally designed for facilely positioning Sn Lewis acid sites on the outer surface of the Sn-B-Beta while fabricating a bifunctional hierarchical structure. The synthesis was conducted by hydrothermal treatment of the as-made B-Beta (uncalcined), which has intrinsic defects of the BEA structure, with Sn source and basic organic structure directing agent (SDA). Under a moderate SDA concentration, with blocked micropore channels, such SDA-triggered etching-regrowth will proceed along the defect defined pathway, which ensures Sn selectively anchored on the external surface. Moreover, this methodology has exclusively introduced tetrahedrally coordinated framework Sn with open Sn sites as the predominated species. Mono- and disaccharide isomerizations in ethanol over different Sn-Beta catalysts proved the prominent advantages of the hierarchical structure with highly exposed and synergetic acid sites.
Collapse
Affiliation(s)
- Lu Fang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Siyang Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Huifang Wu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Mingrui Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.,PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Teng Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Tianlong Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.,PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Limin Ren
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
11
|
Li LY, Wang ZY, Yang SY, Chen JG, He ZH, Wang K, Luo QX, Liu ZW, Liu ZT. Understanding the Role of Fe Doping in Tuning the Size and Dispersion of GaN Nanocrystallites for CO 2-Assisted Oxidative Dehydrogenation of Propane. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Long-Yao Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhong-Yu Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Shao-Yan Yang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jian-Gang Chen
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhen-Hong He
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Kuan Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Qun-Xing Luo
- International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, School of Chemical Engineering, Northwest University, Xi’an 710069, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zhao-Tie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
12
|
Hu ZP, Qin G, Han J, Zhang W, Wang N, Zheng Y, Jiang Q, Ji T, Yuan ZY, Xiao J, Wei Y, Liu Z. Atomic Insight into the Local Structure and Microenvironment of Isolated Co-Motifs in MFI Zeolite Frameworks for Propane Dehydrogenation. J Am Chem Soc 2022; 144:12127-12137. [PMID: 35762495 DOI: 10.1021/jacs.2c02636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embedding metal species into zeolite frameworks can create framework-bond metal sites in a confined microenvironment. The metals sitting in the specific T sites of zeolites and their crystalline surroundings are both committed to the interaction with the reactant, participation in the activation, and transient state achievement during the whole catalytic process. Herein, we construct isolated Co-motifs into purely siliceous MFI zeolite frameworks (Co-MFI) and reveal the location and microenvironment of the isolated Co active center in the MFI zeolite framework particularly beneficial for propane dehydrogenation (PDH). The isolated Co-motif with the distorted tetrahedral structure ({(≡SiO)2Co(HO-Si≡)2}, two Co-O-Si bonds, and two pseudobridging hydroxyls (Co···OH-Si) is located at T1(7) and T3(9) sites of the MFI zeolite. DFT calculations and deuterium-labeling reactions verify that the isolated Co-motif together with the MFI microenvironment collectively promotes the PDH reaction by providing an exclusive microenvironment to preactivate C3H8, polarizing the oxygen in Co-O-Si bonds to accept H* ({(≡SiO)CoHδ- (Hδ+O-Si≡)3}), and a scaffold structure to stabilize the C3H7* intermediate. The Co-motif active center in Co-MFI goes through the dynamic evolutions and restoration in electronic states and coordination states in a continuous and repetitive way, which meets the requirements from the series of elementary steps in the PDH catalytic cycle and fulfills the successful catalysis like enzyme catalysis.
Collapse
Affiliation(s)
- Zhong-Pan Hu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Gangqiang Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingfeng Han
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Wenna Zhang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Nan Wang
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yijun Zheng
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | - Te Ji
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingxu Wei
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Li H, Wu P, Li X, Pang J, Zhai S, Zhang T, Zheng M. Catalytic hydrogenation of maleic anhydride to γ-butyrolactone over a high-performance hierarchical Ni-Zr-MFI catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Li G, Jang H, Liu S, Li Z, Kim MG, Qin Q, Liu X, Cho J. The synergistic effect of Hf-O-Ru bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution. Nat Commun 2022; 13:1270. [PMID: 35277494 PMCID: PMC8917135 DOI: 10.1038/s41467-022-28947-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Ru nanoparticles have been demonstrated to be highly active electrocatalysts for the hydrogen evolution reaction (HER). At present, most of Ru nanoparticles-based HER electrocatalysts with high activity are supported by heteroatom-doped carbon substrates. Few metal oxides with large band gap (more than 5 eV) as the substrates of Ru nanoparticles are employed for the HER. By using large band gap metal oxides substrates, we can distinguish the contribution of Ru nanoparticles from the substrates. Here, a highly efficient Ru/HfO2 composite is developed by tuning numbers of Ru-O-Hf bonds and oxygen vacancies, resulting in a 20-fold enhancement in mass activity over commercial Pt/C in an alkaline medium. Density functional theory (DFT) calculations reveal that strong metal-support interaction via Ru-O-Hf bonds and the oxygen vacancies in the supported Ru samples synergistically lower the energy barrier for water dissociation to improve catalytic activities. Although ruthenium nanomaterials have proven to be effective catalysts for H2 evolution, there is still room for activity improvements. Here, authors develop an efficient Ru/HfO2 electrocatalyst with tuned Ru-O-Hf bonds and oxygen vacancies that shows high activities for alkaline H2 evolution.
Collapse
|
15
|
Borosilicate Zeolite Enriched in Defect Boron Sites Boosting the Low-Temperature Oxidative Dehydrogenation of Propane. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Song Y, Zhang T, Bai R, Zhou Y, Li L, Zou Y, Yu J. Catalytically active Rh species stabilized by zirconium and hafnium on zeolites. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported subnanometric metal species and metal nanoparticles, prepared through the impregnation method, are widely used in industrial catalysis, but suffering from the poor stability of the metal species to sintering...
Collapse
|
17
|
Wang T, Huang W, Han H, Zhang J, Wu H, Yan X, Jiang Y, Fang L, Zhang B, Guo X, Ren L. Facile and fast synthesis of highly active Lewis acid MWW zeolite from a pure silica ITQ-1. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile hydrothermal etching-healing strategy is proposed to fabricate Sn-MWW zeolite based on a pure silica ITQ-1 precursor, which avoids using any supporting agents and additives, such as B3+ and...
Collapse
|
18
|
Johnson BA, Di Iorio JR, Román-Leshkov Y. Identification and quantification of distinct active sites in Hf-Beta zeolites for transfer hydrogenation catalysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|