1
|
Xiao Y, Zhang HT, Zhang MT. Heterobimetallic NiFe Complex for Photocatalytic CO 2 Reduction: United Efforts of NiFe Dual Sites. J Am Chem Soc 2024; 146:28832-28844. [PMID: 39378398 DOI: 10.1021/jacs.4c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni-Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22--κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Das C, Karim S, Guria S, Kaushik T, Ghosh S, Dutta A. Electrocatalytic Conversion of CO 2 to Formic Acid: A Journey from 3d-Transition Metal-Based Molecular Catalyst Design to Electrolyzer Assembly. Acc Chem Res 2024; 57:3020-3031. [PMID: 39312638 DOI: 10.1021/acs.accounts.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ConspectusElectrochemical CO2 reduction to obtain formate or formic acid is receiving significant attention as a method to combat the global warming crisis. Significant efforts have been devoted to the advancement of CO2 reduction techniques over the past few decades. This Account provides a unified discussion on various electrochemical methodologies for CO2 to formate conversion, with a particular focus on recent advancements in utilizing 3d-transition-metal-based molecular catalysts. This Account primarily focuses on understanding molecular functions and mechanisms under homogeneous conditions, which is essential for assessing the optimized reaction conditions for molecular catalysts. The unique architectural features of the formate dehydrogenase (FDH) enzyme provide insight into the key role of the surrounding protein scaffold in modulating the active site dynamics for stabilizing the key metal-bound CO2 intermediate. Additionally, the protein moiety also triggers a facile proton relay around the active site to drive electrocatalytic CO2 reduction forward. The fine-tuning of FDH machinery also ensures that the electrocatalytic CO2 reduction leads to the production of formic acid as the major yield without any other carbonaceous products, while limiting the competitive hydrogen evolution reaction. These lessons from the enzymes are key in designing biomimetic molecular catalysts, primarily based on multidentate ligand scaffolds containing peripheral proton relays. The subtle modifications of the ligand framework ensure the favored production of formic acid following electrocatalytic CO2 reduction in the solution phase. Next, the molecular catalysts are required to be mounted on robust electroactive surfaces to develop their corresponding heterogeneous versions. The surface-immobilization provides an edge to the molecular electrocatalysts as their reactivity can be scaled up with improved durability for long-term electrocatalysis. Despite challenges in developing high-performance, selective catalysts for the CO2 to formic acid transformation, significant progress is being made with the tactical use of graphene and carbon nanotube-based materials. To date, the majority of the research activity stops here, as the development of an operational CO2 to formic acid converting electrolyzer prototype still remains in its infancy. To elaborate on the potential future steps, this Account covers the design, scaling parameters, and existing challenges of assembling large-scale electrolyzers. A short glimpse at the utilization of electrolyzers for industrial-scale CO2 reduction is also provided here. The proper evaluation of the surface-immobilized electrocatalysts assembled in an electrolyzer is a key step for gauging their potential for practical viability. Here, the key electrochemical parameters and their expected values for industrial-scale electrolyzers have been discussed. Finally, the techno-economic aspects of the electrolyzer setup are summarized, completing the journey from tactical design of molecular catalysts to their appropriate application in a commercially viable electrolyzer setup for CO2 to formate electroreduction. Thus, this Account portrays the complete story of the evolution of a molecular catalyst to its sustainable application in CO2 utilization.
Collapse
Affiliation(s)
- Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suhana Karim
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Somnath Guria
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tannu Kaushik
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suchismita Ghosh
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Wakabayashi T, Kametani Y, Tanahashi E, Shiota Y, Yoshizawa K, Jung J, Saito S. Ferrocenyl PNNP Ligands-Controlled Chromium Complex-Catalyzed Photocatalytic Reduction of CO 2 to Formic Acid. J Am Chem Soc 2024; 146:25963-25975. [PMID: 39240025 DOI: 10.1021/jacs.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
3d-transition metal complexes have been gaining much attention as promising candidates for photocatalytic carbon dioxide (CO2) reduction systems. In contrast to the group 7-12 elements, Cr in group 6 has not yet been investigated as the catalyst of CO2 photoreduction because of its intrinsic disadvantages. Cr has a weak reducing ability due to an insufficient number of d electrons and high Lewis acidity which may deactivate the catalyst by strong coordination with a product formate. To overcome these drawbacks, we rationally designed molecular Cr complexes bearing ferrocenyl PNNP tetradentate ligands (FcCrCy, FcCriPr, FcCrtBu, and FcCrPh). These Cr complexes selectively converted CO2 into formic acid (HCO2H) under photocatalytic conditions and, to our knowledge, represent the first molecular Cr catalysts for CO2 photoreduction. The best catalyst FcCrPh achieved a turnover number of 1180 for HCO2H formation with 86% selectivity after 48 h of light irradiation, with a combined use of an organic photosensitizer. Electrochemical and continuous UV-vis absorption analyses clarified the sequential reaction pathways involving multielectron reduction and protonation of a Cr complex. Moreover, through detailed computational studies, photoinduced electron transfer mediated by ferrocenyl groups and intramolecular proton transfer attributed to hemilabile phosphine ligands would be key to the efficient catalysis that overwhelms the inherent disadvantages of Cr.
Collapse
Affiliation(s)
- Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohei Kametani
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Eimi Tanahashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Rotundo L, Ahmad S, Cappuccino C, Pearce AJ, Nedzbala H, Bottum SR, Mayer JM, Cahoon JF, Grills DC, Ertem MZ, Manbeck GF. Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy 2+)(CO) 3I Electrocatalysts for CO 2 Reduction. J Am Chem Soc 2024; 146:24742-24747. [PMID: 39190866 DOI: 10.1021/jacs.4c08084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report a series of isomeric, dicationic Re(bpy2+)(CO)3I complexes with bpy (2,2'-bipyridine) modified by two phenyl-CH2-(NMe3)+ pendants with cations located at variable distances from the active site for electrocatalytic CO2 reduction in CH3CN/2.8 M H2O. The position of the cationic groups dramatically increases the rate of catalysis by ∼800-fold, from 1.2 to 950 s-1, with only a minor increase in overpotential. Acceleration is due to stabilization of the initial CO2 adduct and lowering of ΔG‡ for C-OH bond cleavage by Coulombic stabilization of anionic charges. Performance may be enhanced by accumulation in the electrochemical double layer. Transition state stabilization in the optimized isomer unlocks the low overpotential "protonation-first" pathway, highlighting the sizable effects of subtle structural optimization.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Shahbaz Ahmad
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Chiara Cappuccino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Adam J Pearce
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah Nedzbala
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James M Mayer
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
5
|
Salamé A, Hon Cheah M, Bonin J, Robert M, Anxolabéhère-Mallart E. Operando Spectroelectrochemistry Unravels the Mechanism of CO 2 Electrocatalytic Reduction by an Fe Porphyrin. Angew Chem Int Ed Engl 2024:e202412417. [PMID: 39158129 DOI: 10.1002/anie.202412417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Iron porphyrins are molecular catalysts recognized for their ability to electrochemically and photochemically reduce carbon dioxide (CO2). The main reduction product is carbon monoxide (CO). CO holds significant industrial importance as it serves as a precursor for various valuable chemical products containing either a single carbon atom (C1), like methanol or methane, or multiple carbon atoms (Cn), such as ethanol or ethylene. Despite the long-established efficiency of these catalysts, optimizing their catalytic activity and stability and comprehending the intricate reaction mechanisms remain a significant challenge. This article presents a comprehensive investigation of the mechanistic aspects of the selective electroreduction of CO2 to CO using an iron porphyrin substituted with four trimethylammonium groups in the para position [(pTMA)FeIII-Cl]4+. By employing infrared and UV/Visible spectroelectrochemistry, changes in the electronic structure and coordination environment of the iron center can be observed in real-time as the electrochemical potential is adjusted, offering new insights into the reaction mechanisms. Catalytic species were identified, and evidence of a secondary reaction pathway was uncovered, potentially prompting a re-evaluation of the nature of the catalytically active species.
Collapse
Affiliation(s)
- Aude Salamé
- Laboratoire d'Electrochimie Moléculaire (LEM), Université Paris Cité, FF-75013, Paris, France
| | - Mun Hon Cheah
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, 751 20, Uppsala, Sweden
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire (LEM), Université Paris Cité, FF-75013, Paris, France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire (LEM), Université Paris Cité, FF-75013, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| | | |
Collapse
|
6
|
He H, Qiu ZY, Yin Z, Kong J, Dang JS, Lei H, Zhang W, Cao R. The meso-substituent electronic effect of Fe porphyrins on the electrocatalytic CO 2 reduction reaction. Chem Commun (Camb) 2024; 60:5916-5919. [PMID: 38745555 DOI: 10.1039/d4cc01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We report Fe porphyrins bearing different meso-substituents for the electrocatalytic CO2 reduction reaction (CO2RR). By replacing two and four meso-phenyl groups of Fe tetraphenylporphyrin (FeTPP) with strong electron-withdrawing pentafluorophenyl groups, we synthesized FeF10TPP and FeF20TPP, respectively. We showed that FeTPP and FeF10TPP are active and selective for CO2-to-CO conversion in dimethylformamide with the former being more active, but FeF20TPP catalyzes hydrogen evolution rather than the CO2RR under the same conditions. Experimental and theoretical studies revealed that with more electron-withdrawing meso-substituents, the Fe center becomes electron-deficient and it becomes difficult for it to bind a CO2 molecule in its formal Fe0 state. This work is significant to illustrate the electronic effects of catalysts on binding and activating CO2 molecules and provide fundamental knowledge for the design of new CO2RR catalysts.
Collapse
Affiliation(s)
- Hongyuan He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zi-Yang Qiu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhiyuan Yin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jiafan Kong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing-Shuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Patra S, Atta S, Ghosh S, Majumdar A, Dey A. Kinetic isotope effect offers selectivity in CO 2 reduction. Chem Commun (Camb) 2024; 60:4826-4829. [PMID: 38618750 DOI: 10.1039/d3cc06336d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A binuclear Ni complex with N,O donors catalyzes CO2 reduction via its Ni(I) state. The product distribution when H2O is used as a proton source shows similar yields for CO, HCOOH and H2. However, when D2O is used, the product distribution shows a ∼65% selectivity for HCOOH. In situ FTIR indicates that the reaction involves a Ni-COO* and a Ni-CO intermediate. Differences in H/D KIEs on different protonation pathways determine the selectivity of CO2 reduction.
Collapse
Affiliation(s)
- Suman Patra
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Sayan Atta
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Soumili Ghosh
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Amit Majumdar
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences Indian Association for the Cultivation of Science 2A & 2B, Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
8
|
Wang G, Zhang ZX, Chen H, Fu Y, Xiang K, Han E, Wu T, Bai Q, Su PY, Wang Z, Liu D, Shen F, Liu H, Jiang Z, Yuan J, Li Y, Wang P. Synthesis of a Triangle-Fused Six-Pointed Star and Its Electrocatalytic CO 2 Reduction Activity. Inorg Chem 2024; 63:7442-7454. [PMID: 38606439 DOI: 10.1021/acs.inorgchem.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.
Collapse
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Zi-Xi Zhang
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Chen
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Yingxue Fu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Ermeng Han
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pei-Yang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhujiang Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Die Liu
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fenghua Shen
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Xinxiang, Henan 453007, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| |
Collapse
|
9
|
Yuan H, Krishna A, Wei Z, Su Y, Chen J, Hua W, Zheng Z, Song D, Mu Q, Pan W, Xiao L, Yan J, Li G, Yang W, Deng Z, Peng Y. Ligand-Bound CO 2 as a Nonclassical Route toward Efficient Photocatalytic CO 2 Reduction with a Ni N-Confused Porphyrin. J Am Chem Soc 2024; 146:10550-10558. [PMID: 38584353 DOI: 10.1021/jacs.3c14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Implementing the synergistic effects between the metal and the ligand has successfully streamlined the energetics for CO2 activation and gained high catalytic activities, establishing the important breakthroughs in photocatalytic CO2 reduction. Herein, we describe a Ni(II) N-confused porphyrin complex (NiNCP) featuring an acidic N-H group. It is readily deprotonated and exists in an anion form during catalysis. Owing to this functional site, NiNCP gave rise to an outstanding turnover number (TON) as high as 217,000 with a 98% selectivity for CO2 reduction to CO, while the parent Ni(II) porphyrin (NiTPP) was found to be nearly inactive. Our mechanistic analysis revealed a nonclassical reaction pattern where CO2 was effectively activated via the attack of the Lewis-basic ligand. The resulting ligand-bound CO2 adduct could be further reduced to produce CO. This new metal-ligand synergistic effect is anticipated to inspire the design of highly active catalysts for small molecule activations.
Collapse
Affiliation(s)
- Huihong Yuan
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Akash Krishna
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Zhihe Wei
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanhui Su
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jinzhou Chen
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Hua
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhangyi Zheng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Daqi Song
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiaoqiao Mu
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weiyi Pan
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Long Xiao
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Wenjun Yang
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhao Deng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
10
|
Xiao Y, Xie F, Zhang HT, Zhang MT. Bioinspired Binickel Catalyst for Carbon Dioxide Reduction: The Importance of Metal-ligand Cooperation. JACS AU 2024; 4:1207-1218. [PMID: 38559717 PMCID: PMC10976602 DOI: 10.1021/jacsau.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Catalyst design for the efficient CO2 reduction reaction (CO2RR) remains a crucial challenge for the conversion of CO2 to fuels. Natural Ni-Fe carbon monoxide dehydrogenase (NiFe-CODH) achieves reversible conversion of CO2 and CO at nearly thermodynamic equilibrium potential, which provides a template for developing CO2RR catalysts. However, compared with the natural enzyme, most biomimetic synthetic Ni-Fe complexes exhibit negligible CO2RR catalytic activities, which emphasizes the significance of effective bimetallic cooperation for CO2 activation. Enlightened by bimetallic synergy, we herein report a dinickel complex, NiIINiII(bphpp)(AcO)2 (where NiNi(bphpp) is derived from H2bphpp = 2,9-bis(5-tert-butyl-2-hydroxy-3-pyridylphenyl)-1,10-phenanthroline) for electrocatalytic reduction of CO2 to CO, which exhibits a remarkable reactivity approximately 5 times higher than that of the mononuclear Ni catalyst. Electrochemical and computational studies have revealed that the redox-active phenanthroline moiety effectively modulates the electron injection and transfer akin to the [Fe3S4] cluster in NiFe-CODH, and the secondary Ni site facilitates the C-O bond activation and cleavage through electron mediation and Lewis acid characteristics. Our work underscores the significant role of bimetallic cooperation in CO2 reduction catalysis and provides valuable guidance for the rational design of CO2RR catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular
Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Ghosh S, Hassan SH, Das A. Role of Explicit Solvation in Computational Modeling of Chemical Reactions: Mechanism of Cu(I) Transfer Between Thiolate-Based Chelators in Water. J Phys Chem B 2024. [PMID: 38503566 DOI: 10.1021/acs.jpcb.3c07327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Solvation plays important roles in controlling the thermodynamic and kinetic aspects of chemical reactions. The conventional approaches to treat solvation via electronic structure methods are likely to become inadequate, when the reacting solutes have strong electrostatic and hydrogen bonding interactions with the solvent and undergo significant structural changes during the course of the reaction. In this article, we present evidence of such solvent and structural effects in the computational study of the Cu(I) transfer reaction between thiolate-based chelators dithiobutylamine (DTBA) and dithiotheritol (DTT) in water, inspired from biological copper trafficking phenomena. We propose a general solution to the problem by combining classical molecular dynamics (MD) simulations of the bulk system and static quantum chemistry calculations. The fluctuating solvation shell was estimated from MD, and energetics was assessed by averaging QM energies of a series of molecular clusters constructed from the MD snapshots. Applying this approach, we propose a reaction pathway with estimates of relative intermediate stabilities and barriers, which suggest the overall reaction to be reversible in nature and likely to go through both two and three coordinated intermediates, confirming previous studies of similar protein analogues. An interesting fact that emerged from our study was the strong indication that the rate-determining step is the deprotonation of initial thiol bound Cu(I) complex, without involving any Cu(I)-S bonds. The proposed method will lead to a better treatment of solvations, and these mechanistic insights will aid our understanding of biological copper(I) trafficking.
Collapse
Affiliation(s)
- Soumak Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sk Hasibo Hassan
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Avisek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Sarkar P, Sarkar S, Nayek A, Adarsh NN, Pal AK, Datta A, Dey A, Ghosh P. Low Potential CO 2 Reduction by Inert Fe(II)-Macrobicyclic Complex: A New Concept of Cavity Assisted CO 2 Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304794. [PMID: 37888827 DOI: 10.1002/smll.202304794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The advantage of a pre-organized π-cavity of Fe(II) complex of a newly developed macrobicycle cryptand is explored for CO2 reduction by overcoming the problem of high overpotential associated with the inert nature of the cryptate. Thus, a bipyridine-centered tritopic macrobicycle having a molecular π-cavity capable of forming Fe(II) complex as well as potential for CO2 encapsulation is synthesized. The inert Fe(II)-cryptate shows much lower potential in cyclic voltammetry than the Fe(II)-tris-dimethylbipyridine (Fe-MBP) core. Interestingly, this cryptate shows electrochemical CO2 reduction at a considerably lower potential than the Fe-MBP inert core. Therefore, this study represents that a well-structured π-cavity may generate a new series of molecular catalysts for the CO2 reduction reaction (CO2 RR), even with the inert metal complexes.
Collapse
Affiliation(s)
- Piyali Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
- Institute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata, West Bengal, 700156, India
| | - Sayan Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Nayarassery N Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, 700032, India
| |
Collapse
|
13
|
Bairagi A, Pereverzev AY, Tinnemans P, Pidko EA, Roithová J. Electrocatalytic CO 2 Reduction: Monitoring of Catalytically Active, Downgraded, and Upgraded Cobalt Complexes. J Am Chem Soc 2024; 146:5480-5492. [PMID: 38353430 PMCID: PMC10910500 DOI: 10.1021/jacs.3c13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The premise of most studies on the homogeneous electrocatalytic CO2 reduction reaction (CO2RR) is a good understanding of the reaction mechanisms. Yet, analyzing the reaction intermediates formed at the working electrode is challenging and not always attainable. Here, we present a new, general approach to studying the reaction intermediates applied for CO2RR catalyzed by a series of cobalt complexes. The cobalt complexes were based on the TPA-ligands (TPA = tris(2-pyridylmethyl)amine) modified by amino groups in the secondary coordination sphere. By combining the electrochemical experiments, electrochemistry-coupled electrospray ionization mass spectrometry, with density functional theory (DFT) calculations, we identify and spectroscopically characterize the key reaction intermediates in the CO2RR and the competing hydrogen-evolution reaction (HER). Additionally, the experiments revealed the rarely reported in situ changes in the secondary coordination sphere of the cobalt complexes by the CO2-initiated transformation of the amino substituents to carbamates. This launched an even faster alternative HER pathway. The interplay of three catalytic cycles, as derived from the experiments and supported by the DFT calculations, explains the trends that cobalt complexes exhibit during the CO2RR and HER. Additionally, this study demonstrates the need for a molecular perspective in the electrocatalytic activation of small molecules efficiently obtained by the EC-ESI-MS technique.
Collapse
Affiliation(s)
- Abhinav Bairagi
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Aleksandr Y. Pereverzev
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2629 HZ, The Netherlands
| | - Jana Roithová
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
14
|
Droghetti F, Amati A, Pascale F, Crochet A, Pastore M, Ruggi A, Natali M. Catalytic CO 2 Reduction with Heptacoordinated Polypyridine Complexes: Switching the Selectivity via Metal Replacement. CHEMSUSCHEM 2024; 17:e202300737. [PMID: 37846888 DOI: 10.1002/cssc.202300737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The discovery of molecular catalysts for the CO2 reduction reaction (CO2 RR) in the presence of water, which are both effective and selective towards the generation of carbon-based products, is a critical task. Herein we report the catalytic activity towards the CO2 RR in acetonitrile/water mixtures by a cobalt complex and its iron analog both featuring the same redox-active ligand and an unusual seven-coordination environment. Bulk electrolysis experiments show that the cobalt complex mainly yields formate (52 % selectivity at an applied potential of -2.0 V vs Fc+ /Fc and 1 % H2 O) or H2 (up to 86 % selectivity at higher applied bias and water content), while the iron complex always delivers CO as the major product (selectivity >74 %). The different catalytic behavior is further confirmed under photochemical conditions with the [Ru(bpy)3 ]2+ sensitizer (bpy=2,2'-bipyridine) and N,N-diisopropylethylamine as electron donor, where the cobalt complex leads to preferential H2 formation (up to 89 % selectivity), while the iron analog quantitatively generates CO (up to 88 % selectivity). This is ascribed to a preference towards a metal-hydride vs. a metal-carboxyl pathway for the cobalt and the iron complex, respectively, and highlights how metal replacement may effectively impact on the reactivity of transition metal complexes towards solar fuel formation.
Collapse
Affiliation(s)
- Federico Droghetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Agnese Amati
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Fabien Pascale
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mariachiara Pastore
- Laboratoire de Physique et Chimie Théoretiques, University of Lorraine & CNRS, 54000, Nancy, France
| | - Albert Ruggi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
15
|
Kamogawa K, Kato Y, Tamaki Y, Noguchi T, Nozaki K, Nakagawa T, Ishitani O. Overall reaction mechanism of photocatalytic CO 2 reduction on a Re(i)-complex catalyst unit of a Ru(ii)-Re(i) supramolecular photocatalyst. Chem Sci 2024; 15:2074-2088. [PMID: 38332814 PMCID: PMC10848666 DOI: 10.1039/d3sc06059d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
Rhenium(i) complexes fac-[ReI(diimine)(CO)3(L)]n+ are mostly used and evaluated as photocatalysts and catalysts in both photochemical and electrochemical systems for CO2 reduction. However, the selective reduction mechanism of CO2 to CO is unclear, although numerous mechanistic studies have been reported. A Ru(ii)-Re(i) supramolecular photocatalyst with fac-[ReI(diimine)(CO)3{OC(O)OCH2CH2NR2}] (R = C2H4OH) as a catalyst unit (RuC2Re) exhibits very high efficiency, selectivity, and durability of CO formation in photocatalytic CO2 reduction reactions. In this work, the reaction mechanism of photocatalytic CO2 reduction using RuC2Re is fully clarified. Time-resolved IR (TR-IR) measurements using rapid-scan FT-IR spectroscopy with laser flash photolysis verify the formation of RuC2Re(COOH) with a carboxylic acid unit, i.e., fac-[ReI(diimine)(CO)3(COOH)], in the photocatalytic reaction solution. Additionally, this important intermediate is detected in an actual photocatalytic reaction using steady state irradiation. Kinetics analysis of the TR-IR spectra and DFT calculations demonstrated the reaction mechanism of the conversion of the one-electron reduced species of RuC2Re with a fac-[ReI(diimine˙-)(CO)3{OC(O)OCH2CH2NR2}]- unit, which was produced via the photochemical reduction of RuC2Re by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), to RuC2Re(COOH). The kinetics of the recovery processes of the starting complex RuC2Re from RuC2Re(COOH) accompanying the release of CO and OH- was also clarified. As a side reaction of RuC2Re(COOH), a long-lived carboxylate-ester complex with a fac-[ReI(diimine)(CO)3(COOC2H4NR2)] unit, which was produced by the nucleophilic attack of TEOA to one of the carbonyl ligands of RuC2Re(CO) with a fac-[ReI(diimine)(CO)4]+ unit, was formed during the photocatalytic reaction. This complex works not only as a precursor in another minor CO formation process but also as an external photosensitiser that photochemically reduces the other complexes i.e., RuC2Re, RuC2Re(COOH), and the intermediate that is reductively converted to RuC2Re(COOH).
Collapse
Affiliation(s)
- Kei Kamogawa
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yuki Kato
- Department of Physics, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takumi Noguchi
- Department of Physics, Graduate School of Science, Nagoya University Nagoya 464-8602 Japan
| | - Koichi Nozaki
- Department of Chemistry, Graduated School of Science and Engineering, University of Toyama 3190, Gofuku, Toya-ma-shi Toyama 930-8555 Japan
| | - Tatsuo Nakagawa
- UNISOKU Co., Ltd 2-4-3 Kasugano, Hirakata Osaka 573-0131 Japan
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology 2-12-1-NE-2 O-okayama, Meguro-ku Tokyo 152-8550 Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima Hiroshima 739 8526 Japan
| |
Collapse
|
16
|
Amanullah S, Gotico P, Sircoglou M, Leibl W, Llansola-Portoles MJ, Tibiletti T, Quaranta A, Halime Z, Aukauloo A. Second Coordination Sphere Effect Shifts CO 2 to CO Reduction by Iron Porphyrin from Fe 0 to Fe I. Angew Chem Int Ed Engl 2024; 63:e202314439. [PMID: 38050770 DOI: 10.1002/anie.202314439] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Iron porphyrins are among the most studied molecular catalysts for carbon dioxide (CO2 ) reduction and their reactivity is constantly being enhanced through the implementation of chemical functionalities in the second coordination sphere inspired by the active sites of enzymes. In this study, we were intrigued to observe that a multipoint hydrogen bonding scheme provided by embarked urea groups could also shift the redox activation step of CO2 from the well-admitted Fe(0) to the Fe(I) state. Using EPR, resonance Raman, IR and UV-Visible spectroscopies, we underpinned a two-electron activation step of CO2 starting from the Fe(I) oxidation state to form, after protonation, an Fe(III)-COOH species. The addition of another electron and a proton to the latter species converged to the cleavage of a C-O bond with the loss of water molecule resulting in an Fe(II)-CO species. DFT analyses of these postulated intermediates are in good agreement with our collected spectroscopic data, allowing us to propose an alternative pathway in the catalytic CO2 reduction with iron porphyrin catalyst. Such a remarkable shift opens new lines of research in the design of molecular catalysts to reach low overpotentials in performing multi-electronic CO2 reduction catalysis.
Collapse
Affiliation(s)
- Sk Amanullah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Manuel J Llansola-Portoles
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tania Tibiletti
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Annamaria Quaranta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Yong WW, Zhang HT, Guo YH, Xie F, Zhang MT. Redox-Active Ligand Assisted Multielectron Catalysis: A Case of Electrocatalyzed CO 2-to-CO Conversion. ACS ORGANIC & INORGANIC AU 2023; 3:384-392. [PMID: 38075450 PMCID: PMC10704577 DOI: 10.1021/acsorginorgau.3c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 03/16/2024]
Abstract
The selective reduction of carbon dioxide remains a significant challenge due to the complex multielectron/proton transfer process, which results in a high kinetic barrier and the production of diverse products. Inspired by the electrostatic and H-bonding interactions observed in the second sphere of the [NiFe]-CODH enzyme, researchers have extensively explored these interactions to regulate proton transfer, stabilize intermediates, and ultimately improve the performance of catalytic CO2 reduction. In this work, a series of cobalt(II) tetraphenylporphyrins with varying numbers of redox-active nitro groups were synthesized and evaluated as CO2 reduction electrocatalysts. Analyses of the redox properties of these complexes revealed a consistent relationship between the number of nitro groups and the corresponding accepted electron number of the ligand at -1.59 V vs. Fc+/0. Among the catalysts tested, TNPPCo with four nitro groups exhibited the most efficient catalytic activity with a turnover frequency of 4.9 × 104 s-1 and a catalytic onset potential 820 mV more positive than that of the parent TPPCo. Furthermore, the turnover frequencies of the catalysts increased with a higher number of nitro groups. These results demonstrate the promising design strategy of incorporating multielectron redox-active ligands into CO2 reduction catalysts to enhance catalytic performance.
Collapse
Affiliation(s)
- Wen-Wen Yong
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Materials, China Academy of Engineering Physics (CAEP), Jiangyou 621908, China
| | - Hong-Tao Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Hua Guo
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fei Xie
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center
of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Alvarez-Hernandez JL, Salamatian AA, Sopchak AE, Bren KL. Hydrogen evolution catalysis by a cobalt porphyrin peptide: A proposed role for porphyrin propionic acid groups. J Inorg Biochem 2023; 249:112390. [PMID: 37801884 DOI: 10.1016/j.jinorgbio.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023]
Abstract
Cobalt microperoxidase-11 (CoMP11-Ac) is a cobalt porphyrin-peptide catalyst for hydrogen (H2) evolution from water. Herein, we assess electrocatalytic activity of CoMP11-Ac from pH 1.0-10.0. This catalyst remains intact and active under highly acidic conditions (pH 1.0) that are desirable for maximizing H2 evolution activity. Analysis of electrochemical data indicate that H2 evolution takes place by two pH-dependent mechanisms. At pH < 4.3, a proton transfer mechanism involving the propionic acid groups of the porphyrin is proposed, decreasing the catalytic overpotential by 280 mV.
Collapse
Affiliation(s)
| | - Alison A Salamatian
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Andrew E Sopchak
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| | - Kara L Bren
- Department of Chemistry, University of Rochester. Rochester, NY 14627-0216, United States.
| |
Collapse
|
19
|
Li Y, Chen JY, Zhang X, Peng Z, Miao Q, Chen W, Xie F, Liao RZ, Ye S, Tung CH, Wang W. Electrocatalytic Interconversions of CO 2 and Formate on a Versatile Iron-Thiolate Platform. J Am Chem Soc 2023. [PMID: 38019775 DOI: 10.1021/jacs.3c09824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Exploring bidirectional CO2/HCO2- catalysis holds significant potential in constructing integrated (photo)electrochemical formate fuel cells for energy storage and applications. Herein, we report selective CO2/HCO2- electrochemical interconversion by exploiting the flexible coordination modes and rich redox properties of a versatile iron-thiolate platform, Cp*Fe(II)L (L = 1,2-Ph2PC6H4S-). Upon oxidation, this iron complex undergoes formate binding to generate a diferric formate complex, [(L-)2Fe(III)(μ-HCO2)Fe(III)]+, which exhibits remarkable electrocatalytic performance for the HCO2--to-CO2 transformation with a maximum turnover frequency (TOFmax) ∼103 s-1 and a Faraday efficiency (FE) ∼92(±4)%. Conversely, this iron system also allows for reduction at -1.85 V (vs Fc+/0) and exhibits an impressive FE ∼93 (±3)% for the CO2-to-HCO2- conversion. Mechanism studies revealed that the HCO2--to-CO2 electrocatalysis passes through dicationic [(L2)-•Fe(III)(μ-HCO2)Fe(III)]2+ generated by unconventional oxidation of the diferric formate species taking place at ligand L, while the CO2-to-HCO2- reduction involves a critical intermediate of [Fe(II)-H]- that was independently synthesized and structurally characterized.
Collapse
Affiliation(s)
- Yongxian Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jia-Yi Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinchao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Peng
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiyi Miao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Xie
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Nguyen BX, Sonea A, Warren JJ. Further Understanding the Roles of Solvent, Brønsted Acids, and Hydrogen Bonding in Iron Porphyrin-Mediated Carbon Dioxide Reduction. Inorg Chem 2023; 62:17602-17611. [PMID: 37847220 DOI: 10.1021/acs.inorgchem.3c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Improving our understanding of how molecules and materials mediate the electrochemical reduction of carbon dioxide (CO2) to upgraded products is of great interest as a means to address climate change. A leading class of molecules that can facilitate the electrochemical conversion of CO2 to carbon monoxide (CO) is iron porphyrins. These molecules can have high rate constants for CO2-to-CO conversion; they are robust, and they rely on abundant and inexpensive synthetic building blocks. Important foundational work has been conducted using chloroiron 5,10,15,20-tetraphenylporphyrin (FeTPPCl) in N,N-dimethylformamide (DMF) solvent. A related and recent report points out that the corresponding perchlorate complex, FeTPPClO4, can have superior function due to its solubility in other organic solvents. However, the importance of hydrogen bonding and solvent effects was not discussed. Herein, we present a detailed kinetic study of the triflate (CF3SO3-) complex of FeTPP in DMF and in MeCN using a range of phenol Brønsted acid additives. We also detected the formation of Fe(III)TPP-phenolate complexes using cyclic voltammetry experiments. Importantly, our new analysis of apparent rate constants with different added phenols allows for a modification to the established mechanistic model for CO2-to-CO conversion. Critically, our improved model accounts for hydrogen bonding and solvent effects by using simple hydrogen bond acidity and basicity descriptors. We use this augmented model to rationalize function in other reported porphyrin systems and to make predictions about operational conditions that can enhance the CO2 reduction chemistry.
Collapse
Affiliation(s)
- Bach Xuan Nguyen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
21
|
Jha N, Mondal S, Kapur M. Site-selective ring opening of bicyclo[n.1.0]alkanols: an Fe(II)-catalyzed 1,6-conjugate addition to p-quinone methides. Chem Commun (Camb) 2023; 59:12491-12494. [PMID: 37786391 DOI: 10.1039/d3cc04135b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein, we report an efficient synthetic strategy for an Fe(ii)-catalyzed site-selective ring opening of bicyclo[n.1.0]alkanols and their concomitant 1,6-conjugate addition to p-quinone methides. Access to tertiary carbon centers with appendaged carbocycles of distinct sizes and functional groups are achieved, under a substrate-controlled bond scission of the fused cyclopropanols. Synthetic derivatizations further enhance the utility of the protocol.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Subhadip Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
22
|
Qing Y, Wu Q, He S, Zhang P, Xiong Y, Zhang Y, Huang F, Li F, Chen L. Effects of proton tunneling distance on CO 2 reduction by Mn terpyridine species. Dalton Trans 2023; 52:14309-14313. [PMID: 37779480 DOI: 10.1039/d3dt02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Herein, we report two manganese terpyridine dicarbonyl complexes, covalently attached to a proximal (1) or distal (2) amide moiety at the ortho position of the pendent phenyl ring as a proton relay. The isomer 1 achieves a turnover frequency (TOF) of 325 s-1 with a minor overpotential of ca. 200 mV. The performance ranks it among the most efficient molecular catalysts for CO2-to-CO conversion, and it is ca.2 orders faster than isomer 2.
Collapse
Affiliation(s)
- Yuhang Qing
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Qianqian Wu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Shuanglin He
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Ping Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Ying Xiong
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Yaping Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lin Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, P. R. China.
| |
Collapse
|
23
|
De La Torre P, An L, Chang CJ. Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302122. [PMID: 37144618 DOI: 10.1002/adma.202302122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 05/06/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) using sustainable energy inputs is a promising strategy for upcycling of atmospheric carbon into value-added chemical products. This goal has inspired the development of catalysts for selective and efficient CO2 conversion using electrochemical and photochemical methods. Among the diverse array of catalyst systems designed for this purpose, 2D and 3D platforms that feature porosity offer the potential to combine carbon capture and conversion. Included are covalent organic frameworks (COFs), metal-organic frameworks (MOFs), porous molecular cages, and other hybrid molecular materials developed to increase active site exposure, stability, and water compatibility while maintaining precise molecular tunability. This mini-review showcases catalysts for the CO2 reduction reaction (CO2 RR) that incorporate well-defined molecular elements integrated into porous materials structures. Selected examples provide insights into how different approaches to this overall design strategy can augment their electrocatalytic and/or photocatalytic CO2 reduction activity.
Collapse
Affiliation(s)
- Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-1460, USA
| |
Collapse
|
24
|
Lawson SE, Leznoff DB, Warren JJ. Contemporary Strategies for Immobilizing Metallophthalocyanines for Electrochemical Transformations of Carbon Dioxide. Molecules 2023; 28:5878. [PMID: 37570849 PMCID: PMC10421282 DOI: 10.3390/molecules28155878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Metallophthalocyanine (PcM) coordination complexes are well-known mediators of the electrochemical reduction of carbon dioxide (CO2). They have many properties that show promise for practical applications in the energy sector. Such properties include synthetic flexibility, a high stability, and good efficiencies for the reduction of CO2 to useful feedstocks, such as carbon monoxide (CO). One of the ongoing challenges that needs to be met is the incorporation of PcM into the heterogeneous materials that are used in a great many CO2-reduction devices. Much progress has been made in the last decade and there are now several promising approaches to incorporate PcM into a range of materials, from simple carbon-adsorbed preparations to extended polymer networks. These approaches all have important advantages and drawbacks. In addition, investigations have led to new proposals regarding CO2 reduction catalytic cycles and other operational features that are crucial to function. Here, we describe developments in the immobilization of PcM CO2 reduction catalysts in the last decade (2013 to 2023) and propose promising avenues and strategies for future research.
Collapse
Affiliation(s)
| | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| |
Collapse
|
25
|
Chen F, Wiriyarattanakul A, Xie W, Shi L, Rungrotmongkol T, Jia R, Maitarad P. Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts. Molecules 2023; 28:molecules28073105. [PMID: 37049867 PMCID: PMC10096077 DOI: 10.3390/molecules28073105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.
Collapse
Affiliation(s)
- Furong Chen
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Amphawan Wiriyarattanakul
- Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand
| | - Wanting Xie
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute Shanghai University, Jiaxing 314006, China
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (P.M.)
| | - Rongrong Jia
- Department of Physics, Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Correspondence: (T.R.); (P.M.)
| |
Collapse
|
26
|
Chen S, Li X, Li H, Chen K, Luo T, Fu J, Liu K, Wang Q, Zhu M, Liu M. Proton Transfer Dynamics-Mediated CO 2 Electroreduction. CHEMSUSCHEM 2023:e202202251. [PMID: 36820747 DOI: 10.1002/cssc.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, P. R. China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kejun Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physical and Electronics, Central South University, 410083, Changsha, P. R. China
| |
Collapse
|
27
|
Zhao J, Lyu H, Wang Z, Ma C, Jia S, Kong W, Shen B. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: progress in regulation strategies and applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
28
|
Chattopadhyay S, Samanta S, Sarkar A, Bhattacharya A, Patra S, Dey A. Silver nanostructure-modified graphite electrode for in-operando SERRS investigation of iron porphyrins during high-potential electrocatalysis. J Chem Phys 2023; 158:044201. [PMID: 36725507 DOI: 10.1063/5.0136333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In-operando spectroscopic observation of the intermediates formed during various electrocatalytic oxidation and reduction reactions is crucial to propose the mechanism of the corresponding reaction. Surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrochemistry (SERRS-RDE), developed about a decade ago, proved to be an excellent spectroscopic tool to investigate the mechanism of heterogeneous oxygen reduction reaction (ORR) catalyzed by synthetic iron porphyrin complexes under steady-state conditions in water. The information about the formation of the intermediates accumulated during the course of the reaction at the electrode interface helped to develop better ORR catalysts with second sphere residues in the porphyrin rings. To date, the application of this SERRS-RDE setup is limited to ORR only because the thiol self-assembled monolayer (SAM)-modified Ag electrode, used as the working electrode in these experiments, suffers from stability issues at more cathodic and anodic potential, where H2O oxidation, CO2 reduction, and H+ reduction reactions occur. The current investigation shows the development of a second-generation SERRS-RDE setup consisting of an Ag nanostructure (AgNS)-modified graphite electrode as the working electrode. These electrodes show higher stability (compared to the conventional thiol SAM-modified Ag electrode) upon exposure to very high cathodic and anodic potential with a good signal-to-noise ratio in the Raman spectra. The behavior of this modified electrode toward ORR is found to be the same as the SAM-modified Ag electrode, and the same ORR intermediates are observed during electrochemical ORR. At higher cathodic potential, the signatures of Fe(0) porphyrin, an important intermediate in H+ and CO2 reduction reactions, was observed at the electrode-water interface.
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ankita Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Aishik Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
29
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202209396. [PMID: 36538739 PMCID: PMC9868116 DOI: 10.1002/anie.202209396] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 12/24/2022]
Abstract
We present a supramolecular approach to catalyzing photochemical CO2 reduction through second-sphere porosity and charge effects. An iron porphyrin box (PB) bearing 24 cationic groups, FePB-2(P), was made via post-synthetic modification of an alkyne-functionalized supramolecular synthon. FePB-2(P) promotes the photochemical CO2 reduction reaction (CO2 RR) with 97 % selectivity for CO product, achieving turnover numbers (TON) exceeding 7000 and initial turnover frequencies (TOFmax ) reaching 1400 min-1 . The cooperativity between porosity and charge results in a 41-fold increase in activity relative to the parent Fe tetraphenylporphyrin (FeTPP) catalyst, which is far greater than analogs that augment catalysis through porosity (FePB-3(N), 4-fold increase) or charge (Fe p-tetramethylanilinium porphyrin (Fe-p-TMA), 6-fold increase) alone. This work establishes that synergistic pendants in the secondary coordination sphere can be leveraged as a design element to augment catalysis at primary active sites within confined spaces.
Collapse
Affiliation(s)
- Lun An
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Peter T Smith
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Mina R Narouz
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
| |
Collapse
|
30
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO
2
Reduction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lun An
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Patricia De La Torre
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Peter T. Smith
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Mina R. Narouz
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
- Department of Molecular and Cell Biology University of California, Berkeley 94720-1460 Berkeley, CA USA
| |
Collapse
|
31
|
Alvarez-Hernandez JL, Salamatian AA, Han JW, Bren KL. Potential- and Buffer-Dependent Selectivity for the Conversion of CO 2 to CO by a Cobalt Porphyrin-Peptide Electrocatalyst in Water. ACS Catal 2022; 12:14689-14697. [PMID: 36504916 PMCID: PMC9724230 DOI: 10.1021/acscatal.2c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Indexed: 11/17/2022]
Abstract
A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO2 to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H2. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pK a buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO2 reduction for a biocatalyst previously developed for H2 production.
Collapse
|
32
|
Cao R. Across the Board: Rui Cao on Electrocatalytic CO 2 Reduction. CHEMSUSCHEM 2022; 15:e202201788. [PMID: 36130862 DOI: 10.1002/cssc.202201788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 06/15/2023]
Abstract
In this series of articles, the Board Members of ChemSusChem review recent research articles that they consider of exceptional quality and importance for sustainability. This entry features Prof. Rui Cao, who discusses how tuning the second-sphere environments of Fe porphyrins can improve the activity and selectivity for CO2 reduction. Substituents with proton relay capability, hydrogen-bonding, and electrostatic features have significant impact on the efficiency of Fe porphyrins for the electrocatalytic CO2 reduction reaction.
Collapse
Affiliation(s)
- Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, P. R. China
| |
Collapse
|
33
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202207666. [PMID: 35878059 PMCID: PMC9452489 DOI: 10.1002/anie.202207666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 08/26/2023]
Abstract
Microenvironments tailored by multifunctional secondary coordination sphere groups can enhance catalytic performance at primary metal active sites in natural systems. Here, we capture this biological concept in synthetic systems by developing a family of iron porphyrins decorated with imidazolium (im) pendants for the electrochemical CO2 reduction reaction (CO2 RR), which promotes multiple synergistic effects to enhance CO2 RR and enables the disentangling of second-sphere contributions that stem from each type of interaction. Fe-ortho-im(H), which poises imidazolium units featuring both positive charge and hydrogen-bond capabilities proximal to the active iron center, increases CO2 binding affinity by 25-fold and CO2 RR activity by 2000-fold relative to the parent Fe tetraphenylporphyrin (Fe-TPP). Comparison with monofunctional analogs reveals that through-space charge effects have a greater impact on catalytic CO2 RR performance compared to hydrogen bonding in this context.
Collapse
Affiliation(s)
- Mina R Narouz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
34
|
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022; 61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
|
35
|
Meng SL, Ye C, Li XB, Tung CH, Wu LZ. Photochemistry Journey to Multielectron and Multiproton Chemical Transformation. J Am Chem Soc 2022; 144:16219-16231. [PMID: 36054091 DOI: 10.1021/jacs.2c02341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The odyssey of photochemistry is accompanied by the journey to manipulate "electrons" and "protons" in time, in space, and in energy. Over the past decades, single-electron (1e-) photochemical transformations have brought marvelous achievements. However, as each photon absorption typically generates only one exciton pair, it is exponentially challenging to accomplish multielectron and proton photochemical transformations. The multistep differences in thermodynamics and kinetics urgently require us to optimize light harvesting, expedite consecutive electron transfer, manipulate the interaction of catalysts with substrates, and coordinate proton transfer kinetics to furnish selective bond formations. Tandem catalysis enables orchestrating different photochemical events and catalytic transformations from subpicoseconds to seconds, which facilitates multielectron redox chemistries and brings consecutive, value-added reactivities. Joint efforts in molecular and material design, mechanistic understanding, and theoretical modeling will bring multielectron and proton synthetic opportunities for fuels, fertilizers, and chemicals with enhanced versatility, efficiency, selectivity, and scalability, thus taking better advantage of photons (i.e., sunlight) for our sustainable society.
Collapse
Affiliation(s)
- Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang X, Zhang W, Apfel U, Cao R. Role‐Specialized Division of Labor in CO
2
Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202209602. [DOI: 10.1002/anie.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
37
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary-Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO 2 Reduction in a Fe-Porphyrin-Based Metal-Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202206085. [PMID: 35674328 PMCID: PMC9401588 DOI: 10.1002/anie.202206085] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Metal-organic frameworks (MOFs) are promising platforms for heterogeneous tethering of molecular CO2 reduction electrocatalysts. Yet, to further understand electrocatalytic MOF systems, one also needs to consider their capability to fine-tune the immediate chemical environment of the active site, and thus affect its overall catalytic operation. Here, we show that electrostatic secondary-sphere functionalities enable substantial improvement of CO2 -to-CO conversion activity and selectivity. In situ Raman analysis reveal that immobilization of pendent positively-charged groups adjacent to MOF-residing Fe-porphyrin catalysts, stabilize weakly-bound CO intermediates, allowing their rapid release as catalytic products. Also, by varying the electrolyte's ionic strength, systematic regulation of electrostatic field magnitude was achieved, resulting in essentially 100 % CO selectivity. Thus, this concept provides a sensitive molecular-handle that adjust heterogeneous electrocatalysis on demand.
Collapse
Affiliation(s)
- Ran Shimoni
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Zhuocheng Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Shahar Binyamin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
| | - Itamar Liberman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Raya Ifraemov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Subhabrata Mukhopadhyay
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and PreventionDepartment of Environmental Science & EngineeringFudan UniversityShanghai200433China
- Shanghai Institute of Pollution Control and Ecological SecurityDepartment of Environmental Science & EngineeringShanghai200092China
| | - Idan Hod
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the NegevBeer-Sheva8410501Israel
| |
Collapse
|
38
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mina R. Narouz
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | | | - Lun An
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | - Christopher J. Chang
- University of California Department of Chemistry 532A Latimer Hall 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
39
|
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Wen Yang
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Jin-Mei Chen
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Li-Qi Qiu
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Wen-Jun Xie
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Liang-Nian He
- Nankai University College of Chemistry Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
40
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang XP, Zhang W, Apfel UP, Cao R. Role‐Specialized Division of Labor in CO2 Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Hongbo Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaotong Jin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universitat Bochum Fakultät für Chemie und Biochemie GERMANY
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering Shaanxi Normal UniversityChang'an CampusNumber 620 West Chang'an AvenueChang'an District 710119 Xi'an CHINA
| |
Collapse
|
41
|
Derrick JS, Loipersberger M, Nistanaki SK, Rothweiler AV, Head-Gordon M, Nichols EM, Chang CJ. Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO 2 Reduction Catalyzed by Iron Porphyrins. J Am Chem Soc 2022; 144:11656-11663. [PMID: 35749266 DOI: 10.1021/jacs.2c02972] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bicarbonate-based electrolytes are ubiquitous in aqueous electrochemical CO2 reduction, particularly in heterogenous catalysis, where they demonstrate improved catalytic performance relative to other buffers. In contrast, the presence of bicarbonate in organic electrolytes and its roles in homogeneous electrocatalysis remain underexplored. Here, we investigate the influence of bicarbonate on iron porphyrin-catalyzed electrochemical CO2 reduction. We show that bicarbonate is a viable proton donor in organic electrolyte (pKa = 20.8 in dimethyl sulfoxide) and that urea pendants in the second coordination sphere can be used to template bicarbonate in the vicinity of a molecular iron porphyrin catalyst. The templated binding of bicarbonate increases its acidity, resulting in a 1500-fold enhancement in catalytic rates relative to unmodified parent iron porphyrin. This work emphasizes the importance of bicarbonate speciation in wet organic electrolytes and establishes second-sphere bicarbonate templating as a design strategy to harness this adventitious acid and enhance CO2 reduction catalysis.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sepand K Nistanaki
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aila V Rothweiler
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Shimoni R, Shi Z, Binyamin S, Yang Y, Liberman I, Ifraemov R, Mukhopadhyay S, Zhang L, Hod I. Electrostatic Secondary‐Sphere Interactions That Facilitate Rapid and Selective Electrocatalytic CO2 Reduction in a Fe‐Porphyrin‐Based Metal‐Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ran Shimoni
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Zhuocheng Shi
- Fudan University Environmental Science and Engineering CHINA
| | | | - Yang Yang
- Fudan University Environmental Science and Engineering CHINA
| | | | | | | | - Liwu Zhang
- Fudan University Environmental Science and Engineering CHINA
| | - Idan Hod
- Ben-Gurion University of the Negev Chemistry Ben-Gurion Ave 1 Beer-Sheva ISRAEL
| |
Collapse
|
43
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
44
|
Rodríguez-Jiménez S, Song H, Lam E, Wright D, Pannwitz A, Bonke SA, Baumberg JJ, Bonnet S, Hammarström L, Reisner E. Self-Assembled Liposomes Enhance Electron Transfer for Efficient Photocatalytic CO 2 Reduction. J Am Chem Soc 2022; 144:9399-9412. [PMID: 35594410 PMCID: PMC9164230 DOI: 10.1021/jacs.2c01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-driven conversion of CO2 to chemicals provides a sustainable alternative to fossil fuels, but homogeneous systems are typically limited by cross reactivity between different redox half reactions and inefficient charge separation. Herein, we present the bioinspired development of amphiphilic photosensitizer and catalyst pairs that self-assemble in lipid membranes to overcome some of these limitations and enable photocatalytic CO2 reduction in liposomes using precious metal-free catalysts. Using sodium ascorbate as a sacrificial electron source, a membrane-anchored alkylated cobalt porphyrin demonstrates higher catalytic CO production (1456 vs 312 turnovers) and selectivity (77 vs 11%) compared to its water-soluble nonalkylated counterpart. Time-resolved and steady-state spectroscopy revealed that self-assembly facilitates this performance enhancement by enabling a charge-separation state lifetime increase of up to two orders of magnitude in the dye while allowing for a ninefold faster electron transfer to the catalyst. Spectroelectrochemistry and density functional theory calculations of the alkylated Co porphyrin catalyst support a four-electron-charging mechanism that activates the catalyst prior to catalysis, together with key catalytic intermediates. Our molecular liposome system therefore benefits from membrane immobilization and provides a versatile and efficient platform for photocatalysis.
Collapse
Affiliation(s)
| | - Hongwei Song
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Demelza Wright
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Andrea Pannwitz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Shannon A Bonke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
45
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
46
|
Pugliese E, Gotico P, Wehrung I, Boitrel B, Quaranta A, Ha-Thi MH, Pino T, Sircoglou M, Leibl W, Halime Z, Aukauloo A. Dissection of Light-Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2022; 61:e202117530. [PMID: 35080122 DOI: 10.1002/anie.202117530] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/09/2022]
Abstract
Iron porphyrins are among the best molecular catalysts for the electrocatalytic CO2 reduction reaction. Powering these catalysts with the help of photosensitizers comes along with a couple of unsolved challenges that need to be addressed with much vigor. We have designed an iron porphyrin catalyst decorated with urea functions (UrFe) acting as a multipoint hydrogen bonding scaffold towards the CO2 substrate. We found a spectacular photocatalytic activity reaching unreported TONs and TOFs as high as 7270 and 3720 h-1 , respectively. While the Fe0 redox state has been widely accepted as the catalytically active species, we show here that the FeI species is already involved in the CO2 activation, which represents the rate-determining step in the photocatalytic cycle. The urea functions help to dock the CO2 upon photocatalysis. DFT calculations bring support to our experimental findings that constitute a new paradigm in the catalytic reduction of CO2 .
Collapse
Affiliation(s)
- Eva Pugliese
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Philipp Gotico
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405, Orsay, France
| | - Iris Wehrung
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Bernard Boitrel
- Institut des Sciences Chimiques de Rennes (ISCR), Université Rennes 1, 35042, Rennes, France
| | - Annamaria Quaranta
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Minh-Huong Ha-Thi
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405, Orsay, France
| | - Thomas Pino
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405, Orsay, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405, Orsay, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
47
|
Rickmeyer K, Niederegger L, Keilwerth M, Hess CR. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO2 to CO. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kerstin Rickmeyer
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Corinna R. Hess
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
48
|
Pugliese E, Gotico P, Wehrung I, Boitrel B, Quaranta A, Ha‐Thi M, Pino T, Sircoglou M, Leibl W, Halime Z, Aukauloo A. Dissection of Light‐Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eva Pugliese
- Université Paris-Saclay, CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Philipp Gotico
- Université Paris-Saclay, CNRS Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Iris Wehrung
- Université Paris-Saclay, CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Bernard Boitrel
- Institut des Sciences Chimiques de Rennes (ISCR) Université Rennes 1 35042 Rennes France
| | - Annamaria Quaranta
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay 91198 Gif-sur-Yvette France
| | - Minh‐Huong Ha‐Thi
- Université Paris-Saclay, CNRS Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Thomas Pino
- Université Paris-Saclay, CNRS Institut des Sciences Moléculaires d'Orsay (ISMO) 91405 Orsay France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Université Paris-Saclay 91198 Gif-sur-Yvette France
| |
Collapse
|
49
|
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) to generate fixed forms of carbons that have commercial value is a lucrative avenue to ameliorate the growing concerns about the detrimental effect of CO2 emissions as well as to generate carbon-based feed chemicals, which are generally obtained from the petrochemical industry. The area of electrochemical CO2RR has seen substantial activity in the past decade, and several good catalysts have been reported. While the focus was initially on the rate and overpotential of electrocatalysis, it is gradually shifting toward the more chemically challenging issue of selectivity. CO2 can be partially reduced to produce several C1 products like CO, HCOOH, CH3OH, etc. before its complete 8e-/8H+ reduction to CH4. In addition to that, the low-valent electron-rich metal centers deployed to activate CO2, a Lewis acid, are prone to reduce protons, which are a substrate for CO2RR, leading to competing hydrogen evolution reaction (HER). Similarly, the low-valent metal is prone to oxidation by atmospheric O2 (i.e., it can catalyze the oxygen reduction reaction, ORR), necessitating strictly anaerobic conditions for CO2RR. Not only is the requirement of O2-free reaction conditions impractical, but it also leads to the release of partially reduced O2 species such as O2-, H2O2, etc., which are reactive and result in oxidative degradation of the catalyst.In this Account, mechanistic investigations of CO2RR by detecting and, often, chemically trapping and characterizing reaction intermediates are used to understand the factors that determine the selectivity in CO2RR. The spectroscopic data obtained from different intermediates have been identified in different CO2RR catalysts to develop an electronic structure selectivity relationship that is deemed to be important for deciding the selectivity of 2e-/2H+ CO2RR. The roles played by the spin state, hydrogen bonding, and heterogenization in determining the rate and selectivity of CO2RR (producing only CO, only HCOOH, or only CH4) are discussed using examples of both iron porphyrin and non-heme bioinspired artificial mimics. In addition, strategies are demonstrated where the competition between CO2RR and HER as well as CO2RR and ORR could be skewed overwhelmingly in favor of CO2RR in both cases.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
50
|
Li X, Lv B, Zhang X, Jin X, Guo K, Zhou D, Bian H, Zhang W, Apfel U, Cao R. Introducing Water‐Network‐Assisted Proton Transfer for Boosted Electrocatalytic Hydrogen Evolution with Cobalt Corrole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|