1
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Gorachand B, Surendra Reddy G, Ramachary DB. Direct Organocatalytic Chemoselective Synthesis of Pharmaceutically Active 1,2,3-Triazoles and 4,5'-Bitriazoles. ACS ORGANIC & INORGANIC AU 2024; 4:534-544. [PMID: 39371323 PMCID: PMC11450731 DOI: 10.1021/acsorginorgau.4c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 10/08/2024]
Abstract
Carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles are well-known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free synthesis has always remained challenging, as no comprehensive protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various carbonyl-containing 1,4,5-trisubstituted- and 1,4-disubstituted-1,2,3-triazoles and unsymmetrical 4,5'-bitriazoles with high yields and chemo-/regioselectivity from the library of 2,4-diketoesters and azides in a sequential one-pot manner through the combination of organocatalytic enolization, in situ [3 + 2]-cycloaddition, and hydrolysis reactions. The commercial availability of the starting materials/catalysts, diverse substrate scope, performance in a one-pot manner, chemo-/regioselectivity of organo-click reaction, quick synthesis of unsymmetrical 4,5'-bitriazoles, a large number of synthetic applications, and numerous medicinal applications of carbonyl-containing 1,2,3-triazoles are the key attractions of this metal-free organo-click work.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | - Gundam Surendra Reddy
- Catalysis Laboratory, School
of Chemistry, University of Hyderabad, Hyderabad500 046, India
| | | |
Collapse
|
3
|
González-Rodríguez J, González-Granda S, Kumar H, Alvizo O, Escot L, Hailes HC, Gotor-Fernández V, Lavandera I. BioLindlar Catalyst: Ene-Reductase-Promoted Selective Bioreduction of Cyanoalkynes to Give (Z)-Cyanoalkenes. Angew Chem Int Ed Engl 2024; 63:e202410283. [PMID: 38943496 DOI: 10.1002/anie.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
The direct synthesis of alkenes from alkynes usually requires the use of transition-metal catalysts. Unfortunately, efficient biocatalytic alternatives for this transformation have yet to be discovered. Herein, the selective bioreduction of electron-deficient alkynes to alkenes catalysed by ene-reductases (EREDs) is described. Alkynes bearing ketone, aldehyde, ester, and nitrile moieties have been effectively reduced with excellent conversions and stereoselectivities, observing clear trends for the E/Z ratios depending on the nature of the electron-withdrawing group. In the case of cyanoalkynes, (Z)-alkenes were obtained as the major product, and the reaction scope was expanded to a wide variety of aromatic substrates (up to >99 % conversion, and Z/E stereoselectivities of up to >99/1). Other alkynes containing aldehyde, ketone, or ester functionalities also proved to be excellent substrates, and interestingly gave the corresponding (E)-alkenes. Preparative biotransformations were performed on a 0.4 mmol scale, producing the desired (Z)-cyanoalkenes with good to excellent isolated yields (63-97 %). This novel reactivity has been rationalised through molecular docking by predicting the binding poses of key molecules in the ERED-pu-0006 active site.
Collapse
Affiliation(s)
- Jorge González-Rodríguez
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060, Wien, Austria
| | - Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Department of Chemistry, University of Michigan, 930N University Ave, Ann Arbor, MI 48109, USA
| | - Hirdesh Kumar
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Oscar Alvizo
- Codexis, Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Lorena Escot
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
4
|
Jiang LF, Wu SH, Jiang YX, Ma HX, He JJ, Bi YB, Kong DY, Cheng YF, Cheng X, Deng QH. Enantioselective copper-catalyzed azidation/click cascade reaction for access to chiral 1,2,3-triazoles. Nat Commun 2024; 15:4919. [PMID: 38858346 PMCID: PMC11164697 DOI: 10.1038/s41467-024-49313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-β-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yu-Xuan Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Hong-Xiang Ma
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Jia-Jun He
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yang-Bo Bi
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
5
|
Liu R, Wang J, Wu H, Quan X, Wang S, Guo J, Wang Y, Li H. Stereocontrol in an intermolecular Schmidt reaction of equilibrating hydroxyalkyl allylic azides. Chem Commun (Camb) 2024; 60:4362-4365. [PMID: 38563154 DOI: 10.1039/d4cc00907j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A selective intermolecular Schmidt reaction of equilibrating hydroxyalkyl allylic azides is reported to afford N-hydroxyalk-1-en-3-yl lactams in modest to high yields. For prochiral and chiral ketones, modest to high 1,5-diastereoselectivity was achieved, and the mechanistic analysis is supported by DFT calculation.
Collapse
Affiliation(s)
- Ruzhang Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Xianfeng Quan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Shilin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jiandong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Heting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
6
|
Zeng C, Su S, Fang S, Jiang H, Yang S, Wu W. Palladium-Catalyzed Tandem Cyclization of Bromoalkynes, Anilines and CO: Access to 1,3-Substituted Maleimides. Chem Asian J 2023:e202300880. [PMID: 37983560 DOI: 10.1002/asia.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
A novel palladium-catalyzed three-component carbonylation reaction for the assembly of various 1,3-substituted maleimide derivatives from haloalkynes and simple anilines. The nucleophilic addition reaction of haloalkynes, anilines and CO, and insertion of carbonyl have been achieved sequentially in this reaction. The high chemo- and regioselectivities, as well as no need of expensive ligands or additives further illustrate the synthetic value of this approach.
Collapse
Affiliation(s)
- Caijin Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huangfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Zhou L, Li Y, Li S, Shi Z, Zhang X, Tung CH, Xu Z. Asymmetric rhodium-catalyzed click cycloaddition to access C-N axially chiral N-triazolyl indoles. Chem Sci 2023; 14:5182-5187. [PMID: 37206396 PMCID: PMC10189892 DOI: 10.1039/d3sc00610g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is regarded as a prime example of "click chemistry", but the asymmetric click cycloaddition of internal alkynes still remains challenging. A new asymmetric Rh-catalyzed click cycloaddition of N-alkynylindoles with azides was developed, providing atroposelective access to C-N axially chiral triazolyl indoles, a new type of heterobiaryl, with excellent yields and enantioselectivity. This asymmetric approach is efficient, mild, robust and atom-economic, and features very broad substrate scope with easily available Tol-BINAP ligands.
Collapse
Affiliation(s)
- Li Zhou
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Yankun Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Shunian Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhenwei Shi
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Xue Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 PR China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University No. 18 Shilongshan Road Hangzhou 310024 China
| |
Collapse
|
9
|
Zeng L, Zhang F, Cui S. Construction of Axial Chirality via Click Chemistry: Rh-Catalyzed Enantioselective Synthesis of 1-Triazolyl-2-Naphthylamines. Org Lett 2023; 25:443-448. [PMID: 36627257 DOI: 10.1021/acs.orglett.2c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A modular and practical click chemistry for atroposelective synthesis of 1-triazolyl-2-naphthylamines is developed. In this protocol, a variety of aromatic or aliphatic azides, and 1-alkynyl-2-naphthylamines could be assembled into valuable 1-triazlyl-2-naphthylamine scaffolds via a [3 + 2] cycloaddition under Rh-catalysis. This asymmetric click technology features easily accessible starting materials, mild reaction conditions, facile scalability, and good enantioselectivity. The good thermostability of products showcases great applicable potential, and the synthetic transformations further expand the molecular diversity of atropisomers.
Collapse
Affiliation(s)
- Linwei Zeng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Vala D, Vala RM, Patel HM. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS OMEGA 2022; 7:36945-36987. [PMID: 36312377 PMCID: PMC9608397 DOI: 10.1021/acsomega.2c04883] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 05/31/2023]
Abstract
1,2,3-Triazole scaffolds are not obtained in nature, but they are still intensely investigated by synthetic chemists in various fields due to their excellent properties and green synthetic routes. This review will provide a library of all synthetic routes used in the past 21 years to synthesize 1,2,3-triazoles and their derivatives using various metal catalysts (such as Cu, Ni, Ru, Ir, Rh, Pd, Au, Ag, Zn, and Sm), organocatalysts, metal-free as well as solvent- and catalyst-free neat syntheses, along with their mechanistic cycles, recyclability studies, solvent systems, and reaction condition effects on regioselectivity. Constant developments indicate that 1,2,3-triazoles will help lead to future organic synthesis and are useful for creating molecular libraries of various functionalized 1,2,3-triazoles.
Collapse
|
11
|
Zeng L, Li J, Cui S. Rhodium‐Catalyzed Atroposelective Click Cycloaddition of Azides and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202205037. [DOI: 10.1002/anie.202205037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Jiaming Li
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Sunliang Cui
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| |
Collapse
|
12
|
Abegg T, Cossy J, Meyer C. Cascade Cope/Winstein Rearrangements: Synthesis of Azido-Cycloheptadienes from Dialkenylcyclopropanes Possessing a Vinyl Azide. Org Lett 2022; 24:4954-4959. [PMID: 35787030 DOI: 10.1021/acs.orglett.2c01888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
cis-1,2-Dialkenylcyclopropanes incorporating a vinyl azide, generated by Knoevenagel condensations between the corresponding cyclopropanecarbaldehydes and α-azido ketones, undergo cascade Cope and Winstein [3,3]-sigmatropic rearrangements, under mild conditions. The sequence allows access to diversely substituted 1,4-cycloheptadienes armed with a secondary allylic azide with up to three stereocenters.
Collapse
Affiliation(s)
- Thomas Abegg
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
13
|
Cao Y, Huang Y, Blakemore PR. Synthesis of Thioalkynes by Desilylative Sonogashira Crosscoupling of Aryl Iodides and 1‐Methylthio‐2‐(trimethylsilyl)ethyne. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Cao
- Oregon State University Chemistry UNITED STATES
| | - Yang Huang
- Oregon State University Chemistry UNITED STATES
| | - Paul R. Blakemore
- Oregon State University Department of Chemistry 153 Gilbert Hall 97331-4003 Corvallis UNITED STATES
| |
Collapse
|
14
|
Zeng L, Li J, Cui S. Rhodium‐Catalyzed Atroposelective Click Cycloaddition of Azides and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Linwei Zeng
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Jiaming Li
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| | - Sunliang Cui
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang road Hangzhou 310058 China
| |
Collapse
|
15
|
Zhang X, Li S, Yu W, Xie Y, Tung CH, Xu Z. Asymmetric Azide-Alkyne Cycloaddition with Ir(I)/Squaramide Cooperative Catalysis: Atroposelective Synthesis of Axially Chiral Aryltriazoles. J Am Chem Soc 2022; 144:6200-6207. [PMID: 35377624 DOI: 10.1021/jacs.2c02563] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An Ir(I)/squaramide cooperative catalytic strategy for atroposelective synthesis of axially chiral aryltriazoles has been developed for the first time. Diverse structurally novel aryltriazole skeletons that cannot be accessed by traditional click reactions were synthesized in good yields with excellent enantioselectivity. Both enantiomers were easily obtained from a pair of diastereoisomeric natural quinidine- and quinine-derived squaramides. A significant Ir(I)/squaramide coordination activation, but no self-quenching phenomenon was observed in this metal/organo cooperative catalytic system.
Collapse
Affiliation(s)
- Xue Zhang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Shunian Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Wenjing Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Yufang Xie
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, No. 27 South Shanda Road, Jinan 250100, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
16
|
Guo WT, Zhu BH, Chen Y, Yang J, Qian PC, Deng C, Ye LW, Li L. Enantioselective Rh-Catalyzed Azide-Internal-Alkyne Cycloaddition for the Construction of Axially Chiral 1,2,3-Triazoles. J Am Chem Soc 2022; 144:6981-6991. [PMID: 35394289 DOI: 10.1021/jacs.2c01985] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant advances have been achieved for the construction of chiral skeletons containing 1,2,3-triazoles via transition-metal-catalyzed asymmetric azide-alkyne cycloaddition; however, most of them have been limited to terminal alkynes in the synthesis of central chirality via desymmetrization and dynamic/dynamic kinetic resolution. Enantioselective transition-metal-catalyzed azide-internal-alkyne cycloaddition is extremely limited. Moreover, the construction of a challenging five-membered (hetero)biaryl axially chiral molecule via transition-metal-catalyzed asymmetric azide-internal-alkyne cycloaddition is still underexplored. Herein, we first report an atroposelective and atom-economical synthesis of axially chiral 1,4,5-trisubstituted 1,2,3-triazoles, directly acting as core chiral units of challenging five-membered atropisomers, via the enantioselective Rh-catalyzed azide-alkyne cycloaddition (E-RhAAC) of internal alkynes and azides. The reaction demonstrates excellent functional group tolerance, forging a variety of C-C axially chiral 1,2,3-triazoles under mild conditions with moderate to excellent yields (up to 99% yield) and generally high to excellent enantioselectivities (up to 99% ee) along with specific regiocontrol. The origin of regio- and enantioselectivity control is disclosed by density functional theory (DFT) calculations, providing new guidance for the facile construction of axially chiral compounds.
Collapse
Affiliation(s)
- Wen-Ting Guo
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jian Yang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Zu B, Guo Y, He C. Catalytic Enantioselective Construction of Chiroptical Boron-Stereogenic Compounds. J Am Chem Soc 2021; 143:16302-16310. [PMID: 34570969 DOI: 10.1021/jacs.1c08482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of main group heteroatom-stereogenic compounds is of great importance due to their intriguing chemical, physical, biological, and stereoelectronic properties. Despite that organoboron compounds are widely used in organic chemistry, the creation of a tetrahedral boron-stereogenic center in one enantiomeric form remains highly challenging. Given the labile nature of ligands attached to the tetracoordinate boron atom, only a handful of enantioenriched boron-stereogenic compounds have been reported via resolution or a chiral substrate-induced diastereoselective approach. To date catalytic asymmetric synthesis of boron-stereogenic compounds has remained unknown. Here, we demonstrate the first catalytic enantioselective construction of boron-stereogenic compounds via an asymmetric copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. This enantioselective CuAAC reaction not only gives access to a wide range of novel highly functionalized boron-stereogenic heterocycles in high yields with good to excellent enantioselectivities but also produces optically active terminal alkyne and triazole moieties with various potential application prospects. Further transformation of the chiral tetracoordinate boron compounds delivers several complex heterocyclic entities bearing boron-stereogenic centers without the loss of enantiopurity. Moreover, the X-ray structure, the barrier to racemization, and the HOMO/LUMO gap of selected tetracoordinate boron compounds are investigated. Notably, these novel N,N π-conjugated boron-stereogenic compounds exhibit bright fluorescence. The optical properties, including circular dichroism, quantum yield, and circular polarized luminescence spectroscopies, are examined. These features expand the chemical space of the chiroptical boron-based dye platform, which could have great potential applications in chiral optoelectronic materials.
Collapse
Affiliation(s)
- Bing Zu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| |
Collapse
|
18
|
Liu R, Zhang Y, Xu J. Selective hydroboration of equilibrating allylic azides. Chem Commun (Camb) 2021; 57:8913-8916. [PMID: 35225991 DOI: 10.1039/d1cc02520a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The iridium(I)-catalyzed hydroboration of equilibrating allylic azides is reported to provide only the anti-Markovnikov product of alk-1-ene isomers in good yields and with good functional group tolerance.
Collapse
Affiliation(s)
- Ruzhang Liu
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| | - Yuanyuan Zhang
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| | - Jun Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting Rd, Yangzhou 225002, China.
| |
Collapse
|
19
|
Maegawa K, Tanimoto H, Onishi S, Tomohiro T, Morimoto T, Kakiuchi K. Taming the reactivity of alkyl azides by intramolecular hydrogen bonding: site-selective conjugation of unhindered diazides. Org Chem Front 2021. [DOI: 10.1039/d1qo01088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intramolecular hydrogen bonding in the α-azido secondary acetamides (α-AzSAs) enabled site-selective integration onto the diazide modular hubs even without steric hindrance.
Collapse
Affiliation(s)
- Koshiro Maegawa
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Seiji Onishi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|