1
|
Wang X, Zhou J, Wang M, Wang Y, Shen Z, Sun H, Hu Z, Luo X, Yang Y, Chen J. Proximal Oblique-Packing of Heptamethine Cyanines through Spiro-Connection Boosts Triplet State Generation in Near-Infrared. Angew Chem Int Ed Engl 2025:e202425422. [PMID: 39809703 DOI: 10.1002/anie.202425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy. Herein, proximal oblique-packed (V-shaped) heptamethine cyanines (SZ780) through spiro-connection were achieved. Multi-channel ultrafast ISC were direct observed in SZ780 and a record high ISC rate constant (up to ~1011 s-1) is registered among all the reported NIR triplet dyes. SZ780 exhibits a triplet state quantum yield of 18.9 % upon excitation at 750 nm, which is almost an order of magnitude higher than that of the monomer (IR780, 2.1 %) and nearly threefold increase compared to that of the H-packed dimer (SC780) (6.7 %). Moreover, SZ780 efficiently generates singlet oxygen under 808 nm light irradiation, inducing cancer cell apoptosis in vivo. These findings demonstrate that constructing V-aggregated dyes system by spiro-connection offers a powerful approach for the design of high-performance NIR triplet sensitizers.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Mingkang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuze Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhetao Shen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
2
|
Teichmann B, Sárosi M, Shoyama K, Niyas MA, Dubey RK, Würthner F. 'Invisible' Molecular Dynamics Revealed for a Conformationally Chiral π-Stacked Perylene Bisimide Foldamer. Angew Chem Int Ed Engl 2025; 64:e202414069. [PMID: 39382569 DOI: 10.1002/anie.202414069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Whilst energetic and kinetic aspects of folding processes are meanwhile well understood for natural biomacromolecules, the folding dynamics in so far studied artificial foldamer counterparts remain largely unexplored. This is due to the low energy barriers between their conformational isomers that make the dynamic processes undetectable with conventional methods such as UV/Vis absorption, fluorescence, and NMR spectroscopy, making such processes 'invisible'. Here we present an asymmetric perylene bisimide dimer (bis-PBI 1) that possesses conformational chirality in its folded state. Owing to the large interconversion barrier (≥116 kJ mol-1), four stereoisomers could be separated and isolated. Since the interconversion between these stereoisomers requires the foldamer to first open and then to re-fold, the transformation of one stereoisomer into others allowed us to 'visualize' the dynamics of folding with time and determine its lifetimes and the energetic barriers associated with the folding process. Supported by quantum chemical calculations, we identified the open structure to be only a fleetingly metastable state of higher energy. Our experimental observation of the kinetics associated with the molecular dynamics in the PBI foldamer advances the fundamental understanding of folding in synthetic foldamers and paves the way for the design of smart functional materials.
Collapse
Affiliation(s)
- Ben Teichmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Menyhárt Sárosi
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
3
|
Yoshioka D, de la Perrelle JM, Dolan A, Goh Z, Kee TW, Kobayashi Y. Unraveling Photoinduced Desorption Dynamics of π-Conjugated Ligands in ZnS Nanocrystals via Pump-Push-Probe Spectroscopy. J Phys Chem Lett 2024; 15:12370-12375. [PMID: 39652421 DOI: 10.1021/acs.jpclett.4c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The photoinduced ligand desorption from nanocrystal (NC) surfaces plays a critical role in the diverse functionalities of NCs. However, this reaction is inherently complex because photophysical and photochemical reactions are involved, and many aspects remain elusive. In this study, using ZnS NCs coordinated with perylenebisimide (PBI) ligands as a model system, we revealed that pump-push-probe spectroscopy provides detailed insights into the transient species following photoinduced ligand desorption reactions. This method successfully isolated the signal of the PBI radical anion, generated by photoinduced charge separation, which was difficult to identify by conventional pump-probe spectroscopy. Furthermore, pump-push-probe spectroscopy also revealed that the transiently formed aggregation of PBI after PBI desorption is the H-type aggregate. This research is expected to contribute to the analysis of complex photochemical reaction processes in composite nanomaterials and is important for the development of highly efficient NC photocatalysts and photodurable NCs.
Collapse
Affiliation(s)
- Daisuke Yoshioka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | - Andrew Dolan
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zi Goh
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tak W Kee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
4
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Huang F, Su W, Yang Y, Wang H, Bo Z, Jing P, Zhang W. The efficient triplet states formation of Se-modified PDI dimers and tetramers in solvents. Phys Chem Chem Phys 2024; 26:27325-27331. [PMID: 39440382 DOI: 10.1039/d4cp00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The triplet excited states of molecules play an important role in photophysical processes, which has attracted great research interest. Perylene diimide (PDI) is a widely studied material closely associated with the generation of triplet states, and it is highly anticipated to become an electron acceptor material for improving photovoltaic conversion efficiency. In this work, we prepared dimers and tetramers composed of selenium-modified PDI-C5 (N,N'-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) units. We investigated the photophysical processes of these dimers and tetramers in chloroform and toluene using UV-visible absorption spectroscopy, fluorescence spectroscopy, and femtosecond transient absorption spectroscopy. Both the dimers and tetramers undergo efficient triplet state formation processes in the solvents. Solvents with higher polarity facilitate charge transfer thereby promote the triplet states formation. The differences in the configurations of the dimer and tetramer molecules lead to variations in triplet states generation. The twisted angles in the tetramer restricted the intramolecular electronic coupling, posing certain hindrances to exciton coupling and lowering the intramolecular CT characteristics. The emission of excimer in tetramers also competes with the triplet states formation. The research demonstrates the influence of various factors on the generation of triplet states of PDI oligomers.
Collapse
Affiliation(s)
- Feijun Huang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenli Su
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yubo Yang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Hang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengfei Jing
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
Gao Y, Sun Y, Guo Z, Yu G, Wang Y, Wan Y, Han Y, Yang W, Zhao D, Ma X. Facilitating intrinsic delayed fluorescence of conjugated emitters by inter-chromophore interaction. Chem Sci 2024:d4sc05494f. [PMID: 39430944 PMCID: PMC11484929 DOI: 10.1039/d4sc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Delayed fluorescence (DF) is a unique emitting phenomenon of great interest for important applications in organic optoelectronics. In general, DF requires well-separated frontier orbitals, inherently corresponding to charge transfer (CT)-type emitters. However, facilitating intrinsic DF for local excited (LE)-type conjugated emitters remains very challenging. Aiming to overcome this obstacle, we demonstrate a new molecular design strategy with a DF-inactive B,N-multiple resonance (MR) emitter as a model system. Without the necessity of doping with heavy atoms, we synthesized a co-facial dimer in which an excimer-like state (Sexc) was expected to facilitate efficient reverse intersystem crossing (RISC, T1 → Sexc) and intrinsic DF. Benefiting from greatly enhanced SOC and reduced ΔE ST, the proof-of-concept emitter Np-2CzB exhibited k RISC up to 6.5 × 105 s-1 and intrinsic DF with >35% contribution (Φ DF/Φ F) in dilute solution. Further investigation indicated that Sexc state formation relies on an optimized co-facial distance (d = ∼4.7 Å), strong inter-chromophore interaction (J coul > 450 cm-1) and a rigid structure (Γ S1→S0 < 350 cm-1). Although our strategy was demonstrated with a B,N-MR emitter, it can be applicable to many LE-type conjugated emitters without intrinsic DF. By triggering potential DF emission, many classic emitters might play a more important role in optoelectronics.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
8
|
O'Connor JP, Schultz JD, Tcyrulnikov NA, Kim T, Young RM, Wasielewski MR. Distinct vibrational motions promote disparate excited-state decay pathways in cofacial perylenediimide dimers. J Chem Phys 2024; 161:074306. [PMID: 39145558 DOI: 10.1063/5.0218752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
A complex interplay of structural, electronic, and vibrational degrees of freedom underpins the fate of molecular excited states. Organic assemblies exhibit a myriad of excited-state decay processes, such as symmetry-breaking charge separation (SB-CS), excimer (EX) formation, singlet fission, and energy transfer. Recent studies of cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) (PDI) multimers demonstrate that slight variations in core substituents and H- or J-type aggregation can determine whether the system follows an SB-CS pathway or an EX one. However, questions regarding the relative importance of structural properties and molecular vibrations in driving the excited-state dynamics remain. Here, we use a combination of two-dimensional electronic spectroscopy, femtosecond stimulated Raman spectroscopy, and quantum chemistry computations to compare the photophysics of two PDI dimers. The dimer with 1,7-bis(pyrrolidin-1'-yl) substituents (5PDI2) undergoes ultrafast SB-CS from a photoexcited mixed state, while the dimer with bis-1,7-(3',5'-di-t-butylphenoxy) substituents (PPDI2) rapidly forms an EX state. Examination of their quantum beating features reveals that SB-CS in 5PDI2 is driven by the collective vibronic coupling of two or more excited-state vibrations. In contrast, we observe signatures of low-frequency vibrational coherence transfer during EX formation by PPDI2, which aligns with several previous studies. We conclude that key electronic and structural differences between 5PDI2 and PPDI2 determine their markedly different photophysics.
Collapse
Affiliation(s)
- James P O'Connor
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jonathan D Schultz
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Nikolai A Tcyrulnikov
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Taeyeon Kim
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Ryan M Young
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Michael R Wasielewski
- Department of Chemistry and Paula M. Trienens Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
9
|
Sharma P, Venugopal A, Verdi CM, Roger MS, Calò A, Kumar M. Heparin binding induced supramolecular chirality into the self-assembly of perylenediimide bolaamphiphile. J Mater Chem B 2024. [PMID: 39016812 DOI: 10.1039/d4tb00862f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chirality is one of the hallmarks of biomolecules. Herein, we utilize heparin, a chiral biomolecule and potent drug, to induce chiral organization into the assembly of an achiral molecule. Polyanionic heparin binds with a dicationic perylenediimide derivative to induce supramolecular helical organization in aqueous medium as well as in a highly competitive cell culture medium.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain.
| | - Akhil Venugopal
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Claudia Martínez Verdi
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain.
| | - Mauri Serra Roger
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain.
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, University of Barcelona, 08028 Barcelona, Spain
| | - Mohit Kumar
- Department of Inorganic and Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Kang S, Choi W, Ahn J, Kim T, Oh JH, Kim D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18134-18143. [PMID: 38554079 DOI: 10.1021/acsami.3c19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated n-type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Guo X, Sheng W, Pan H, Guo L, Zuo H, Wu Z, Ling S, Jiang X, Chen Z, Jiao L, Hao E. Tuning Shortwave-Infrared J-aggregates of Aromatic Ring-Fused Aza-BODIPYs by Peripheral Substituents for Combined Photothermal and Photodynamic Therapies at Ultralow Laser Power. Angew Chem Int Ed Engl 2024; 63:e202319875. [PMID: 38225205 DOI: 10.1002/anie.202319875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Achieving photothermal therapy (PTT) at ultralow laser power density is crucial for minimizing photo-damage and allowing for higher maximum permissible skin exposure. However, this requires photothermal agents to possess not just superior photothermal conversion efficiency (PCE), but also exceptional near-infrared (NIR) absorptivity. J-aggregates, exhibit a significant redshift and narrower absorption peak with a higher extinction coefficient. Nevertheless, achieving predictable J-aggregates through molecular design remains a challenge. In this study, we successfully induced desirable J-aggregation (λabs max : 968 nm, ϵ: 2.96×105 M-1 cm-1 , λem max : 972 nm, ΦFL : 6.2 %) by tuning electrostatic interactions between π-conjugated molecular planes through manipulating molecular surface electrostatic potential of aromatic ring-fused aza-BODIPY dyes. Notably, by controlling the preparation method for encapsulating dyes into F-127 polymer, we were able to selectively generate H-/J-aggregates, respectively. Furthermore, the J-aggregates exhibited two controllable morphologies: nanospheres and nanowires. Importantly, the shortwave-infrared J-aggregated nanoparticles with impressive PCE of 72.9 % effectively destroyed cancer cells and mice-tumors at an ultralow power density of 0.27 W cm-2 (915 nm). This phototherapeutic nano-platform, which generates predictable J-aggregation behavior, and can controllably form J-/H-aggregates and selectable J-aggregate morphology, is a valuable paradigm for developing photothermal agents for tumor-treatment at ultralow laser power density.
Collapse
Affiliation(s)
- Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Wanle Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongfei Pan
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Luying Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Huiquan Zuo
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Zeyu Wu
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education Institution, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
12
|
Fang L, Huang R, Gong W, Ji Y, Sun Y, Gou S, Zhao J. A Self-Assembly-Induced Exciton Delocalization Strategy for Converting a Perylene Diimide Derivative from a Type-II to Type-I Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307414. [PMID: 37940626 DOI: 10.1002/smll.202307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Type-I photosensitizers have shown advantages in addressing the shortcomings of traditional oxygen-dependent type-II photosensitizers for the photodynamic therapy (PDT) of hypoxic tumors. However, developing type-I photosensitizers is yet a huge challenge because the type-II energy transfer process is much faster than the type-I electron transfer process. Herein, from the fundamental point of view, an effective approach is proposed to improve the electron transfer efficiency of the photosensitizer by lowering the internal reorganization energy and exciton binding energy via self-assembly-induced exciton delocalization. An example proof is presented by the design of a perylene diimide (PDI)-based photosensitizer (PDIMp) that can generate singlet oxygen (1O2) via a type-II energy transfer process in the monomeric state, but induce the generation of superoxide anion (O2˙-) via a type-I electron transfer process in the aggregated state. Significantly, with the addition ofcucurbit[6]uril (CB[6]), the self-assembled PDIMp can convert back to the monomeric state via host-guest complexation and consequently recover the generation of 1O2. The biological evaluations reveal that supramolecular nanoparticles (PDIMp-NPs) derived from PDIMp show superior phototherapeutic performance via synergistic type-I PDT and mild photothermal therapy (PTT) against cancer under either normoxia or hypoxia conditions.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Rong Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Wenqi Gong
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| |
Collapse
|
13
|
Wang K, Chen X, Xu J, Peng S, Wu D, Xia J. Recent Advance in the Development of Singlet-Fission-Capable Polymeric Materials. Macromol Rapid Commun 2024; 45:e2300241. [PMID: 37548255 DOI: 10.1002/marc.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Singlet fission (SF) is a spin-allowed process in which a higher-energy singlet exciton is converted into two lower-energy triplet excitons via a triplet pair intermediate state. Implementing SF in photovoltaic devices holds the potential to exceed the Shockley-Queisser limit of conventional single-junction solar cells. Although great progress has been made in exploiting the underlying mechanism of SF over the past decades, the scope of materials capable of SF, particularly polymeric materials, remains poor. SF-capable polymer is one of the most potential candidates in the implementation of SF into devices due to their distinct superiorities in flexibility, solution processability and self-assembly behavior. Notably, recent advancements have demonstrated high-performance SF in isolated donor-acceptor (D-A) copolymer chains. This review provides an overview of recent progress in the development of SF-capable polymeric materials, with a significant focus on elucidating the mechanisms of SF in polymers and optimizing the design strategies for SF-capable polymers. Additionally, the paper discusses the challenges encountered in this field and presents future perspectives. It is expected that this comprehensive review will offer valuable insights into the design of novel SF-capable polymeric materials, further advancing the potential for SF implementation in photovoltaic devices.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
14
|
Maret PD, Sasikumar D, Sebastian E, Hariharan M. Symmetry-Breaking Charge Separation in a Chiral Bis(perylenediimide) Probed at Ensemble and Single-Molecule Levels. J Phys Chem Lett 2023; 14:8667-8675. [PMID: 37733055 DOI: 10.1021/acs.jpclett.3c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral molecular assemblies exhibiting symmetry-breaking charge separation (SB-CS) are potential candidates for the development of chiral organic semiconductors. Herein, we explore the excited-state dynamics of a helically chiral perylenediimide bichromophore (Cy-PDI2) exhibiting SB-CS at the ensemble and single-molecule levels. Solvent polarity-tunable interchromophoric excitonic coupling in chiral Cy-PDI2 facilitates the interplay of SB-CS and excimer formation in the ensemble domain. Analogous to the excited-state dynamics of Cy-PDI2 at the ensemble level, single-molecule fluorescence lifetime traces of Cy-PDI2 depicted long-lived off-states characteristic of the radical ion pair-mediated dark states. The discrete electron transfer and charge separation dynamics in Cy-PDI2 at the single-molecule level are governed by the distinct influence of the local environment. The present study aims at understanding the fundamental excited-state dynamics in chiral organic bichromophores for designing efficient chiral organic semiconductors and applications toward charge transport materials.
Collapse
Affiliation(s)
- Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
15
|
Kim T, Feng Y, O'Connor JP, Stoddart JF, Young RM, Wasielewski MR. Coherent Vibronic Wavepackets Show Structure-Directed Charge Flow in Host-Guest Donor-Acceptor Complexes. J Am Chem Soc 2023. [PMID: 37018535 DOI: 10.1021/jacs.2c13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Designing and controlling charge transfer (CT) pathways in organic semiconductors are important for solar energy applications. To be useful, a photogenerated, Coulombically bound CT exciton must further separate into free charge carriers; direct observations of the detailed CT relaxation pathways, however, are lacking. Here, photoinduced CT and relaxation dynamics in three host-guest complexes, where a perylene (Per) electron donor guest is incorporated into two symmetric and one asymmetric extended viologen cyclophane acceptor hosts, are presented. The central ring in the extended viologen is either p-phenylene (ExV2+) or electron-rich 2,5-dimethoxy-p-phenylene (ExMeOV2+), resulting in two symmetric cyclophanes with unsubstituted or methoxy-substituted central rings, ExBox4+ and ExMeOBox4+, respectively, and an asymmetric cyclophane with one of the central viologen rings being methoxylated ExMeOVBox4+. Upon photoexcitation, the asymmetric host-guest ExMeOVBox4+ ⊃ Per complex exhibits directional CT toward the energetically unfavorable methoxylated side due to structural restrictions that facilitate strong interactions between the Per donor and the ExMeOV2+ side. The CT state relaxation pathways are probed using ultrafast optical spectroscopy by focusing on coherent vibronic wavepackets, which are used to identify CT relaxations along charge localization and vibronic decoherence coordinates. Specific low- and high-frequency nuclear motions are direct indicators of a delocalized CT state and the degree of CT character. Our results show that the CT pathway can be controlled by subtle chemical modifications of the acceptor host in addition to illustrating how coherent vibronic wavepackets can be used to probe the nature and time evolution of the CT states.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
16
|
Su P, Ran G, Wang H, Yue J, Kong Q, Bo Z, Zhang W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules 2023; 28:molecules28073003. [PMID: 37049767 PMCID: PMC10095916 DOI: 10.3390/molecules28073003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The research on perylene diimide (PDI) aggregates effectively promotes their applications in organic photovoltaic solar cells and fluorescent sensors. In this paper, a PDI fabricated with three peripheral PDI units (N, N’-bis(6-undecyl) perylene-3,4,9,10-bis(dicarboximide)) is investigated. The trimer shows different absorption and fluorescence properties due to hydrophobicity when dissolved in the mixed solvent of tetrahydrofuran (THF) and water. Through comprehensive analysis of the fluorescence lifetime and transient absorption spectroscopic results, we concluded that the trimer underwent different excited state kinetic pathways with different concentrations of water in THF. When dissolved in pure THF solvent, both the intramolecular charge-transfer and excimer states are formed. When the water concentration increases from 0 to 50% (v/v), the formation time of the excimer state and its structural relaxation time are prolonged, illustrating the arising of the intermolecular excimer state. It is interesting to determine that the probability of the intramolecular charge-transfer pathway will first decrease and then increase as the speed of intermolecular excimer formation slows down. The two inflection points appear when the water concentration is above 10% and 40%. The results not only highlight the importance of hydrophobicity on the aggregate properties of PDI multimers but also guide the further design of PDI-based organic photovoltaic solar cells.
Collapse
|
17
|
Yang P, Zhang Q, Zhang Y, Zhang H, Zhao J, Shi H, Liang L, Huang Y, Zheng Z, Yang H. Aggregation Triggers Red/Near-Infrared Light Hydrogen Production of Organic Dyes with High Efficiency. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Pengju Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hongxia Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jianghong Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Linfeng Liang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yamin Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Liu H, Ren DD, Zhu XL, Wu YP, Fu HR. Coordination-driven stacking of carbazole-based molecule for dynamic long-lived room temperature phosphorescence. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
19
|
Marin-Beloqui JM, Gómez S, Gonev HI, Comí M, Al-Hashimi M, Clarke TM. Truncated conjugation in fused heterocycle-based conducting polymers: when greater planarity does not enhance conjugation. Chem Sci 2023; 14:812-821. [PMID: 36755723 PMCID: PMC9890783 DOI: 10.1039/d2sc06271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
One of the main assumptions in the design of new conjugated polymer materials for their use in organic electronics is that higher coplanarity leads to greater conjugation along the polymer backbone. Conventionally, a more planar monomer structure induces a larger backbone coplanarity, thus leading to a greater overlap of the carbon π-orbitals and therefore a higher degree of π-electron delocalisation. However, here we present a case that counters the validity of this assumption. Different diselenophene-based polymers were studied where one polymer possesses two selenophene rings fused together to create a more rigid, planar structure. The effects of this greater polymer coplanarity were examined using Raman spectroscopy and theoretical calculations. Raman spectra showed a large difference between the vibrational modes of the fused and unfused polymers, indicating very different electronic structures. Resonance Raman spectroscopy confirmed the rigidity of the fused selenophene polymer and also revealed, by studying the excitation profiles of the different bands, the presence of two shorter, uncoupled conjugation pathways. Supported by Density Functional Theory (DFT) calculations, we have demonstrated that the reason for this lack of conjugation is a distortion of the selenophene rings due to the induced planarity, forming a new truncated conjugation pathway through the selenophene β-position and bypassing the beneficial α-position. This effect was studied using DFT in an ample range of derivatives, where substitution of the selenium atom with other heteroatoms still maintained the same unconventional conjugation-planarity relationship, confirming the generality of this phenomenon. This work establishes an important structure-property relationship for conjugated polymers that will help rational design of more efficient organic electronics materials.
Collapse
Affiliation(s)
- Jose Manuel Marin-Beloqui
- Department of Chemistry, University College London Christopher Ingold Building London WC1H 0AJ UK .,Department of Physical Chemistry, University of Malaga Blvrd Louis Pasteur 31 29010 Malaga Spain
| | - Sandra Gómez
- Department of Physical Chemistry, University of SalamancaCaidos Sq.37008SalamancaSpain
| | - Hristo Ivov Gonev
- Department of Chemistry, University College London Christopher Ingold Building London WC1H 0AJ UK
| | - Marc Comí
- Department of Chemistry, Texas A&M University at QatarEducation City, P. O. Box 23874DohaQatar
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at QatarEducation City, P. O. Box 23874DohaQatar
| | - Tracey M. Clarke
- Department of Chemistry, University College LondonChristopher Ingold BuildingLondon WC1H 0AJUK
| |
Collapse
|
20
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
21
|
Lu Z, Huang Y, Shao L, Cao M, Hu S, Liu C, Wang X, Ren B. In-situ Raman spectroscopic insight into charge delocalization-improved electrical conductivity in metal-cyanide frameworks. NANOSCALE 2022; 14:18184-18191. [PMID: 36454109 DOI: 10.1039/d2nr05285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Porous crystalline materials (PCMs) have attracted widespread attention due to their high porosity and chemical tunability. To solve the problem of the low electrical conductivity of traditional PCMs, a guest-promoted approach has been developed to impart electrical conductivity, whereas microscopic understanding of this process from experiments is largely lacking. Here we use in-situ electrochemical surface-enhanced Raman spectroscopy (EC-SERS) to investigate the microscopic mechanism of the enhanced electrical conductivity in metal-cyanide frameworks, in Prussian Blue (PB), induced by alkali metal ions. The EC-SERS result demonstrates that the charge is localized around the iron atom in PB and becomes delocalized on the CN bond after insertion of the alkali metal ions, verified by density functional theory (DFT) calculations. The enhanced electrical conductivity of PCMs promoted by the guest via the through-bond mechanism instead of the through-space hopping mechanism in pristine PB, offers a new approach to develop conductive PCMs.
Collapse
Affiliation(s)
- Zhixuan Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yajun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Liting Shao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Maofeng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shu Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
22
|
Hong Y, Schlosser F, Kim W, Würthner F, Kim D. Ultrafast Symmetry-Breaking Charge Separation in a Perylene Bisimide Dimer Enabled by Vibronic Coupling and Breakdown of Adiabaticity. J Am Chem Soc 2022; 144:15539-15548. [PMID: 35951363 DOI: 10.1021/jacs.2c03916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perylene bisimides (PBIs) have received great attention in their applicability to optoelectronics. Especially, symmetry-breaking charge separation (SB-CS) in PBIs has been investigated to mimic the efficient light capturing and charge generation in natural light-harvesting systems. However, unlike ultrafast CS dynamics in donor-acceptor heterojunction materials, ultrafast SB-CS in a stacked homodimer has still been challenging due to excimer formation in the absence of rigidifying surroundings such as a special pair in the natural systems. Herein, we present the detailed mechanism of ultrafast photoinduced SB-CS occurring in a 1,7-bis(N-pyrrolidinyl) PBI dimer within a cyclophane. Through narrow-band and broad-band transient absorption spectroscopy, we demonstrate that ultrafast SB-CS in the dimer is enabled by the combination of (1) vibrationally coherent charge-transfer resonance-enhanced excimer formation and (2) breakdown of adiabaticity (formation of SB-CS diabats) in the excimer state via structural and solvent fluctuation. Quantum chemical calculations also underpin that the participation of strong electron-donating substituents in overall vibrational modes plays a crucial role in triggering the ultrafast SB-CS. Therefore, our work provides an alternative route to facilitate ultrafast SB-CS in PBIs and thereby establishes a novel strategy for the design of optoelectronic materials.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Felix Schlosser
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
23
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
24
|
Cainelli M, Borrelli R, Tanimura Y. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. J Chem Phys 2022; 157:084103. [DOI: 10.1063/5.0102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT band gap conditions. The coherence length of excitons ($N_{coh}$) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons which is manifested in a decrease in the intensity of the hot state peak and the 0--1 peak, and an increase in the intensity of the 0--0 emission peak in TGF spectrum, leading to a decrease of $N_{coh}$.
Collapse
Affiliation(s)
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | | |
Collapse
|
25
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
26
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
27
|
Hong Y, Kim W, Kim T, Kaufmann C, Kim H, Würthner F, Kim D. Real-time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda-dimer by Ultrafast Time-Domain Raman Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202114474. [PMID: 35075813 PMCID: PMC9306572 DOI: 10.1002/anie.202114474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/31/2023]
Abstract
In π-conjugated organic photovoltaic materials, an excimer state has been generally regarded as a trap state which hinders efficient excitation energy transport. But despite wide investigations of the excimer for overcoming the undesirable energy loss, the understanding of the relationship between the structure of the excimer in stacked organic compounds and its properties remains elusive. Here, we present the landscape of structural dynamics from the excimer formation to its relaxation in a co-facially stacked archetypical perylene bisimide folda-dimer using ultrafast time-domain Raman spectroscopy. We directly captured vibrational snapshots illustrating the ultrafast structural evolution triggering the excimer formation along the interchromophore coordinate on the complex excited-state potential surfaces and following evolution into a relaxed excimer state. Not only does this work showcase the ultrafast structural dynamics necessary for the excimer formation and control of excimer characteristics but also provides important criteria for designing the π-conjugated organic molecules.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
| | - Woojae Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
- Department of Chemistry and Chemical BiologyCornell UniversityIthaca14853New YorkUSA
| | - Taeyeon Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
- The Institute for Sustainability and Energy at NorthwesternNorthwestern UniversityEvanston60208IllinoisUSA
| | - Christina Kaufmann
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversitat WürzburgAm Hubland97074WürzburgGermany
| | - Hyungjun Kim
- Department of ChemistryIncheon National University119 Academy-ro, Yeonsu-gu22012IncheonRepublic of Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversitat WürzburgAm Hubland97074WürzburgGermany
| | - Dongho Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
| |
Collapse
|
28
|
Hong Y, Kim W, Kim T, Kaufmann C, Kim H, Würthner F, Kim D. Real‐time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda‐dimer by Ultrafast Time‐Domain Raman Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
| | - Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
- Department of Chemistry and Chemical Biology Cornell University Ithaca 14853 New York USA
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
- The Institute for Sustainability and Energy at Northwestern Northwestern University Evanston 60208 Illinois USA
| | - Christina Kaufmann
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universitat Würzburg Am Hubland 97074 Würzburg Germany
| | - Hyungjun Kim
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu 22012 Incheon Republic of Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universitat Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
| |
Collapse
|