1
|
Fan JJ, Ou ZY, Zhang Z. Entangled photons enabled ultrafast stimulated Raman spectroscopy for molecular dynamics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:163. [PMID: 39004616 PMCID: PMC11247098 DOI: 10.1038/s41377-024-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024]
Abstract
Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.
Collapse
Affiliation(s)
- Jiahao Joel Fan
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhe-Yu Ou
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Schlawin F. Two-photon absorption cross sections of pulsed entangled beams. J Chem Phys 2024; 160:144117. [PMID: 38619059 DOI: 10.1063/5.0196817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.
Collapse
Affiliation(s)
- Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| |
Collapse
|
3
|
Triana-Arango F, Ramírez-Alarcón R, Ramos-Ortiz G. Entangled Two-Photon Absorption in Transmission-Based Experiments: Deleterious Effects from Linear Optical Losses. J Phys Chem A 2024; 128:2210-2219. [PMID: 38446597 DOI: 10.1021/acs.jpca.3c06863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Recently different experimental schemes have been proposed to study the elusive phenomenon of entangled two-photon absorption (ETPA) in nonlinear materials. The attempts to detect ETPA using transmission-based schemes have led to results whose validity is currently under debate because the ETPA signal can be corrupted or emulated by artifacts associated with linear optical losses. The present work addresses the issue of linear losses and the corresponding artifacts in transmission-based ETPA experiments through a new approach that exploits the properties of a Hong-Ou-Mandel (HOM) interferogram. Here, we analyze solutions of rhodamine B (RhB), commonly used as a model of a nonlinear medium in ETPA studies. Then, by using the HOM interferometer as a sensing device, we first demonstrate the equivalence of the standard transmission vs pump power ETPA experiments, presented in many reports, with our novel approach of transmission vs two-photon temporal delay. Second, a detailed study of the effects of optical losses, unrelated to ETPA, over the HOM interferogram is carried out by: (1) characterizing RhB in solutions prepared with different solvents and (2) considering scattering losses introduced by silica nanoparticles used as a controlled linear loss mechanism. Our results clearly expose the deleterious effects of linear optical losses over the ETPA signal when standard transmission experiments are employed and show how, by using the HOM interferogram as a sensing device, it is possible to detect the presence of such losses. Finally, once we showed that the HOM interferogram discriminates properly linear losses, our study also reveals that under the specific experimental conditions considered here, which are the same as those employed in many reported works, the ETPA was not unequivocally detected.
Collapse
Affiliation(s)
- Freiman Triana-Arango
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| | | | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica A. C., A. P. 1-948, 37000 León, Guanajuato, México
| |
Collapse
|
4
|
Fujihashi Y, Ishizaki A, Shimizu R. Pathway selectivity in time-resolved spectroscopy using two-photon coincidence counting with quantum entangled photons. J Chem Phys 2024; 160:104201. [PMID: 38456524 DOI: 10.1063/5.0189134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Ultrafast optical spectroscopy is a powerful technique for studying the dynamic processes of molecular systems in condensed phases. However, in molecular systems containing many dye molecules, the spectra can become crowded and difficult to interpret owing to the presence of multiple nonlinear optical contributions. In this work, we theoretically propose time-resolved spectroscopy based on the coincidence counting of two entangled photons generated via parametric down-conversion with a monochromatic laser. We demonstrate that the use of two-photon counting detection of entangled photon pairs enables the selective elimination of the excited-state absorption signal. This selective elimination cannot be realized with classical coherent light. We anticipate that the proposed spectroscopy will help simplify the spectral interpretation of complex molecular and material systems comprising multiple molecules.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Ryosuke Shimizu
- Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Japan
- Institute for Advanced Science, The University of Electro-Communications, Chofu 182-8585, Japan
| |
Collapse
|
5
|
Mandal H, Ogunyemi OJ, Nicholson JL, Orr ME, Lalisse RF, Rentería-Gómez Á, Gogoi AR, Gutierrez O, Michaudel Q, Goodson T. Linear and Nonlinear Optical Properties of All- cis and All- trans Poly( p-phenylenevinylene). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2518-2528. [PMID: 38379916 PMCID: PMC10875663 DOI: 10.1021/acs.jpcc.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 02/22/2024]
Abstract
Poly(p-phenylenevinylene) (PPV) is a staple of the family of conjugated polymers with desirable optoelectronic properties for applications including light-emitting diodes (LEDs) and photovoltaic devices. Although the significant impact of olefin geometry on the steady-state optical properties of PPVs has been extensively studied, PPVs with precise stereochemistry have yet to be investigated using nonlinear optical spectroscopy for quantum sensing, as well as light harvesting for biological applications. Herein, we report our investigation of the influence of olefin stereochemistry on both linear and nonlinear optical properties through the synthesis of all-cis and all-trans PPV copolymers. We performed two-photon absorption (TPA) using a classical and entangled light source and compared both classical TPA and entangled two-photon absorption (ETPA) cross sections of these stereodefined PPVs. Whereas the TPA cross section of the all-trans PPV was expectedly higher than that of all-cis PPV, presumably because of the larger transition dipole moment, the opposite trend was measured via ETPA, with the all-cis PPV exhibiting the highest ETPA cross section. DFT calculations suggest that this difference might stem from the interaction of entangled photons with lower-lying electronic states in the all-cis PPV variant. Additionally, we explored the photoinduced processes for both cis and trans PPVs through time-resolved fluorescence upconversion and femtosecond transient absorption techniques. This study revealed that the sensitivity of PPVs in two-photon absorption varies with classical versus quantum light and can be modulated through the control of the geometry of the repeating alkenes, which is a key stepping stone toward their use in quantum sensing, bioimaging, and the design of polymer-based light-harvesting systems.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Olusayo J Ogunyemi
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jake L Nicholson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Meghan E Orr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ángel Rentería-Gómez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Lyons A, Zickus V, Álvarez-Mendoza R, Triggiani D, Tamma V, Westerberg N, Tassieri M, Faccio D. Fluorescence lifetime Hong-Ou-Mandel sensing. Nat Commun 2023; 14:8005. [PMID: 38049423 PMCID: PMC10696080 DOI: 10.1038/s41467-023-43868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Fluorescence Lifetime Imaging Microscopy in the time domain is typically performed by recording the arrival time of photons either by using electronic time tagging or a gated detector. As such the temporal resolution is limited by the performance of the electronics to 100's of picoseconds. Here, we demonstrate a fluorescence lifetime measurement technique based on photon-bunching statistics with a resolution that is only dependent on the duration of the reference photon or laser pulse, which can readily reach the 1-0.1 picosecond timescale. A range of fluorescent dyes having lifetimes spanning from 1.6 to 7 picoseconds have been here measured with only ~1 s measurement duration. We corroborate the effectiveness of the technique by measuring the Newtonian viscosity of glycerol/water mixtures by means of a molecular rotor having over an order of magnitude variability in lifetime, thus introducing a new method for contact-free nanorheology. Accessing fluorescence lifetime information at such high temporal resolution opens a doorway for a wide range of fluorescent markers to be adopted for studying yet unexplored fast biological processes, as well as fundamental interactions such as lifetime shortening in resonant plasmonic devices.
Collapse
Affiliation(s)
- Ashley Lyons
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Vytautas Zickus
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257, Vilnius, Lithuania
| | | | - Danilo Triggiani
- School of Mathematics and Physics, University of Portsmouth, Portsmouth, PO1 3QL, UK
| | - Vincenzo Tamma
- School of Mathematics and Physics, University of Portsmouth, Portsmouth, PO1 3QL, UK
- Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
| | - Niclas Westerberg
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manlio Tassieri
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
7
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
8
|
Gu B, Sun S, Chen F, Mukamel S. Photoelectron spectroscopy with entangled photons; enhanced spectrotemporal resolution. Proc Natl Acad Sci U S A 2023; 120:e2300541120. [PMID: 37186860 PMCID: PMC10214152 DOI: 10.1073/pnas.2300541120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, China
| | - Shichao Sun
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Feng Chen
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Physics and Astronomy, University of California, Irvine, CA92697
| |
Collapse
|
9
|
Triana-Arango F, Ramos-Ortiz G, Ramírez-Alarcón R. Spectral Considerations of Entangled Two-Photon Absorption Effects in Hong-Ou-Mandel Interference Experiments. J Phys Chem A 2023; 127:2608-2617. [PMID: 36913489 DOI: 10.1021/acs.jpca.2c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Recently, different experimental methods intended to detect the entangled two-photon absorption (ETPA) phenomenon in a variety of materials have been reported. The present work explores a different approach in which the ETPA process is studied based on the changes induced in the visibility of a Hong-Ou-Mandel (HOM) interferogram. By using an organic solution of Rhodamine B as a model of nonlinear material interacting with entangled photons at ∼800 nm region produced by spontaneous parametric down-conversion (SPDC) Type-II, the conditions that make possible to detect changes in the visibility of a HOM interferogram upon ETPA are investigated. We support the discussion of our results by presenting a model in which the sample is considered as a spectral filtering function which fulfills the energy conservation conditions required by ETPA, allowing us to explain the experimental observations with good agreement. We believe that this work represents a new perspective to studying the ETPA interaction, by using an ultrasensitive quantum interference technique and a detailed mathematical model of the process.
Collapse
Affiliation(s)
| | - Gabriel Ramos-Ortiz
- Centro de Investigaciones en Óptica AC, Apartado Postal 37150, León, Gto, México
| | | |
Collapse
|
10
|
Liu X, Li T, Wang J, Kamble MR, Zheltikov AM, Agarwal GS. Probing ultra-fast dephasing via entangled photon pairs. OPTICS EXPRESS 2022; 30:47463-47474. [PMID: 36558674 DOI: 10.1364/oe.480300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate how the Hong-Ou-Mandel (HOM) interference with polarization-entangled photons can be used to probe ultrafast dephasing. We can infer the optical properties like the real and imaginary parts of the complex susceptibility of the medium from changes in the position and the shape of the HOM dip. From the shift of the HOM dip, we are able to measure 22 fs dephasing time using a continuous-wave (CW) laser even with optical loss > 97 %, while the HOM dip visibility is maintained at 92.3 % (which can be as high as 96.7 %). The experimental observations, which are explained in terms of a rigorous theoretical model, demonstrate the utility of HOM interference in probing ultrafast dephasing.
Collapse
|
11
|
Zhang Z, Peng T, Nie X, Agarwal GS, Scully MO. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. LIGHT, SCIENCE & APPLICATIONS 2022; 11:274. [PMID: 36104344 PMCID: PMC9474554 DOI: 10.1038/s41377-022-00953-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Tao Peng
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoyu Nie
- School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76704, USA
| |
Collapse
|
12
|
Eshun A, Varnavski O, Villabona-Monsalve JP, Burdick RK, Goodson T. Entangled Photon Spectroscopy. Acc Chem Res 2022; 55:991-1003. [PMID: 35312287 DOI: 10.1021/acs.accounts.1c00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photon-number squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications.In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules.The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 107 photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well.From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.
Collapse
Affiliation(s)
- Audrey Eshun
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Juan P. Villabona-Monsalve
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Ryan K. Burdick
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| | - Theodore Goodson
- Department of Chemistry, University of Michigan, 930 North UniversityAnn Arbor, Michigan 48103, United States
| |
Collapse
|
13
|
Asban S, Chernyak VY, Mukamel S. Nonlinear quantum interferometric spectroscopy with entangled photon pairs. J Chem Phys 2022; 156:094202. [DOI: 10.1063/5.0079049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shahaf Asban
- University of California Irvine Department of Chemistry, United States of America
| | | | - Shaul Mukamel
- Department of Chemistry, University of California Irvine Department of Chemistry, United States of America
| |
Collapse
|
14
|
Gu B, Keefer D, Mukamel S. Wave Packet Control and Simulation Protocol for Entangled Two-Photon Absorption of Molecules. J Chem Theory Comput 2021; 18:406-414. [PMID: 34920666 DOI: 10.1021/acs.jctc.1c00949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum light spectroscopy, providing novel molecular information nonaccessible by classical light, necessitates new computational tools when applied to complex molecular systems. We introduce two computational protocols for the molecular nuclear wave packet dynamics interacting with an entangled photon pair to produce an entangled two-photon absorption signal. The first involves summing over transition pathways in a temporal grid defined by two light-matter interaction times accompanied by the field correlation functions of quantum light. The signal is obtained by averaging over the two time distribution characteristics of the entangled photon state. The other protocol involves a Schmidt decomposition of the entangled light and requires summing over the Schmidt modes. We demonstrate how photon entanglement can be used to control and manipulate the two-photon excited nuclear wave packets in a displaced harmonic oscillator model.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Daniel Keefer
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry & Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
15
|
Gu B, Keefer D, Aleotti F, Nenov A, Garavelli M, Mukamel S. Photoisomerization transition state manipulation by entangled two-photon absorption. Proc Natl Acad Sci U S A 2021; 118:e2116868118. [PMID: 34799455 PMCID: PMC8617409 DOI: 10.1073/pnas.2116868118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.
Collapse
Affiliation(s)
- Bing Gu
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| | - Flavia Aleotti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli studi di Bologna, 40136 Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli studi di Bologna, 40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli studi di Bologna, 40136 Bologna, Italy
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, CA 92697;
- Department of Physics & Astronomy, University of California, Irvine, CA 92697
| |
Collapse
|