1
|
Li C, Zhou W, Liu Z, Gao R, Mi Q, Ning Z, Ren Y. Non-innocent P-centers in nonbenzenoid polycyclic aromatic molecules with tunable structures and properties. Chem Sci 2024:d4sc05857g. [PMID: 39449686 PMCID: PMC11495496 DOI: 10.1039/d4sc05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Implanting heteroatoms into polycyclic aromatic molecules (PAMs) offers a great opportunity to fine-tune their optoelectronic properties. Herein, we report a new type of nonbenzenoid PAM in which the sp2 C atoms are replaced by S and P in the azulene moiety. The synthesis harnessed modular P-chemistry and cyclization chemistry, which afforded the first example of P-azulene-based PAMs with isomeric PN- and PC-type structures. Photophysical and theoretical studies revealed that the P-environments have strong impacts on the structures and properties of the P-PAMs. Different from the electronic structure of azulene with strong π conjugation, the PC derivatives maintained effective σ*-π* hyperconjugation in the frontier molecular orbitals via the P-centers. In particular, the PC derivative with a P(iii)-center showed unexpected room-temperature phosphorescence in solution, which was attributed to the excited-state aromaticity induced structure change at the P-center. Decoration with various aryl groups further modified the photophysical and redox properties in another dimension. Furthermore, bis(triarylamine)-functionalized P-PAMs formed stable radical cations in which the P-environments strongly influenced the mixed-valence state and open-shell characters. As a proof of concept, bis(triarylamine)-functionalized P-PAMs were explored as the hole-transporting layers in perovskite solar cells, and a power conversion efficiency of 14% was achieved. As a new example of nonbenzenoid PAMs with intriguing optoelectronic properties, our P-PAMs are promising building blocks for diverse optoelectronic applications in the future.
Collapse
Affiliation(s)
- Can Li
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Wei Zhou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Shanghai Clinical Research and Trial Center Shanghai 201210 People's Republic of China
| |
Collapse
|
2
|
Kanganavaree C, Kantarod K, Worakul T, Soorukram D, Kuhakarn C, Chakarawet K, Wattanathana W, Surawatanawong P, Reutrakul V, Leowanawat P. Palladium-Catalyzed Double Decarboxylative [3 + 2] Annulation of Naphthalic Anhydrides with Internal Alkynes. J Org Chem 2024; 89:15083-15090. [PMID: 39369427 DOI: 10.1021/acs.joc.4c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A palladium-catalyzed [3 + 2] annulation of naphthalic anhydrides with internal alkynes has been developed. The present protocol offers an efficient and convenient route to access a series of 1,2-disubstituted acenaphthylenes with excellent functional group compatibility. The reaction is proposed to proceed through a double decarboxylation sequence. The reported synthetic protocols can be extended to napthalene- and perylenedicarboximide-containing substrates. The molecular structures, photophysical properties, and frontier molecular orbitals of the obtained adducts were investigated by X-ray crystallography, UV-vis and fluorescence spectroscopy, and DFT calculations.
Collapse
Affiliation(s)
- Chaipot Kanganavaree
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Kritchasorn Kantarod
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Thanapat Worakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Khetpakorn Chakarawet
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Panida Surawatanawong
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Zhou L, Qiu F, Ding Y, Liang J, Zhou B, Zhou Z, Zhang L, Chi C, Wang Q. Perylene with Split-Azulene Embedding. Angew Chem Int Ed Engl 2024; 63:e202409750. [PMID: 38982974 DOI: 10.1002/anie.202409750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Splitting the five and seven-membered rings of azulene and embedding them separately into a conjugated backbone provides azulene-like polycyclic aromatic hydrocarbons (PAHs), which are of great interest in quantum and material chemistry. However, the synthetic accessibility poses a significant challenge. In this study, we present the synthesis of a novel azulene-like PAH, Pery-57, which can be viewed as the integration of a perylene framework into the split azulene. The compact structure of Pery-57 displays several intriguing characteristics, including NIR II absorption at 1200 nm, a substantial dipole moment of 3.5 D, and head-to-tail alternating columnar packing. Furthermore, Pery-57 exhibits remarkable redox properties. The cationic radical Pery-57⋅+ readily captures a hydrogen atom. Variable-temperature NMR (VT NMR ) and variable-temperature EPR (VT-EPR) studies reveal that the dianion Pery-572- possesses an open-shell singlet ground state and demonstrates significant global anti-aromaticity. The dication Pery-572+ is also predicted to exhibit diradical character. Despite bearing three bulky substituents, Pery-57 displays p-type transport characteristics with a mobility of 0.03 cm2 V-1 s-1, attributed to its unique azulene-like structure. Overall, this work directs interest in azulene-like PAHs, a unique member of nonalternant PAHs showcasing exceptional properties and applications.
Collapse
Affiliation(s)
- Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yeda Ding
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianwei Liang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Bingdi Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Zheng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
4
|
Tai H, Ding W, Zhang X, Liang K, Rong Y, Liu Z. Upgrading Structural Conjugation in Three-Dimensional Ni-Based Metal-Organic Frameworks for Promoting Electrical Conductivity and Specific Capacitance. Inorg Chem 2024; 63:18083-18091. [PMID: 39295589 DOI: 10.1021/acs.inorgchem.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for electrochemical energy storage and conversion due to their high specific surface areas, abundant active sites, and excellent chemical and structural tunability. However, the direct utilization of MOFs as electrochemical materials is a challenge because of the poor electroconductivity induced by the insulating nature of most organic linkers. Herein, a conjugated three-dimensional Ni-MOF {Ni(HBTC)(BPE)}n (Ni-BPE) with a 2-fold interpenetrating structure was developed via the coordination polymerization of Ni2+, a H3BTC ligand (1,3,5-benzenetricarboxylic acid), and a vinyl-functionalized bipyridine linker (1,2-di(4-pyridyl)ethylene, BPE). Ni-BPE displayed an enhanced conjugation system compared to analogous and insulated Ni-BPY that is constructed by the Ni-BTC layer and ordinary bipyridine linker (4,4'-bipyridine, BPY). Notably, upgrading structural conjugation promoted a dramatical ∼204 times increase in the electroconductivity of Ni-BPE compared to Ni-BPY. More importantly, Ni-BPE displayed a higher specific capacitance of 633.2 F g-1 (316.6 C g-1) at 1 A g-1, which exhibited a significant ∼1.5-fold enhancement than Ni-BPY. Furthermore, the asymmetric supercapacitor can reach a good energy density of 25.2 Wh kg-1 with a reasonable cycle stability of 71.0% over 5000 cycles. This work provides an effective method for optimizing the structure of insulating MOFs to enhance the electroconductivity and specific capacitance.
Collapse
Affiliation(s)
- Hongbo Tai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Wenyu Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Kaicheng Liang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yang Rong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
5
|
Liu P, Wu MX, Yu ML, Kang H, Huang B, Yang HB, Zhao XL, Shi X. Synthesis of Polycyclic Aromatic Compounds by Electrocyclization-Dehydrogenation of Diradicaloids. Org Lett 2024; 26:7914-7919. [PMID: 39240235 DOI: 10.1021/acs.orglett.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we present a novel and efficient method for the synthesis of two new polycyclic aromatic hydrocarbons, 1 and 2, through the electrocyclization-dehydrogenation of diradicaloids. The proposed oxidative electrocyclization via intermediate diradicaloids is monitored by electron paramagnetic resonance and ultraviolet-visible spectroscopy. Interestingly, 1 exhibits chirality because of its inherent helical skeleton, and 2 features long-wavelength absorption and near-infrared emission properties due to its extended π-conjugation.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Ling Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hao Kang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Ren P, Chen L, Sun C, Hua X, Luo N, Fan B, Chen P, Shao X, Zhang HL, Liu Z. Linear Non-benzenoid Isomer of Acene Fusing Chrysene with Azulene Units. J Phys Chem Lett 2024; 15:8410-8419. [PMID: 39116005 DOI: 10.1021/acs.jpclett.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received considerable attention owing to their distinctive optical and electrical properties. Nevertheless, the synthesis and optoelectronic application of non-benzenoid PAHs remain challenging. Herein, we present a facile synthesis of linear non-benzenoid PAH with an armchair edge, diACh, by fusing chrysene with two azulene units. We systematically investigated the optical and electrical properties, which were also compared to its isomers, including benzenoid and non-benzenoid zigzag edge isomers. diACh exhibits global aromaticity, good planarity, and suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels. The protonation of diACh in solution successively forms a stable tropylium cation and dication. Moreover, the neutral, cationic, and dicationic states of diACh can be transformed with remarkable reversibility during the protonation-deprotonation process, as confirmed by ultraviolet-visible absorptions, fluorescence spectra, 1H nuclear magnetic resonance, and theoretical calculations. Additionally, we fabricate p-type organic field-effect transistor (OFET) devices based on diACh with hole mobility up to 0.026 cm2 V-1 s-1, and we further develop OFET-based acid vapor sensors with good sensitivity, recyclability, and selectivity. These findings underscore the unique properties of linear non-benzenoid PAHs with an armchair edge engendered by the fusion of azulene with the acene backbone, showcasing prospective applications in organic optoelectronics.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Liangliang Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
7
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Zhang D, Zhang F, Du H, Liu F, Yi X, Chen J, Hu BL. U-shaped stereoscopic design strategy toward N-doped nanographene segment. RSC Adv 2024; 14:11771-11774. [PMID: 38617572 PMCID: PMC11009840 DOI: 10.1039/d4ra00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Hanyun Du
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
9
|
Biswas K, Chen Q, Obermann S, Ma J, Soler-Polo D, Melidonie J, Barragán A, Sánchez-Grande A, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies. Angew Chem Int Ed Engl 2024; 63:e202318185. [PMID: 38299925 DOI: 10.1002/anie.202318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Praha, Czech Republic
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Diego Soler-Polo
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
| | - Jason Melidonie
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 771 46, Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| |
Collapse
|
10
|
Wu ZG, Xin Y, Lu C, Huang W, Xu H, Liang X, Cao X, Li C, Zhang D, Zhang Y, Duan L. Precise Regulation of Multiple Resonance Distribution Regions of a B,N-Embedded Polycyclic Aromatic Hydrocarbon to Customize Its BT2020 Green Emission. Angew Chem Int Ed Engl 2024; 63:e202318742. [PMID: 38153344 DOI: 10.1002/anie.202318742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.
Collapse
Affiliation(s)
- Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yangyang Xin
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaowu Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Haojie Xu
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, P. R. China
| | - Xiao Liang
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, P. R. China
| | - Xudong Cao
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, P. R. China
| | - Chong Li
- Jiangsu Sunera Technology Co., Ltd, 214112, Wuxi, P. R. China
| | - Dongdong Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Ruan L, Luo W, Zhang H, Liu P, Shi Y, An P. Cycl[2,2,4]azine-embedded non-alternant nanographenes containing fused antiaromatic azepine ring. Chem Sci 2024; 15:1511-1519. [PMID: 38274082 PMCID: PMC10806646 DOI: 10.1039/d3sc05515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The development of non-alternant nanographenes has attracted considerable attention due to their unique photophysical properties. Herein, we reported a novel aza-doped, non-alternant nanographene (NG) 1 by embedding the cycl[2,2,4]azine unit into the benzenoid NG framework. Single-crystal X-ray diffractometry suggests saddle or twisted nonplanar geometry of the entire backbone of 1 and coplanar conformation of the cycl[2,2,4]azine unit. DFT calculation together with solid structure indicates that NG 1 possesses significant local antiaromaticity in the azepine ring. By oxidative process or trifluoroacetic acid treatment, this nanographene can transform into a mono-radical cation, which was confirmed by UV/Vis absorption, 1H NMR, and electron paramagnetic resonance (EPR) spectroscopy. The antiaromaticity/aromaticity switching of the azepine ring on 1˙+ from 1 enables the high stability of this radical cation, which remained intact for over 1 day. Due to the electron-donating nature of the nitrogen and the unique electronic structure, NG 1 exhibits strong electron-donating properties, as proved by the intermolecular charge transfer towards C60 with a high association constant. Furthermore, selective modification of NG 1 was accomplished by Vilsmeier reaction, and the derivatives 7 and 8 with substituted benzophenone were obtained. The photophysical and electronic properties can be tuned by the introduction of different electronic groups in benzophenone.
Collapse
Affiliation(s)
- Lan Ruan
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wanhua Luo
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Haifan Zhang
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yong Shi
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
12
|
Borstelmann J, Bergner J, Rominger F, Kivala M. A Negatively Curved π-Expanded Pyracylene Comprising a Tropylium Cation. Angew Chem Int Ed Engl 2023; 62:e202312740. [PMID: 37739928 DOI: 10.1002/anie.202312740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
We disclose π-expanded pyracylenes and their cationic species comprising 7-membered rings. The compounds were synthesized by stepwise oxidative cyclodehydrogenation to monitor the effect of successive cyclization on the structural and optoelectronic properties. As shown by X-ray crystallography, the complete cyclization leads to a boat-shaped scaffold featuring negative curvature provided by the 7-membered ring. The embedded tropone unit enabled the convenient generation of a stabilized tropylium cation, showing bathochromically shifted absorption bands reaching into the near-infrared region beyond 1000 nm. The altered structural features, supported by theoretical calculations, point towards the positively charged 7-membered ring having aromatic character.
Collapse
Affiliation(s)
- Jan Borstelmann
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - John Bergner
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Milan Kivala
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Qin L, Huang YY, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang XS, Wu K, Zhang D. Diazulenorubicene as a Non-benzenoid Isomer of peri-Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties. Angew Chem Int Ed Engl 2023; 62:e202304632. [PMID: 37338996 DOI: 10.1002/anie.202304632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2 V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jinliang Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zheng Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Shu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiong Zhou
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
14
|
Fu L, Liu P, Xue R, Tang XY, Cao J, Yao ZF, Liu Y, Yan S, Wang XY. Unravelling the Superiority of Nonbenzenoid Acepleiadylene as a Building Block for Organic Semiconducting Materials. Angew Chem Int Ed Engl 2023; 62:e202306509. [PMID: 37417837 DOI: 10.1002/anie.202306509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Fu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Rui Xue
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiao-Yu Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jiawen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| |
Collapse
|
15
|
Toyota S, Ban S, Hara M, Kawamura M, Ikeda H, Tsurumaki E. Synthesis and Properties of Rubicene-Based Aromatic π-Conjugated Compounds as Five-Membered Ring Embedded Planar Nanographenes. Chemistry 2023; 29:e202301346. [PMID: 37278362 DOI: 10.1002/chem.202301346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons consisting of two or three rubicene substructures were designed as π-conjugated compounds embedding five-membered rings. The target compounds with t-butyl groups were synthesized by the Scholl reaction of precursors consisting of 9,10-diphenylanthracene units, even though a partially precyclized precursor was required for the synthesis of the trimer. These compounds were isolated as stable and dark blue solids. Single-crystal X-ray analysis and DFT calculations revealed the planar aromatic framework of these compounds. In the electronic spectra, the absorption and emission bands were considerably red-shifted compared with those of the reference rubicene compound. In particular, the emission band of the trimer extended to the near-IR region while retaining the emissive property. The narrowed HOMO-LUMO gap with the extension of the π-conjugation was confirmed by cyclic voltammetry and DFT calculations.
Collapse
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Sayaka Ban
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Muneyasu Hara
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Masahiko Kawamura
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hiroshi Ikeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
- Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Oi, Shinagawa-ku, Tokyo, 140-0011, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
16
|
Chen Q, Thompson AL, Christensen KE, Horton PN, Coles SJ, Anderson HL. β,β-Directly Linked Porphyrin Rings: Synthesis, Photophysical Properties, and Fullerene Binding. J Am Chem Soc 2023; 145:11859-11865. [PMID: 37201942 DOI: 10.1021/jacs.3c03549] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented β,β-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Peter N Horton
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Simon J Coles
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
17
|
Xie F, Li H, Zhang K, Shen Y, Zhao X, Li Y, Tang J. A Dislocated Twin‐Locking Acceptor‐Donor‐Acceptor Configuration for Efficient Delayed Fluorescence with Multiple Through‐Space Charge Transfer. Angew Chem Int Ed Engl 2022; 61:e202213823. [DOI: 10.1002/anie.202213823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Feng‐Ming Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Hao‐Ze Li
- School of Physics and Electronic Science Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center East China Normal University Shanghai 200062 P. R. China
| | - Kai Zhang
- Macau Institute of Materials Science and Engineering (MIMSE) Faculty of Innovation Engineering Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| | - Yang Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
| | - Xin Zhao
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou Jiangsu 215009 P. R. China
| | - Yan‐Qing Li
- School of Physics and Electronic Science Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center East China Normal University Shanghai 200062 P. R. China
| | - Jian‐Xin Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE) Faculty of Innovation Engineering Macau University of Science and Technology Taipa Macau SAR 999078 P. R. China
| |
Collapse
|
18
|
Li Z, Shuai B, Ma C, Fang P, Mei T. Nickel‐Catalyzed
Electroreductive Syntheses of Triphenylenes Using
ortho
‐Dihalobenzene‐Derived
Benzynes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhao‐Ming Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bin Shuai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
19
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022; 61:e202117181. [PMID: 35092123 DOI: 10.1002/anie.202117181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/15/2023]
Abstract
Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m-2 after 94 hours.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
Fukamizo S, Ikeda H, Tsurumaki E, Toyota S. An Alternative Synthesis of Tribenzodecacyclenes and Experimental Barrier to Propeller Inversion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shun Fukamizo
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroshi Ikeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Oi, Shinagawa-ku, Tokyo 140-0011, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
21
|
Horii K, Kishi R, Nakano M, Shiomi D, Sato K, Takui T, Konishi A, Yasuda M. Bis-periazulene (Cyclohepta[ def]fluorene) as a Nonalternant Isomer of Pyrene: Synthesis and Characterization of Its Triaryl Derivatives. J Am Chem Soc 2022; 144:3370-3375. [PMID: 35188785 DOI: 10.1021/jacs.2c00476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bis-periazulene (cyclohepta[def]fluorene), which is an unknown pyrene isomer, was synthesized as kinetically protected forms. Its triaryl derivatives 1c-e exhibited the superimposed electronic structures of peripheral, polarized, and open-shell π-conjugated systems. In contrast to previous theoretical predictions, bis-periazulene derivatives were in the singlet ground state. Changing an aryl group controlled the energy gap between the lowest singlet-triplet states.
Collapse
Affiliation(s)
- Koki Horii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.,Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Daisuke Shiomi
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kazunobu Sato
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takeji Takui
- Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen‐Embedded Multi‐Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Zeng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Yuewei Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guoyun Meng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Institute of Chemistry 100190 Beijing CHINA
| | - Ziyang Liu
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiaoqin Jia
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| | - Dongdong Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| |
Collapse
|
23
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|