1
|
Zhang Z, Sheetz EG, Pink M, Yamamoto N, Flood AH. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angew Chem Int Ed Engl 2024; 63:e202409070. [PMID: 38969622 DOI: 10.1002/anie.202409070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
Steric manipulation is a known concept in molecular recognition but there is currently no linear free energy relationship correlating sterics to the stability of receptor-anion complexes nor to the reactivity of the bound anion. By analogy to Tolman cone angles in cation coordination chemistry, we explore how to define and correlate cone angles of organo-trifluoroborates (R-BF3 -) to the affinities observed for cyanostar-anion binding. We extend the analogy to a rare investigation of the anion's reactivity and how it changes upon binding. The substituent on the anion is used to define the cone angle, θ. A series of 10 anions were studied including versions with ethynyl, ethylene, and ethyl substituents to tune steric bulk across the sp, sp2 and sp3 hybridized α-carbons bearing 0, 1 and 2 hydrogen atoms. A linear relationship between affinity and cone angle is observed for anions bearing substituents larger than the -BF3 - headgroup. This correlation predicted affinities of two new anions to within ±5 %. We explored how complexation affects the reactivity of fluoride exchange. The yield of fluoride transfer from R-BF3 - to Lewis acid triphenylborane is correlated with cone angle. We predict that other rigid macrocycles, like commercially available bambusuril, could follow these trends.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Edward G Sheetz
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University Address, 800 East Kirkwood Avenue, Bloomington, Indiana, 47405, United States
| |
Collapse
|
2
|
Mukherjee N, Majumdar M. Diverse Functionality of Molecular Germanium: Emerging Opportunities as Catalysts. J Am Chem Soc 2024; 146:24209-24232. [PMID: 39172926 DOI: 10.1021/jacs.4c05498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fundamental research on germanium as the central element in compounds for bond activation chemistry and catalysis has achieved significant feats over the last two decades. Designing strategies for small molecule activations and the ultimate catalysts established capitalize on the orbital modalities of germanium, apparently imitating the transition-metal frontier orbitals. There is a growing body of examples in contemporary research implicating the tunability of the frontier orbitals through avant-garde approaches such as geometric constrained empowered reactivity, bimetallic orbital complementarity, cooperative reactivity, etc. The goal of this Perspective is to provide readers with an overview of the emerging opportunities in the field of germanium-based catalysis by perceiving the underlying key principles. This will help to convert the discrete set of findings into a more systematic vision for catalyst designs. Critical exposition on the germanium's frontier orbitals participations evokes the key challenges involved in innovative catalyst designs, wherein viewpoints are provided. We close by addressing the forward-looking directions for germanium-based catalytic manifold development. We hope that this Perspective will be motivational for applied research on germanium as a constituent of pragmatic catalysts.
Collapse
Affiliation(s)
- Nilanjana Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
3
|
Hunter NH, Gabbaï FP. Bismuthenium Cations for the Transport of Chloride Anions via Pnictogen Bonding. Angew Chem Int Ed Engl 2024:e202414699. [PMID: 39179513 DOI: 10.1002/anie.202414699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Our interest in the design of heavy pnictogen-based Lewis acids for anion trafficking across biological membrane mimics has led us to investigate trivalent bismuthenium cations as chloride anion transporters. Here, we describe two chlorodiarylbismuthines, elaborated on a peri-substituted naphthalene backbone and stabilized by an adjacent thio- or seleno-ether functionality that engages the bismuth center in a Ch→Bi interaction (Ch=chalcogen). These new derivatives are stable in aqueous environment and readiliy transport chloride anions across the membrane of phospholipid-based vesicles loaded with KCl. In addition to establishing the use of such motifs in anion transport, this investigation shows that the Lewis acidity, lipophilicity, and thus chloride transport properties depend on the nature of the chalcogen.
Collapse
Affiliation(s)
- Nathanael H Hunter
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA)n
| |
Collapse
|
4
|
Pérez-Sánchez JC, Herrera RP, Gimeno MC. The Potential of Self-Activating Au(I) Complexes in Gold Catalysis. Chemistry 2024; 30:e202401825. [PMID: 38818661 DOI: 10.1002/chem.202401825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Gold catalysis has emerged as a groundbreaking field in synthetic chemistry, revolutionizing numerous organic transformations. Despite the significant achieved advancements, the mechanistic understanding behind many gold-catalyzed reactions remains elusive. This Concept article covers the so-called "self-activating" Au(I) complexes, sorting out their pivotal role in gold catalysis. We comment on how Au(I) complexes can undergo self-activation, triggering diverse catalytic transformations without the need for external additives. The most important examples reported so far that underlie the catalytic activity of these species are discussed. This intrinsic reactivity represents a paradigm shift in gold catalysis, offering new avenues for the design of efficient and sustainable catalytic systems. Furthermore, we explore the factors influencing the stability, reactivity, and selectivity of these Au(I) complexes, providing insights into their synthetic utility and potential applications. This area of research not only advances our fundamental understanding of gold catalysis but also paves the way for the development of novel catalytic strategies with broad implications in organic synthesis and the chemical industry.
Collapse
Affiliation(s)
- Juan Carlos Pérez-Sánchez
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Raquel P Herrera
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - M Concepción Gimeno
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
5
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
6
|
Akbaba S, Steinke T, Vogel L, Engelage E, Erdelyi M, Huber SM. Elucidating the Binding Mode of Sulfur- and Selenium-Based Cationic Chalcogen-Bond Donors. Chemistry 2024; 30:e202400608. [PMID: 38604947 DOI: 10.1002/chem.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
For a comparison of the interaction modes of various chalcogen-bond donors, 2-chalcogeno-imidazolium salts have been designed, synthesized, and studied by single crystal X-ray diffraction, solution NMR and DFT as well as for their ability to act as activators in an SN1-type substitution reaction. Their interaction modes in solution were elucidated based on NMR diffusion and chemical shift perturbation experiments, which were supported by DFT-calculations. Our finding is that going from lighter to the heavier chalcogens, hydrogen bonding plays a less, while chalcogen bonding an increasingly important role for the coordination of anions. Anion-π interactions also show importance, especially for the sulfur and selenium derivatives.
Collapse
Affiliation(s)
- Sercan Akbaba
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Steinke
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Lukas Vogel
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Mate Erdelyi
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, SE-752 37, Uppsala, Sweden
| | - Stefan M Huber
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
7
|
Wang Z, Shi B, Zhao C, Zeng Y. Hypervalent Chalcogen Bonds Catalysis on the Intramolecular Aza-Michael Reaction of Aminochalcone: Catalytic Performance and Chalcogen Bond Properties. Chemistry 2024:e202401886. [PMID: 38857119 DOI: 10.1002/chem.202401886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Chalcogen bond (ChB) catalysis, as a new type in the field of non-covalent bond catalysis, has become a hot research topic in the field of organocatalysis in recent years. In the present work, we investigated the catalytic performance of a series of hypervalent ChB catalysis based on the intramolecular Aza-Michael reaction of aminochalcone. The reaction includes the carbon-nitrogen bond coupling step (key step) and the proton transfer step. The catalytic performance of mono-dentate pentafluorophenyl chalcogen bond donor ChB1 was comparable to that of bis-dentate chalcogen bond donor ChB4, and stronger than that of mono-dentate chalcogen bond donors ChB2 and ChB3. The formation of the chalcogen bond between the catalyst and the carbonyl oxygen atom of the reactant, causing the charge rearrangement of the reactant and C(1) charge of the -C-Ph group to become more positive, thereby the ChB catalysis promoted the nucleophile reaction. The electron density of the chalcogen bond of the pre-complex, the most positive electrostatic potentials of the catalyst, and the NPA charge of the key atom are proportional to the Gibbs energy barrier of the C-N bond coupling process, which provides an idea to predict the catalytic activity of the ChB catalysis.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Shi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, 050024, P. R. China
| |
Collapse
|
8
|
Paffen A, Cremer C, Patureau FW. Phenotellurazine redox catalysts: elements of design for radical cross-dehydrogenative coupling reactions. Beilstein J Org Chem 2024; 20:1292-1297. [PMID: 38887568 PMCID: PMC11181166 DOI: 10.3762/bjoc.20.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
Redox active phenotellurazine catalysts have been recently utilized in two different cross-dehydrogenative coupling reactions. In this study, we revisit the design of the phenotellurazine redox catalysts. In particular, we investigate the level of cooperativity between the Te- and N-centers, the effect of secondary versus tertiary N-centers, the effect of heterocyclic versus non-heterocyclic structures, and the effect of substitution patterns on the redox catalytic activity.
Collapse
Affiliation(s)
- Alina Paffen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
9
|
Zhao C, Li Y, Wang Y, Zeng Y. Cationic Hypervalent Chalcogen Bond Catalysis on the Povarov Reaction: Reactivity and Stereoselectivity. Chemistry 2024; 30:e202400555. [PMID: 38372453 DOI: 10.1002/chem.202400555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Chalcogen bond catalysis, particularly cationic hypervalent chalcogen bond catalysis, is considered to be an effective strategy for organocatalysis. In this work, the cationic hypervalent chalcogen bond catalysis for the Povarov reaction between N-benzylideneaniline and ethyl vinyl ether was investigated by density functional theory (DFT). The catalytic reaction involves the cycloaddition process and the proton transfer process, and the rate-determining step is the cycloaddition process. Cationic hypervalent tellurium derivatives bearing CF3 and F groups exhibit superior catalytic activity. For the rate-determining step, the Gibbs free energy barrier decreases as the positive electrostatic potential of the chalcogen bond catalysts increases. More importantly, the Gibbs free energy barrier has a strong linear correlation with the electrostatic energy of the chalcogen bond in the catalyst-substrate complex. Furthermore, the catalytic reactions include the endo pathway and exo pathway. The C-H⋅⋅⋅π interaction between the substituent of the ethyl vinyl ether and the aryl ring of the N-benzylideneaniline contributes to the endo-selectivity of the reaction. This research contributes to a deeper understanding of chalcogen bond catalysis, providing insights for designing chalcogen bond catalysts with high performance.
Collapse
Affiliation(s)
- Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanjiang Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
10
|
Il'in MV, Safinskaya YV, Polonnikov DA, Novikov AS, Bolotin DS. Chalcogen- and Halogen-Bond-Donating Cyanoborohydrides Provide Imine Hydrogenation. J Org Chem 2024; 89:2916-2925. [PMID: 38373196 DOI: 10.1021/acs.joc.3c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Sulfonium, selenonium, telluronium, and iodonium cyanoborohydrides have been synthesized, isolated, and fully characterized by various methods, including single-crystal X-ray diffraction (XRD) analysis. The quantum theory of atoms in molecules' analysis based on the XRD data indicated that the hydride···σ-hole short contacts observed in the crystal structures of each compound have a purely noncovalent nature. The telluronium and iodonium cyanoborohydrides provide a significantly higher rate of the model reaction of imine hydrogenation compared with sodium and tetrabutylammonium cyanoborohydrides. Based on the NMR and high-resolution electrospray ionization mass spectrometry data indicating that the reaction progress is accompanied by the cation reduction, a mechanism involving intermediate formation of elusive onium hydrides has been proposed as an alternative to conventional electrophilic activation of the imine moiety by its ligation to the cation's σ-hole.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Denis A Polonnikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
11
|
Islam AS, Pramanik S, Mondal S, Ghosh R, Ghosh P. Selective recognition and extraction of iodide from pure water by a tripodal selenoimidazol(ium)-based chalcogen bonding receptor. iScience 2024; 27:108917. [PMID: 38327780 PMCID: PMC10847689 DOI: 10.1016/j.isci.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I- from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I-. Interestingly, I- crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I-. The X-ray structure of the ChB-iodide complex manifests both the μ1 and μ2 coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I- binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I- recognition by TPI-3Se. Importantly, this receptor is capable of extracting I- from pure water through selenium sigma-hole and I- interaction with a high degree of efficiency (∼70%).
Collapse
Affiliation(s)
- Abu S.M. Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajib Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Pérez-Sánchez JC, Herrera RP, Concepción Gimeno M. Ferrocenyl Dinuclear Gold(I) Complexes. Study of their Structural Features and the Influence of Bridging and Phosphane Ligands in a Catalytic Cyclization Reaction. Chemistry 2024; 30:e202303585. [PMID: 38051039 DOI: 10.1002/chem.202303585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The combination of the ferrocene moiety with gold(I) catalysis remains a relatively unexplored field. In this article, we delve into the synthesis, characterization, and potential catalytic activity of four complexes utilizing both monodentate and bidentate ferrocenyl diphenylphosphane ligands (ppf and dppf), coordinated with two gold(I) metal centers, linked by either chloride or pentafluorophenylthiolate bridging ligands. This leads to the formation of cationic "self-activated" precatalysts capable of initiating the catalytic cycle without the need for external additives. The catalytic activity of these complexes was assessed through a model reaction in gold(I) catalysis, specifically the cyclization of a N-propargylbenzamide to produce an oxazole. In addition, we studied and compared the influence exerted by both the phosphane and the bridging ligand on the performance of these catalysts.
Collapse
Affiliation(s)
- Juan Carlos Pérez-Sánchez
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Department of Inorganic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
13
|
Groslambert L, Cornaton Y, Ditte M, Aubert E, Pale P, Tkatchenko A, Djukic JP, Mamane V. Affinity of Telluronium Chalcogen Bond Donors for Lewis Bases in Solution: A Critical Experimental-Theoretical Joint Study. Chemistry 2024; 30:e202302933. [PMID: 37970753 DOI: 10.1002/chem.202302933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Telluronium salts [Ar2 MeTe]X were synthesized, and their Lewis acidic properties towards a number of Lewis bases were addressed in solution by physical and theoretical means. Structural X-ray diffraction analysis of 21 different salts revealed the electrophilicity of the Te centers in their interactions with anions. Telluroniums' propensity to form Lewis pairs was investigated with OPPh3 . Diffusion-ordered NMR spectroscopy suggested that telluroniums can bind up to three OPPh3 molecules. Isotherm titration calorimetry showed that the related heats of association in 1,2-dichloroethane depend on the electronic properties of the substituents of the aryl moiety and on the nature of the counterion. The enthalpies of first association of OPPh3 span -0.5 to -5 kcal mol-1 . Study of the affinity of telluroniums for OPPh3 by state-of-the-art DFT and ab-initio methods revealed the dominant Coulombic and dispersion interactions as well as an entropic effect favoring association in solution. Intermolecular orbital interactions between [Ar2 MeTe]+ cations and OPPh3 are deemed insufficient on their own to ensure the cohesion of [Ar2 MeTe ⋅ Bn ]+ complexes in solution (B=Lewis base). Comparison of Grimme's and Tkatchenko's DFT-D4/MBD-vdW thermodynamics of formation of higher [Ar2 MeTe ⋅ Bn ]+ complexes revealed significant molecular size-dependent divergence of the two methodologies, with MBD yielding better agreement with experiment.
Collapse
Affiliation(s)
- Loïc Groslambert
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Yann Cornaton
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Matej Ditte
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | | | - Patrick Pale
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg
| | - Jean-Pierre Djukic
- LCSOM, UMR 7177 CNRS, Université de Strasbourg, 4 rue Blaise Pascal, F-67000, Strasbourg, France
| | - Victor Mamane
- LASYROC, UMR 7177 CNRS, University of Strasbourg, 1 Rue Blaise Pascal, F-67000, Strasbourg, France
| |
Collapse
|
14
|
Zhou B, Bedajna S, Gabbaï FP. Pnictogen bonding at the service of gold catalysis: the case of a phosphinostiborane gold complex. Chem Commun (Camb) 2023; 60:192-195. [PMID: 38047406 DOI: 10.1039/d3cc04942f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The search for alternative gold catalyst activators has led us to consider the design of platforms in which a phosphine gold chloride moiety could be activated via formation of a pnictogen bond with a neighboring antimony unit. Here, we describe that such a system can be accessed from 4-(diphenylphosphino)-5-(diphenylstibino)-2,7-di-tert-butyl-9,9-dimethylxanthene, by oxidation of the stibine with 3,5-di-tert-butyl-o-benzoquinone and by coordination of an AuCl unit to the phosphine. This strategy affords a complex in which a Lewis acidic or pnictogen-bond donor catecholatostiborane unit flanks the adjacent gold chloride moiety. This design impacts the catalytic reactivity of the gold center, as reflected by the ability of this complex to catalyze propargyl amide cyclization reactions. Comparisons with a phosphinostiborane ferrocene analog and computations point to the formation of an intramolecular Au-Cl → Sb(V) interaction as responsible for the observed catalytic activity.
Collapse
Affiliation(s)
- Benyu Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Shantabh Bedajna
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Wang Y, Zhao C, Chen WK, Zeng Y. Chalcogen Bond Catalysis with Telluronium Cations for Bromination Reaction: Importance of Electrostatic and Polarization Effects. Chemistry 2023; 29:e202302749. [PMID: 37747101 DOI: 10.1002/chem.202302749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Recently, chalcogen bond catalysts with telluronium cations have garnered considerable attention in organic reactions. In this work, chalcogen bond catalysis on the bromination reaction of anisole with N-bromosuccinimide (NBS) with the telluronium cationic catalysts has been explored with density functional theory (DFT). The catalytic reaction is divided into two stages: the bromine transfer step and the proton transfer step. Based on the computational results, one can find the rate-determining step is the bromine transfer step. Moreover, the present study elucidates that a stronger chalcogen bond between catalysts and NBS will give better catalytic performance. Additionally, this work also clarified the importance of the electrostatic and polarization effects in the chalcogen bond between the oxygen atom of NBS and the Te atom of the catalyst in this bromination reaction. The electrostatic and polarization effects are significantly influenced by the electron-withdrawing ability of the substitution groups on the catalysts. Moreover, the structure-property relationship between the strength of chalcogen bond, electrostatic effect, polarization effect and catalytic performance are established for the design of more efficient chalcogen bond catalysts.
Collapse
Affiliation(s)
- Yanjiang Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen-Kai Chen
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
16
|
Narsimhulu G, Samuel C, Palani S, Dasari SHK, Krishnamoorthy K, Baskar V. Electrocatalytic hydrogen evolution mediated by an organotelluroxane macrocycle stabilized through secondary interactions. Dalton Trans 2023; 52:17242-17248. [PMID: 37966305 DOI: 10.1039/d3dt02746e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A discrete liphophilic organotelluroxane macrocycle has been found to catalyse the hydrogen evolution reaction (HER) by proton reduction efficiently. The macrocycle is synthesized via chloride abstraction from bis(p-methoxyphenyl) tellurium dichloride (p-MeOC6H5)2TeCl2 (1) by silver salts AgMX4 (MX4 = BF4-, and ClO4-) resulting in in situ generated di-cationic tetraorganoditelluroxane units; two such units are held together by two weak anions μ2-MX4, bridging to form 12-membered di-cationic macrocycles [((p-MeO-C6H4)2Te)2(μ-O)(μ2-F2BF2)2]2+ (2) and [((p-MeO-C6H4)2Te)2(μ-O)(μ2-O2ClO2)2]2+ (3) stabilized via Te-(μ2-BF4/ClO4), with secondary interactions. The charge is balanced by the presence of two more anions, one above and another below the plane of the macrocycle. Similar reaction at higher temperatures leads to the formation of telluronium salts R3TeX [X = BF4- (4), ClO4- (5)] as a major product. The BF4- anion containing macrocycle and telluronium salt were monitored using 19F NMR. HRMS confirmed the structural stability of all the compounds in the solution state. The organotelluroxane macrocycle 2 has been found to act as an efficient electrocatalyst for proton reduction in an organic medium in the presence of p-toluene sulfonic acid as a protic source.
Collapse
Affiliation(s)
- Gujju Narsimhulu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Calvin Samuel
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sathishkumar Palani
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | | | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | - Viswanathan Baskar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
17
|
Hejda M, Doležal L, Blahut J, Hupf E, Tydlitát J, Jambor R, Růžička A, Beckmann J, Dostál L. N-Coordinated tellurenium(II) and telluronium(IV) cations: synthesis, structure and hydrolysis. Dalton Trans 2023; 52:16235-16248. [PMID: 37853810 DOI: 10.1039/d3dt02404k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A set of N-coordinated tellurium(II) compounds containing either C,N-chelating ligands CNR (where CN = 2-(RNCH)C6H4, R = tBu or Dipp; Dipp = 2,6-iPr2C6H3) or N,C,N pincer ligands NCNR (where NCN = 2,6-(RNCH)2C6H4, R = tBu or Dipp) were synthesized. In the case of C,N-chelated compounds, the reaction of CNDippLi with Te(dtc)2 (where dtc = Et2NCS2) in a 1 : 1 molar ratio smoothly provided the carbamate CNDippTe(dtc) which upon treatment with 2 eq. of HCl provided the chloride CNDippTeCl. In contrast, the analogous conversion of NCNRLi with Te(dtc)2 surprisingly furnished ionic bromides [NCNRTe]Br as a result of the exchange of dtc by Br coming from nBuBr present in the reaction mixture. Furthermore, the reaction of CNDippTeCl or [NCNRTe]Br with silver salts AgX (X = OTf or SbF6) provided the expected tellurenium cations [CNDippTe]SbF6 and [NCNRTe]X. To further increase the Lewis acidity of the central atom, the oxidation of selected compounds with 1 eq. of SO2Cl2 was examined yielding stable compounds [CNtBuTeCl2]X and [NCNtBuTeCl2]X. The oxidation of the Dipp substituted compounds proved to be more challenging and an excess of SO2Cl2 was necessary to obtain the oxidized products [CNDippTeCl2]SbF6 and [NCNDippTeCl2]SbF6, which could solely be characterized in solution. Compounds [CNtBuTeCl2]OTf and [NCNtBuTeCl2]OTf were shown to undergo a controlled hydrolysis to the corresponding telluroxanes. All compounds were studied by multinuclear NMR spectroscopy in solution and for selected compounds solid state 125Te NMR spectroscopy and single-crystal X-ray diffraction analysis were performed. The Lewis acidity of the studied cations was examined by the Gutmann-Beckett method using Et3PO as the probing agent. The Te-N chalcogen bonding situation of selected compounds has also been examined computationally by a set of real-space bonding indicators.
Collapse
Affiliation(s)
- Martin Hejda
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Lukáš Doležal
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo nám. 2, 16610, Prague, Czech Republic
| | - Emanuel Hupf
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, 28359 Bremen, Germany.
| | - Libor Dostál
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic.
| |
Collapse
|
18
|
Inoue T, Ota M, Amijima Y, Takahashi H, Hamada S, Nakamura S, Kobayashi Y, Sasamori T, Furuta T. Dual Chalcogen-Bonding Interactions for the Conformational Control of Urea. Chemistry 2023; 29:e202302139. [PMID: 37507838 DOI: 10.1002/chem.202302139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/30/2023]
Abstract
Dual chalcogen-bonding interactions is proposed as a novel means for the conformational control of urea derivatives. The formation of a chalcogen-bonding interaction at both sides of the urea carbonyl group was unambiguously confirmed by X-ray diffraction as well as computational studies including non-covalent interaction (NCI) plot index analysis, quantum theory of atoms in molecules (QTAIM) analysis, and natural bond orbital (NBO) analysis via DFT calculations. By virtue of this dual interaction, urea derivatives that bear chalcogen atoms (X=S and Se) adopt a planar structure via the carbonyl oxygen (O) with an X⋅⋅⋅O⋅⋅⋅X arrangement on the same side of the molecule. The rigidity of the conformational lock was evaluated using the molecular arrangement in the crystal and the rotational barrier of benzochalcogenophene ring, which indicated a stronger conformational lock in benzoselenophene than in benzothiophene urea derivatives. Furthermore, the acidity of the urea derivatives increases according to the Lewis-acidic properties of the chalcogen-bonding interactions, whereby benzoselenophene urea is more acidic than benzothiophene urea. Tweezer-shaped urea derivatives were prepared, and their stereostructure proved the viability of the conformational control for defining the location of the substituents on the urea framework.
Collapse
Affiliation(s)
- Takumi Inoue
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Moe Ota
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yui Amijima
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Haru Takahashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Shohei Hamada
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Seikou Nakamura
- Department of Pharmacognosy, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Yusuke Kobayashi
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Takahiro Sasamori
- Department of Chemistry Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| |
Collapse
|
19
|
Li X, Hu L, Lu G, Wang Y. Carbon-Bonding Metal Catalysis (CBMC): A Supramolecular Complex Directs Structural-Isomer Selection in Gold-Catalyzed Reactions. J Am Chem Soc 2023; 145:21554-21561. [PMID: 37668596 DOI: 10.1021/jacs.3c07551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Carbon is a primary element to constitute organic molecules, while metal catalysis is a basic tool in organic synthesis. The establishment of a link between the ubiquitous carbon bonding and metal catalysis is thus a fundamentally important problem. However, there is yet no experimental example to introduce the role of carbon bonding in a metal catalysis process. Herein, we merged the topics of carbon bonding and metal catalysis together and demonstrated that a supramolecular carbon-bonding metal complex can not only give rise to catalytic activity but, more remarkably, direct structural-isomer selection events in gold-catalyzed reactions. The experimental results unveil the fact that the imposing of weak carbon-bonding interactions on a gold complex can alter the carbene as well as the Lewis acid property of these catalysts. These results illustrate a non-negligible role of weak carbon-bonding interactions in the modulation of metal catalysis. As such, carbon-bonding metal catalysis is suggested to be used as a routine tool not only in the development of reactions but more frequently in analyzing reaction processes in metal catalysis.
Collapse
Affiliation(s)
- Xinxin Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| | - Yao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
20
|
Pale P, Mamane V. Chalcogen Bonding Catalysis: Tellurium, the Last Frontier? Chemistry 2023:e202302755. [PMID: 37743816 DOI: 10.1002/chem.202302755] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/26/2023]
Abstract
Chalcogen bonding (ChB) is the non-covalent interaction occurring between chalcogen atoms as Lewis acid sites and atoms or groups of atoms able to behave as Lewis bases through their lone pair or π electrons. Analogously to its sister halogen bonding, the high directionality of this interaction was implemented for precise structural organizations in the solid state and in solution. Regarding catalysis, ChB is now accepted as a new mode of activation as demonstrated by the increased number of examples in the last five years. In the family of ChB catalysts, those based on tellurium rapidly appeared to overcome their lighter sulfur and selenium counterparts. In this review, we highlight the Lewis acid properties of tellurium-based derivatives in solution and summarize the start-of-the-art of their applications in catalysis.
Collapse
Affiliation(s)
- Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
21
|
Murphy B, Gabbaï FP. Binding, Sensing, And Transporting Anions with Pnictogen Bonds: The Case of Organoantimony Lewis Acids. J Am Chem Soc 2023; 145:19458-19477. [PMID: 37647531 PMCID: PMC10863067 DOI: 10.1021/jacs.3c06991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Indexed: 09/01/2023]
Abstract
Motivated by the discovery of main group Lewis acids that could compete or possibly outperform the ubiquitous organoboranes, several groups, including ours, have engaged in the chemistry of Lewis acidic organoantimony compounds as new platforms for anion capture, sensing, and transport. Principal to this approach are the intrinsically elevated Lewis acidic properties of antimony, which greatly favor the addition of halide anions to this group 15 element. The introduction of organic substituents to the antimony center and its oxidation from the + III to the + V state provide for tunable Lewis acidity and a breadth of applications in supramolecular chemistry and catalysis. The performances of these antimony-based Lewis acids in the domain of anion sensing in aqueous media illustrate the favorable attributes of antimony as a central element. At the same time, recent advances in anion binding catalysis and anion transport across phospholipid membranes speak to the numerous opportunities that lie ahead in the chemistry of these unique main group compounds.
Collapse
Affiliation(s)
- Brendan
L. Murphy
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| | - François P. Gabbaï
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843-3255, United States
| |
Collapse
|
22
|
Li Y, Sun Y, Zhao C, Zeng Y. Activation of metal-involved halogen bonds and classical halogen bonds in gold(I) catalysis. Dalton Trans 2023; 52:4517-4525. [PMID: 36920245 DOI: 10.1039/d3dt00158j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In gold(I) catalysis, the activation of Au(I) chloride catalysts via chloride abstraction and noncovalent interactions has become a research focus in organometallic catalysis. In this work, taking halogen bond donors (C4H2INO2, C6F5I, C8H9O2I) as activators for a Au(I) chloride catalyst (Ph3PAuCl), the mechanism of the cyclization reaction of propargylic amide was investigated. It was found that there are two activation modes as design principles to obtain the catalytically active species Ph3PAu+: the halogen bond donors activate the Cl atoms of Ph3PAuCl to form X-I⋯Cl (X = C, N) classical halogen bonds and activate the Au atoms of Ph3PAuCl to form X-I⋯Au (X = C, N) metal-involved halogen bonds. For the two activation modes, the mechanism of the cyclization reaction of propargylic amide has pathways: the chloride abstraction process of the first step and the 5-exo/6-endo cyclization process of the second step. Both activation modes show good activity for the cyclization reaction with the activation ability of classical halogen bonds being slightly stronger than that of the metal-involved halogen bonds, which is consistent with the strength of the X-I⋯Cl halogen bonds being slightly stronger than that of the X-I⋯Au halogen bonds. Therefore, both metal-involved halogen bonds and classical halogen bonds have important development prospects for the activation of catalysts in gold(I) catalysis.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yuanyuan Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
23
|
Groslambert L, Padilla-Hernandez A, Weiss R, Pale P, Mamane V. Chalcogen-Bond Catalysis: Telluronium-Catalyzed [4+2]-Cyclocondensation of (in situ Generated) Aryl Imines with Alkenes. Chemistry 2023; 29:e202203372. [PMID: 36524743 DOI: 10.1002/chem.202203372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In the chalcogen series, tellurium species exhibit the strongest chalcogen bonding (ChB) interaction with electron-rich atom. This property explains the renewed interested toward tellurium-based derivatives and their use in different applications, such as organocatalysis. In this context, the catalytic activity of telluronium salts in the Povarov reaction is presented herein. Different dienophiles, as well as imines of variable electronic nature, efficiently react in the presence of catalytic amount of either diarylmethyltelluronium or triaryltelluronium salts. Both catalysts could also readily perform the three-component Povarov reaction starting from aldehyde, aniline and dihydrofuran. The reactivity of telluroniums towards imines and aldehydes was confirmed in the solid state by the ability of Te atom to interact through ChB with the oxygen carbonyl of acetone, and in solution with significant shift variations of the imine proton and of the tellurium atom in 1 H and 125 Te NMR spectroscopy. For the most active telluronium catalysts bearing CF3 groups, association constants (K) with N-phenyl phenylmethanimine in the range 22-38 M-1 were measured in dichloromethane.
Collapse
Affiliation(s)
- Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Andres Padilla-Hernandez
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177-LASYROC, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
24
|
Novikov AS, Bolotin DS. Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum" Provides Insights into Noncovalent Organocatalysis. J Org Chem 2023; 88:1936-1944. [PMID: 35679603 DOI: 10.1021/acs.joc.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computations indicate that cationic and noncharged xenon derivatives should exhibit higher catalytic activity than their iodine-based noncovalent organocatalytic congeners. Perfluorophenyl xenonium(II) is expected to demonstrate the best balance between catalytic activity and chemical stability for use in organocatalysis. Comparing its catalytic activity with that of isoelectronic perfluoroiodobenzene indicates that the high catalytic activity of cationic noncovalent organocatalysts is predominantly attributed to the electrostatic interactions with the reaction substrates, which cause the polarization of ligated species during the reaction progress. In contrast, the electron transfer and covalent contributions to the bonding between the catalyst and substrate have negligible effects. The dominant effect of electrostatic interactions results in a strong negative correlation between the calculated Gibbs free energies of activation for the modeled reactions and the highest potentials of the σ-holes on the central atoms of the catalysts. No such correlation is observed for noncharged catalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
25
|
Steinke T, Engelage E, Huber SM. Chalcogen bonding in the solid-state structures of 1,3-bis(benzimidazoliumyl)benzene-based chalcogen-bonding donors. Acta Crystallogr C Struct Chem 2023; 79:26-35. [PMID: 36739607 PMCID: PMC9899511 DOI: 10.1107/s2053229622011536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
1,3-Bis(benzimidazoliumyl)benzene-based chalcogen-bonding catalysts were previously successfully applied in different benchmark reactions. In one of those examples, i.e. the activation of quinolines, sulfur- and selenium-based chalcogen-bonding catalysts showed comparable properties, which is unexpected, as the selenium-containing catalysts should show superior catalytic properties due to the increased polarizability of selenium compared to sulfur. Herein, we present four crystal structures of the respective 1,3-bis(benzimidazoliumyl)benzene-based chalcogen-bonding catalyst containing sulfur (3S) and selenium (3Se, three forms) as Lewis acidic centres. The sulfur-containing catalyst shows weaker chalcogen bonding compared to its selenium analogue, as well as anion-π interactions. The selenium-based analogues, on the other hand, show stronger chalcogen-bonding motifs compared to the sulfur equivalent, depending on the crystallization conditions, but in every case, the intermolecular interactions are comparable in strength. Other interactions, such as hydrogen bonding and anion-π, were also observed, but in the latter case, the interaction distances are longer compared to those of the sulfur-based equivalent. The solid-state structures could not further explain the high catalytic activity of the sulfur-containing catalysts. Therefore, a comparison of their σ-hole depths from density functional theory (DFT) gas-phase calculations was performed, which are again in line with the previously found properties in the solid-state structures.
Collapse
Affiliation(s)
- Tim Steinke
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44801, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44801, Germany
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, 44801, Germany
| |
Collapse
|
26
|
Duan HY, Han ST, Zhan TG, Liu LJ, Zhang KD. Visible-Light-Switchable Tellurium-Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212707. [PMID: 36383643 DOI: 10.1002/anie.202212707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Collapse
Affiliation(s)
- Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
27
|
Bastidas Ángel AY, Campos PRO, Alberto EE. Synthetic application of chalcogenonium salts: beyond sulfonium. Org Biomol Chem 2023; 21:223-236. [PMID: 36503911 DOI: 10.1039/d2ob01822e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of chalcogenonium salts in organic synthesis has grown enormously in the past decades since the discovery of the methyltransferase enzyme cofactor S-adenosyl-L-methionine (SAM), featuring a sulfonium center as the reactive functional group. Chalcogenonium salts can be employed as alkylating agents, sources of ylides and carbon-centered radicals, partners for metal-catalyzed cross-coupling reactions and organocatalysts. Herein, we will focus the discussion on heavier chalcogenonium salts (selenonium and telluronium), presenting their utility in synthetic organic transformations and, whenever possible, drawing comparisons in terms of reactivity and selectivity with the respective sulfonium analogues.
Collapse
Affiliation(s)
- Alix Y Bastidas Ángel
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Philipe Raphael O Campos
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| | - Eduardo E Alberto
- Grupo de Síntese e Catálise Orgânica - GSCO, Departamento de Química, Universidade Federal de Minas Gerais - UFMG, 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Sharma D, Benny A, Gupta R, Jemmis ED, Venugopal A. Crystallographic evidence for a continuum and reversal of roles in primary-secondary interactions in antimony Lewis acids: applications in carbonyl activation. Chem Commun (Camb) 2022; 58:11009-11012. [PMID: 36097954 DOI: 10.1039/d2cc04027a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Primary and secondary interactions form the basis of substrate activation in Lewis-acid mediated catalysis, with most substrate activations occurring at the secondary binding site. We explore two series of antimony cations, [(NMe2CH2C6H4)(mesityl)Sb]+ (A) and [(NMe2C6H4)(mesityl)Sb]+ (B), by coordinating ligands with varying nucleophilicity at the position trans to the N-donor. The decreased nucleophilicity of the incoming ligands leads to reversal from a primary bond to a secondary interaction in A, whereas a constrained N-coordination in B diminishes the border between primary and secondary bonding. Investigations on carbonyl olefin metathesis reactions and carbonyl reduction demonstrate increased reactivity of a Lewis acid when the substrate activation occurs at the primary binding site.
Collapse
Affiliation(s)
- Deepti Sharma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Annabel Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Radhika Gupta
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Eluvathingal D Jemmis
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
29
|
Novikov AS, Bolotin DS. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Org Biomol Chem 2022; 20:7632-7639. [PMID: 36111866 DOI: 10.1039/d2ob01415g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This theoretical study sheds light on the relative catalytic activity of pnictonium, chalconium, and halonium salts in reactions involving elimination of chloride and electrophilic activation of a carbonyl group. DFT calculations indicate that for cationic aromatic onium salts, values of the electrostatic potential on heteroatom σ-holes gradually increase from pnictogen- to halogen-containing species. The higher values of the potential on the halogen atoms of halonium salts result in the overall higher catalytic activity of these species, but in the case of pnictonium and chalconium cations, weak interactions from the side groups provide an additional stabilization effect on the reaction transition states. Based upon quantum-chemical calculations, the catalytic activity of phosphonium(V) and arsenonium(V) salts is expected to be too low to obtain effective noncovalent organocatalytic compounds, whereas stibonium(V), telluronium(IV) and iodonium(III) salts exhibit higher potential in application as noncovalent organocatalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. .,Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
30
|
Steinke T, Wonner P, Gauld RM, Heinrich S, Huber SM. Catalytic Activation of Imines by Chalcogen Bond Donors in a Povarov [4+2] Cycloaddition Reaction. Chemistry 2022; 28:e202200917. [PMID: 35704037 PMCID: PMC9545453 DOI: 10.1002/chem.202200917] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Recently, chalcogen bonding has been investigated in more detail in organocatalysis and the scope of activated functionalities continues to increase. Herein, the activation of imines in a Povarov [4+2] cycloaddition reaction with bidentate cationic chalcogen bond donors is presented. Tellurium-based Lewis acids show superior properties compared to selenium-based catalysts and inactive sulfur-based analogues. The catalytic activity of the chalcogen bonding donors increases with weaker binding anions. Triflate, however, is not suitable due to its participation in the catalytic pathway. A solvent screening revealed a more efficient activation in less polar solvents and a pronounced effect of solvent (and catalyst) on endo : exo diastereomeric ratio. Finally, new chiral chalcogen bonding catalysts were applied but provided only racemic mixtures of the product.
Collapse
Affiliation(s)
- Tim Steinke
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Patrick Wonner
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Richard M. Gauld
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Sascha Heinrich
- Fakultät für Biologie und BiotechnologieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
31
|
Docker A, Marques I, Kuhn H, Zhang Z, Félix V, Beer PD. Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor. J Am Chem Soc 2022; 144:14778-14789. [PMID: 35930460 PMCID: PMC9394446 DOI: 10.1021/jacs.2c05333] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Chalcogen bonding (ChB) is rapidly rising to prominence
in supramolecular
chemistry as a powerful sigma (σ)-hole-based noncovalent interaction,
especially for applications in the field of molecular recognition.
Recent studies have demonstrated ChB donor strength and potency to
be remarkably sensitive to local electronic environments, including
redox-switchable on/off anion binding and sensing capability. Influencing
the unique electronic and geometric environment sensitivity of ChB
interactions through simultaneous cobound metal cation recognition,
herein, we present the first potassium chloride-selective heteroditopic
ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether
(B15C5) appendages to Te centers in a bis-tellurotriazole framework
facilitates alkali metal halide (MX) ion-pair binding through the
formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich
complex and bidentate ChB···X– formation.
Extensive quantitative 1H NMR ion-pair affinity titration
experiments, solid–liquid and liquid–liquid extraction,
and U-tube transport studies all demonstrate unprecedented KCl selectivity
over all other group 1 metal chlorides. It is demonstrated that the
origin of the receptor’s ion-pair binding cooperativity and
KCl selectivity arises from an electronic polarization of the ChB
donors induced by the cobound alkali metal cation. Importantly, the
magnitude of this switch on Te-centered electrophilicity, and therefore
anion-binding affinity, is shown to correlate with the inherent Lewis
acidity of the alkali metal cation. Extensive computational DFT investigations
corroborated the experimental alkali metal cation–anion ion-pair
binding observations for halides and oxoanions.
Collapse
Affiliation(s)
- Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Igor Marques
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Heike Kuhn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Zongyao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Vítor Félix
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| |
Collapse
|
32
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C–F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abbey N. Ragan
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Yannick Kraemer
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Wang-Yeuk Kong
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Supreeth Prasad
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Dean J. Tantillo
- University of California Davis Chemistry 1 Shields Avenue 95616 Davis UNITED STATES
| | - Cody Ross Pitts
- University of California Davis Department of Chemistry One Shields Avenue 95616 Davis UNITED STATES
| |
Collapse
|
33
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
34
|
Ragan AN, Kraemer Y, Kong WY, Prasad S, Tantillo DJ, Pitts CR. Evidence for C-F Bond Formation through Formal Reductive Elimination from Tellurium(VI). Angew Chem Int Ed Engl 2022; 61:e202208046. [PMID: 35859267 DOI: 10.1002/anie.202208046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/10/2022]
Abstract
The fundamental challenge of C-F bond formation by reductive elimination has been met by compounds of select transition metals and fewer main group elements. The work detailed herein expands the list of main group elements known to be capable of reductively eliminating a C-F bond to include tellurium. Surprising and novel modes of both sp2 and sp3 C-F bond formation were observed alongside formation of TeIV cations during two separate attempts to synthesize/characterize fluorinated organotellurium(VI) cations in superacidic media (SbF5 /SO2 ClF). Following detailed low-temperature NMR experiments, the mechanisms of the two unique reductive elimination reactions were probed and investigated using density functional theory (DFT) calculations. Ultimately, we found that an "indirect" reductive elimination pathway is likely operative whereby Sb plays a key role in fluoride abstraction and C-F bond formation, as opposed to unimolecular reductive elimination from a discrete TeVI cation.
Collapse
Affiliation(s)
- Abbey N Ragan
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Yannick Kraemer
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Supreeth Prasad
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| | - Cody Ross Pitts
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
35
|
Cremer C, Patureau FW. O 2-Mediated Te(II)-Redox Catalysis for the Cross-Dehydrogenative Coupling of Indoles. JACS AU 2022; 2:1318-1323. [PMID: 35783164 PMCID: PMC9241012 DOI: 10.1021/jacsau.2c00193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 05/09/2023]
Abstract
Very few elements in the periodic system can catalytically activate O2, such as in the context of cross-dehydrogenative couplings. The development of O2-activating catalysts is essential to enable new and sustainable reactivity concepts to emerge, because these catalysts also often feature specific activating interactions with the target substrates. In this context, the unprecedented Te(II)/Te(III) catalyzed dehydrogenative C3-C2 dimerization of indoles is described herein. The fact that O2 can be directly utilized as a terminal oxidant in this reaction, as well as the absence of any background reactivity without the redox-active Te catalyst, constitute very important milestones for the fields of cross-dehydrogenative couplings and tellurium catalysis.
Collapse
|
36
|
Takagi K, Murakata H, Hasegawa T. Application of Thiourea/Halogen Bond Donor Cocatalysis in Metal-Free Cationic Polymerization of Isobutyl Vinyl Ether and Styrene Derivatives. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hiroto Murakata
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
37
|
Weiss R, Aubert E, Groslambert L, Pale P, Mamane V. Chalcogen Bonding with Diaryl Ditellurides: Evidence from Solid State and Solution Studies. Chemistry 2022; 28:e202200395. [DOI: 10.1002/chem.202200395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | | | - Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 - LASYROC CNRS and Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
38
|
Lu Y, Liu Q, Wang ZX, Chen XY. Alkynyl Sulfonium Salts Can Be Employed as Chalcogen-Bonding Catalysts and Generate Alkynyl Radicals under Blue-Light Irradiation. Angew Chem Int Ed Engl 2022; 61:e202116071. [PMID: 35118784 DOI: 10.1002/anie.202116071] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
Chalcogen bonding (ChB) has emerged as a promising tool in organic synthesis. However, compared with the well-developed selenium- and tellurium-based salt catalysts, the ChB catalysis of sulfonium salts is still unknown. Here, we report a new type of alkynyl-sulfonium salt ChB catalysis for various ionic transformations, including transfer hydrogenation, bromination, bromolactonization, dimerization of 1,1-diphenylethylene, nitro-Michael addition reaction and Ritter reaction. More importantly, the photocapability of ChB was first demonstrated to generate alkynyl radicals for the synthesis of a variety of chalcogenoacetylenes. Mechanistic studies shed light on the mechanism of the photoinduced reactions and confirmed the involvement of alkynyl radicals which are difficult to generate otherwise.
Collapse
Affiliation(s)
- Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Te⋯N secondary-bonding interactions in tellurium crystals: Supramolecular aggregation patterns and a comparison with their lighter congeners. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Docker A, Martínez Martínez AJ, Kuhn H, Beer PD. Organotelluroxane molecular clusters assembled via Te⋯X - (X = Cl -, Br -) chalcogen bonding anion template interactions. Chem Commun (Camb) 2022; 58:3318-3321. [PMID: 35179155 DOI: 10.1039/d2cc00320a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis and characterisation of two novel molecular organotelluroxane clusters, comprising of an inorganic Te8O6X4 (X = Cl, Br) core structure are described. The integration of highly electron withdrawing 3,5-bis-trifluoromethylphenyl groups to the constituent Te(IV) centres is determined to be crucial in the chalcogen bonding (ChB) halide template directed assembly. Characterised by multi-nuclear 1H, 125Te, 19F NMR, UV-Vis, IR spectroscopies and X-ray crystal structure analysis, the discrete molecular clusters exhibit excellent organic solvent solubility and remarkable chemical stability. Furthermore, preliminary fluorescence investigations reveal the telluroxanes exhibit aggregation induced emission (AIE) behaviour in organic aqueous solvent mixtures.
Collapse
Affiliation(s)
- Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Antonio J Martínez Martínez
- Supramolecular Organometallic and Main Group Chemistry Laboratory, CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, ES-21007 Huelva, Spain
| | - Heike Kuhn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
41
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
42
|
Chen X, Lu Y, Liu Q, Wang ZX. Alkynyl Sulfonium Salts Can Be Employed as Chalcogen‐Bonding Catalysts and Generate Alkynyl Radicals under Blue‐Light Irradiation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangyu Chen
- University of Chinese Academy of Sciences School of Chemical Sciences Huaibei Town, 101408 Beijing 101408 Beijing CHINA
| | - Yu Lu
- University of the Chinese Academy of Sciences School of Chemical Sciiences CHINA
| | - Qiang Liu
- University of the Chinese Academy of Sciences Schoole of Chemical Sciences CHINA
| | - Zhi-Xiang Wang
- University of the Chinese Academy of Sciences School of Chemical Sciences CHINA
| |
Collapse
|
43
|
Jia S, Ye H, You L. Interplay between chalcogen bonds and dynamic covalent bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of chalcogen bonds, one type of emerging non-covalent bonding force, and imine bonds, allow the control of the dynamic covalent chemistry with orbital interactions and the reversal of kinetic and thermodynamic selectivity.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
44
|
Takagi K, Sakakibara N, Kikkawa S, Tsuzuki S. Dicationic oligotelluroxane or mononuclear telluronium cation? Elucidation of the true catalytic species and activation mechanism of the benzylic carbon-halogen bond. Chem Commun (Camb) 2021; 57:13736-13739. [PMID: 34843614 DOI: 10.1039/d1cc06311a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of diaryltelluronium cations as chalcogen bonding organocatalysts was investigated for the Ritter-like reaction using time-course NMR analysis. The resistance to water of dicationic oligotelluroxanes differed depending on the oligomer chain length and counter anions. The activation mechanism of the substrate was discussed based on DFT calculations.
Collapse
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Nao Sakakibara
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| |
Collapse
|
45
|
Frontera A, Bauza A. On the Importance of Pnictogen and Chalcogen Bonding Interactions in Supramolecular Catalysis. Int J Mol Sci 2021; 22:12550. [PMID: 34830432 PMCID: PMC8623369 DOI: 10.3390/ijms222212550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, several examples of the application of pnictogen (Pn) (group 15) and chalcogen (Ch) bonding (group 16) interactions in organocatalytic processes are gathered, backed up with Molecular Electrostatic Potential surfaces of model systems. Despite the fact that the use of catalysts based on pnictogen and chalcogen bonding interactions is taking its first steps, it should be considered and used by the scientific community as a novel, promising tool in the field of organocatalysis.
Collapse
Affiliation(s)
| | - Antonio Bauza
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain;
| |
Collapse
|
46
|
He X, Wang X, Tse YLS, Ke Z, Yeung YY. Bis-selenonium Cations as Bidentate Chalcogen Bond Donors in Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xinxin He
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xinyan Wang
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ying-Lung Steve Tse
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Zhihai Ke
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ying-Yeung Yeung
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
47
|
Docker A, Guthrie CH, Kuhn H, Beer PD. Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew Chem Int Ed Engl 2021; 60:21973-21978. [PMID: 34297867 PMCID: PMC8518858 DOI: 10.1002/anie.202108591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/20/2022]
Abstract
A series of acyclic anion receptors containing chalcogen bond (ChB) and halogen bond (XB) donors integrated into a neutral 3,5‐bis‐triazole pyridine scaffold are described, in which systematic variation of the electronic‐withdrawing nature of the aryl substituents reveal a dramatic modulation in sigma‐hole donor atom potency for anion recognition. Incorporation of strongly electron‐withdrawing perfluorophenyl units appended to the triazole heterocycle telluro‐ or iodo‐ donor atoms, or directly linked to the tellurium donor atom dramatically enhances the anion binding potency of the sigma‐hole receptors, most notably for the ChB and XB receptors displaying over thirty‐fold and eight‐fold increase in chloride anion affinity, respectively, relative to unfluorinated analogues. Linear free energy relationships for a series of ChB based receptors reveal the halide anion recognition behaviour of the tellurium donor is highly sensitive to local electronic environments. This is especially the case for those directly appended to the Te centre (3⋅ChB), where a remarkable enhancement of strength of binding and selectivity for the lighter halides is observed as the electron‐withdrawing ability of the Te‐bonded aryl group increases, highlighting the exciting opportunity to fine‐tune anion affinity and selectivity in ChB‐based receptor systems.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles H Guthrie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
48
|
Docker A, Guthrie CH, Kuhn H, Beer PD. Modulating Chalcogen Bonding and Halogen Bonding Sigma‐Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andrew Docker
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Charles H. Guthrie
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Heike Kuhn
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Paul D. Beer
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
49
|
Weiss R, Aubert E, Pale P, Mamane V. Chalcogen‐Bonding Catalysis with Telluronium Cations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Robin Weiss
- LASYROC UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Emmanuel Aubert
- CRM2 University of Lorraine, BP 70239 Boulevard des Aiguillettes 54506 Vandoeuvre-lès-Nancy France
| | - Patrick Pale
- LASYROC UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- LASYROC UMR 7177, University of Strasbourg 1 Rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
50
|
Weiss R, Aubert E, Pale P, Mamane V. Chalcogen-Bonding Catalysis with Telluronium Cations. Angew Chem Int Ed Engl 2021; 60:19281-19286. [PMID: 34166563 DOI: 10.1002/anie.202105482] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Indexed: 11/08/2022]
Abstract
Chalcogen bonding results from non-covalent interactions occurring between electrodeficient chalcogen atoms and Lewis bases. Among the chalcogens, tellurium is the strongest Lewis acid, but Te-based compounds are scarcely used as organocatalysts. For the first time, telluronium cations demonstrated impressive catalytic properties at low loadings in three benchmark reactions: the Friedel-Crafts bromination of anisole, the bromolactonization of ω-unsaturated carboxylic acids and the aza-Diels-Alder between Danishefsky's diene and imines. The ability of telluronium cations to interact with a Lewis base through chalcogen bonding was demonstrated on the basis of multi-nuclear (17 O, 31 P, and 125 Te) NMR analysis and DFT calculations.
Collapse
Affiliation(s)
- Robin Weiss
- LASYROC, UMR 7177, University of Strasbourg, 1 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Emmanuel Aubert
- CRM2, University of Lorraine, BP 70239, Boulevard des Aiguillettes, 54506, Vandoeuvre-lès-Nancy, France
| | - Patrick Pale
- LASYROC, UMR 7177, University of Strasbourg, 1 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- LASYROC, UMR 7177, University of Strasbourg, 1 Rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|