1
|
Yu J, Chen B, Huang X. Single-Electron Oxidation Triggered by Visible-Light-Excited Enzymes for Asymmetric Biocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419262. [PMID: 39605283 DOI: 10.1002/anie.202419262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
By integrating enzymatic catalysis with photocatalysis, photoenzymatic catalysis emerges as a powerful strategy to enhance enzyme catalytic capabilities and provide superior stereocontrol in reactions involving reactive intermediates. Repurposing naturally occurring enzymes using visible light is among the most active directions of photoenzymatic catalysis. This Minireview focuses on a cutting-edge strategy in this direction, namely single-electron-oxidation-triggered non-natural biotransformations catalyzed by photoexcited enzymes. These straightforward transformations feature a unique radical mechanism initiated by single-electron oxidation, achieving redox-neutral non-natural C-C, C-O, and C-S bond formation, and expanding the chemical toolbox of enzymes. By highlighting recent advances in this field and emphasizing their catalytic mechanisms and synthetic potential, innovative approaches for photobiomanufacturing are anticipated.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Bin Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Wang N, Li Y, Zheng M, Dong W, Zhang Q, Wang W. Unusual depolymerization mechanism of Poly(ethylene terephthalate) by hydrolase 202. CHEMOSPHERE 2025; 372:144108. [PMID: 39818084 DOI: 10.1016/j.chemosphere.2025.144108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Polyethylene terephthalate (PET) waste significantly contributes to the global plastic crisis, but enzymatic conversion has become an efficient and environmentally friendly strategy to combat it. Therefore, this study explored the Re-face selective depolymerization mechanisms of a novel PET-degradation peptidase, hydrolase 202. Theoretical calculations revealed that the first step, a catalytic triad-assisted nucleophilic attack, is the rate-determining step. The corresponding Boltzmann-weighted average barrier was 21.6 kcal/mol. Furthermore, hydrolase 202 degraded Re-face PET more effectively than FAST-PETase, whereas other reported PET hydrolases (e.g., FAST-PETase) degraded Si-face PET more effectively. The hydrogen bond network significantly influenced the depolymerization efficiency. We also identified correlations between 24 important structural and charge features and energy barriers. Key charge, distance, and angle features were responsible for the superiority of the Re-face depolymerization. Finally, we identified residues that may affect the depolymerization efficiency of hydrolase 202, such as Glu215. These findings offer new insights into the potential engineering of PETases and may enhance enzymatic PET waste recycling.
Collapse
Affiliation(s)
- Ningru Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
3
|
Scharf M, Tsuji N, Lindner MM, Leutzsch M, Lõkov M, Parman E, Leito I, List B. Highly Acidic Electron-Rich Brønsted Acids Accelerate Asymmetric Pictet-Spengler Reactions by Virtue of Stabilizing Cation-π Interactions. J Am Chem Soc 2024; 146. [PMID: 39361889 PMCID: PMC11487569 DOI: 10.1021/jacs.4c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Electron-rich heteroaromatic imidodiphosphorimidates (IDPis) catalyze the asymmetric Pictet-Spengler reaction of N-carbamoyl-β-arylethylamines with high stereochemical precision. This particular class of catalysts furthermore provides a vital rate enhancement compared to related Brønsted acids. Here we present experimental studies on the underlying reaction kinetics that shed light on the specific origins of rate acceleration. Analysis of Hammett plots, kinetic isotope effects, reaction orders, Eyring plots, and isotopic scrambling experiments, allowed us to gather insights into the molecular interactions between the chiral Brønsted acid and catalytically formed intermediates. Based on rigorously determined pKa values as well as the experimental evidence, we propose that attractive intermolecular forces offered by electron-rich π-surfaces of the chiral counteranion enthalpically stabilize cationic intermediates and transition states by way of cation-π interactions. This view is furthermore supported by in-depth density functional theory calculations. Our deepened understanding of the reaction mechanism allowed us to develop a method for accessing 1-aryltetrahydroisoquinolines from aromatic dimethyl acetals, a substrate class that was thus far inaccessible via catalytic asymmetric Pictet-Spengler reactions.
Collapse
Affiliation(s)
- Manuel
J. Scharf
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Nobuya Tsuji
- Institute
for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Monika M. Lindner
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
| | - Märt Lõkov
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Elisabeth Parman
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Ivo Leito
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Benjamin List
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
- Institute
for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Yu J, Zhang Q, Zhao B, Wang T, Zheng Y, Wang B, Zhang Y, Huang X. Repurposing Visible-Light-Excited Ene-Reductases for Diastereo- and Enantioselective Lactones Synthesis. Angew Chem Int Ed Engl 2024; 63:e202402673. [PMID: 38656534 DOI: 10.1002/anie.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Repurposing enzymes to catalyze non-natural asymmetric transformations that are difficult to achieve using traditional chemical methods is of significant importance. Although radical C-O bond formation has emerged as a powerful approach for constructing oxygen-containing compounds, controlling the stereochemistry poses a great challenge. Here we present the development of a dual bio-/photo-catalytic system comprising an ene-reductase and an organic dye for achieving stereoselective lactonizations. By integrating directed evolution and photoinduced single electron oxidation, we repurposed engineered ene-reductases to steer non-natural radical C-O formations (one C-O bond for hydrolactonizations and lactonization-alkylations while two C-O bonds for lactonization-oxygenations). This dual catalysis gave a new approach to a diverse array of enantioenhanced 5- and 6-membered lactones with vicinal stereocenters, part of which bears a quaternary stereocenter (up to 99 % enantiomeric excess, up to 12.9 : 1 diastereomeric ratio). Detailed mechanistic studies, including computational simulations, uncovered the synergistic effect of the enzyme and the externally added organophotoredox catalyst Rh6G.
Collapse
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Beibei Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Yan Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaoqiang Huang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
5
|
Singh A, Goswami S, Singh P, Das D. Exploitation of Catalytic Dyads by Short Peptide-Based Nanotubes for Enantioselective Covalent Catalysis. Angew Chem Int Ed Engl 2023; 62:e202315716. [PMID: 37922218 DOI: 10.1002/anie.202315716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/05/2023]
Abstract
Extant enzymes with precisely arranged multiple residues in their three-dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide-based nanotubes that could exploit multiple solvent-exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double-site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide-based folds and argues their possible role in the emergence of homochiral chemical inventory.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surashree Goswami
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Priyanshu Singh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
6
|
Calvó-Tusell C, Liu Z, Chen K, Arnold FH, Garcia-Borràs M. Reversing the Enantioselectivity of Enzymatic Carbene N-H Insertion Through Mechanism-Guided Protein Engineering. Angew Chem Int Ed Engl 2023; 62:e202303879. [PMID: 37260412 DOI: 10.1002/anie.202303879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
We report a computationally driven approach to access enantiodivergent enzymatic carbene N-H insertions catalyzed by P411 enzymes. Computational modeling was employed to rationally guide engineering efforts to control the accessible conformations of a key lactone-carbene (LAC) intermediate in the enzyme active site by installing a new H-bond anchoring point. This H-bonding interaction controls the relative orientation of the reactive carbene intermediate, orienting it for an enantioselective N-nucleophilic attack by the amine substrate. By combining MD simulations and site-saturation mutagenesis and screening targeted to only two key residues, we were able to reverse the stereoselectivity of previously engineered S-selective P411 enzymes. The resulting variant, L5_FL-B3, accepts a broad scope of amine substrates for N-H insertion with excellent yields (up to >99 %), high efficiency (up to 12 300 TTN), and good enantiocontrol (up to 7 : 93 er).
Collapse
Affiliation(s)
- Carla Calvó-Tusell
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Zhen Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Kai Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| |
Collapse
|
7
|
Zheng M, Li Y, Dong W, Zhang Q, Wang W. Enantioselectivity and origin of enhanced efficiency in polyethylene terephthalate hydrolases catalyzed depolymerization. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131295. [PMID: 36989777 DOI: 10.1016/j.jhazmat.2023.131295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Biotechnology is one of the most promising strategies to resolve the global crisis of plastic pollution. A clear understanding of the core enzyme mechanisms in the biotransformation process is critical for rational enzyme engineering and for practical, industrial-scale applications. Herein, we systematically examined and evidenced a largely unexplored piece in the depolymerization mechanism catalyzed by polyethylene terephthalate (PET) hydrolases: their enantioselectivity. We found that all the short-lived tetrahedron intermediates (IM3 and IM8) possess S-type chirality in six representative PET hydrolases. For instance, the binding percentage ratio of pro-S:pro-R is 57:21 in FAST-PETase, while pro-S binding leads to a much lower average energy barrier (5.2 kcal/mol) than pro-R binding (33.1 kcal/mol). Key structural features (e.g. the angle for Ser@H1-His@N1-PET@O2 and distance for His@N1-PET@O2) that significantly modulate the enantioselectivity were identified. The origin of the energy landscape variation between wild-type IsPETase and mutant FAST-PETase was also unveiled via analysis of key features, the distortion/interaction energy, and non-covalent bond interactions. This study supplies the missing piece in the mechanism for depolymerization catalyzed by PET hydrolases, and will aid in the rational design of enzymes for industrial recycling of PET plastic waste.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China; Shenzhen Research Institute, Shandong University, Shenzhen 518057, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
8
|
Reetz MT. Dyotropic Rearrangements in Organic Solvents, in the Gas Phase, and in Enzyme Catalysis. Isr J Chem 2023. [DOI: 10.1002/ijch.202200122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 China
| |
Collapse
|
9
|
Soler J, Gergel S, Klaus C, Hammer SC, Garcia-Borràs M. Enzymatic Control over Reactive Intermediates Enables Direct Oxidation of Alkenes to Carbonyls by a P450 Iron-Oxo Species. J Am Chem Soc 2022; 144:15954-15968. [PMID: 35998887 PMCID: PMC9460782 DOI: 10.1021/jacs.2c02567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The aerobic oxidation of alkenes to carbonyls is an important
and
challenging transformation in synthesis. Recently, a new P450-based
enzyme (aMOx) has been evolved in the laboratory to directly oxidize
styrenes to their corresponding aldehydes with high activity and selectivity.
The enzyme utilizes a heme-based, high-valent iron-oxo species as
a catalytic oxidant that normally epoxidizes alkenes, similar to other
catalysts. How the evolved aMOx enzyme suppresses the commonly preferred
epoxidation and catalyzes direct carbonyl formation is currently not
well understood. Here, we combine computational modelling together
with mechanistic experiments to study the reaction mechanism and unravel
the molecular basis behind the selectivity achieved by aMOx. Our results
describe that although both pathways are energetically accessible
diverging from a common covalent radical intermediate, intrinsic dynamic effects determine the strong preference for epoxidation.
We discovered that aMOx overrides these intrinsic preferences by controlling
the accessible conformations of the covalent radical intermediate.
This disfavors epoxidation and facilitates the formation of a carbocation
intermediate that generates the aldehyde product through a fast 1,2-hydride
migration. Electrostatic preorganization of the enzyme active site
also contributes to the stabilization of the carbocation intermediate.
Computations predicted that the hydride migration is stereoselective
due to the enzymatic conformational control over the intermediate
species. These predictions were corroborated by experiments using
deuterated styrene substrates, which proved that the hydride migration
is cis- and enantioselective. Our results demonstrate
that directed evolution tailored a highly specific active site that
imposes strong steric control over key fleeting biocatalytic intermediates,
which is essential for accessing the carbonyl forming pathway and
preventing competing epoxidation.
Collapse
Affiliation(s)
- Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Sebastian Gergel
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Cindy Klaus
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Stephan C Hammer
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
10
|
Fu Y, Chen H, Fu W, Garcia-Borràs M, Yang Y, Liu P. Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. J Am Chem Soc 2022; 144:13344-13355. [PMID: 35830682 PMCID: PMC9339536 DOI: 10.1021/jacs.2c04937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New-to-nature radical biocatalysis has recently emerged as a powerful strategy to tame fleeting open-shell intermediates for stereoselective transformations. In 2021, we introduced a novel metalloredox biocatalysis strategy that leverages the innate redox properties of the heme cofactor of P450 enzymes, furnishing new-to-nature atom-transfer radical cyclases (ATRCases) with excellent activity and stereoselectivity. Herein, we report a combined computational and experimental study to shed light on the mechanism and origins of enantioselectivity for this system. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) calculations revealed an unexpected role of the key beneficial mutation I263Q. The glutamine residue serves as an essential hydrogen bond donor that engages with the carbonyl moiety of the substrate to promote bromine atom abstraction and enhance the enantioselectivity of radical cyclization. Therefore, the evolved ATRCase is a bifunctional biocatalyst, wherein the heme cofactor enables atom-transfer radical biocatalysis, while the hydrogen bond donor residue further enhances the activity and enantioselectivity. Unlike many enzymatic stereocontrol rationales based on a rigid substrate binding model, our computations demonstrate a high degree of rotational flexibility of the allyl moiety in an enzyme-substrate complex and succeeding intermediates. Therefore, the enantioselectivity is controlled by the radical cyclization transition states rather than the substrate orientation in ground-state complexes in the preceding steps. During radical cyclization, anchoring effects of the Q263 residue and steric interactions with the heme cofactor concurrently control the π-facial selectivity, allowing for highly enantioselective C-C bond formation. Our computational findings are corroborated by experiments with ATRCase mutants generated from site-directed mutagenesis.
Collapse
Affiliation(s)
- Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Heyu Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Wenzhen Fu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catalisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
11
|
Dong Y, Li T, Zhang S, Sanchis J, Yin H, Ren J, Sheng X, Li G, Reetz MT. Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Agricultural Microbiomics and Precision Application − Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany
| |
Collapse
|
12
|
Zhuang J, Zhang F, Tang X, Liu C, Huang M, Xie H, Wu R. Insights into Enzymatic Catalytic Mechanism of bCinS: The Importance of Protein Conformational Change. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the available crystal structures of BCinS (Streptomyces clavuligerus 1,8-cineole synthase), a typic class I terpene cyclases (TPCs), have shown notable protein conformational flexibility once binding with the substrate, the...
Collapse
|
13
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|