1
|
Sun Y, Xiao M, Liu F, Gan J, Gao S, Liu J. Oxygen Vacancy-Electron Polarons Featured InSnRuO 2 Oxides: Orderly and Concerted In-Ov-Ru-O-Sn Substructures for Acidic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414579. [PMID: 39491504 DOI: 10.1002/adma.202414579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Polymetallic oxides with extraordinary electrons/geometry structure ensembles, trimmed electron bands, and way-out coordination environments, built by an isomorphic substitution strategy, may create unique contributing to concertedly catalyze water oxidation, which is of great significance for proton exchange membrane water electrolysis (PEMWE). Herein, well-defined rutile InSnRuO2 oxides with density-controllable oxygen vacancy (Ov)-free electron polarons are firstly fabricated by in situ isomorphic substitution, using trivalent In species as Ov generators and the adjacent metal ions as electron donors to form orderly and concerted In-Ov-Ru-O-Sn substructures in the tetravalent oxides. For acidic water oxidation, the obtained InSnRuO2 displays an ultralow overpotential of 183 mV (versus RHE) and a mass activity (MA) of 103.02 A mgRu -1, respectively. For a long-term stability test of PEMWE, it can run at a low and unchangeable cell potential (1.56 V) for 200 h at 50 mA cm-2, far exceeding current IrO2||Pt/C assembly in 0.5 m H2SO4. Accelerated degradation testing results of PEMWE with pure water as the electrolyte show no significant increase in voltage even when the voltage is gradually increased from 1 to 5 A cm-2. The remarkably improved performance is associated with the concerted In-Ov-Ru-O-Sn substructures stabilized by the dense Ov-electron polarons, which synergistically activates band structure of oxygen species and adjacent Ru sites and then boosting the oxygen evolution kinetics. More importantly, the self-trapped Ov-electron polaron induces a decrease in the entropy and enthalpy, and efficiently hinder Ru atoms leaching by increasing the lattice atom diffusion energy barrier, achieves long-term stability of the oxide. This work may open a door to design next-generation Ru-based catalysts with polarons to create orderly and asymmetric substructures as active sites for efficient electrocatalysis in PEMWE application.
Collapse
Affiliation(s)
- Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Xiong J, Mao S, Luo Q, Ning H, Lu B, Liu Y, Wang Y. Mediating trade-off between activity and selectivity in alkynes semi-hydrogenation via a hydrophilic polar layer. Nat Commun 2024; 15:1228. [PMID: 38336938 PMCID: PMC10858237 DOI: 10.1038/s41467-024-45104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
As a crucial industrial process for the production of bulk and fine chemicals, semi-hydrogenation of alkynes faces the trade-off between activity and selectivity due to undesirable over-hydrogenation. By breaking the energy linear scaling relationships, we report an efficient additive-free WO3-based single-atom Pd catalytic system with a vertical size effect of hydrogen spillover. Hydrogen spillover induced hydrophilic polar layer (HPL) with limited thickness on WO3-based support exhibits unconventional size effect to Pd site, in which over-hydrogenation is greatly suppressed on Pd1 site due to the polar repulsive interaction between HPL and nonpolar C=C bonds, whereas this is invalid for Pd nanoparticles with higher altitudes. By further enhancing the HPL through Mo doping, activated Pd1/MoWO3 achieves recorded performance of 98.4% selectivity and 10200 h-1 activity for semi-hydrogenation of 2-methyl-3-butyn-2-ol, 26-fold increase in activity of Lindlar catalyst. This observed vertical size effect of hydrogen spillover offers broad potential in catalytic performance regulation.
Collapse
Affiliation(s)
- Jinqi Xiong
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yanling Liu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
3
|
Luo M, Wang Q, Zhao G, Jiang W, Zeng C, Zhang Q, Yang R, Dong W, Zhao Y, Zhang G, Jiang J, Wang Y, Zhu Q. Solid-state atomic hydrogen as a broad-spectrum RONS scavenger for accelerated diabetic wound healing. Natl Sci Rev 2024; 11:nwad269. [PMID: 38213516 PMCID: PMC10776359 DOI: 10.1093/nsr/nwad269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 01/13/2024] Open
Abstract
Hydrogen therapy shows great promise as a versatile treatment method for diseases associated with the overexpression of reactive oxygen and nitrogen species (RONS). However, developing an advanced hydrogen therapy platform that integrates controllable hydrogen release, efficient RONS elimination, and biodegradability remains a giant technical challenge. In this study, we demonstrate for the first time that the tungsten bronze phase H0.53WO3 (HWO) is an exceptionally ideal hydrogen carrier, with salient features including temperature-dependent highly-reductive atomic hydrogen release and broad-spectrum RONS scavenging capability distinct from that of molecular hydrogen. Moreover, its unique pH-responsive biodegradability ensures post-therapeutic clearance at pathological sites. Treatment with HWO of diabetic wounds in an animal model indicates that the solid-state atomic H promotes vascular formation by activating M2-type macrophage polarization and anti-inflammatory cytokine production, resulting in acceleration of chronic wound healing. Our findings significantly expand the basic categories of hydrogen therapeutic materials and pave the way for investigating more physical forms of hydrogen species as efficient RONS scavengers for clinical disease treatment.
Collapse
Affiliation(s)
- Man Luo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Qin Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Gang Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wei Jiang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Cici Zeng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qingao Zhang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Ruyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Wang Dong
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Yunxi Zhao
- Shenzhen Senior High School, Shenzhen518040, China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Qing Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou451162, China
| |
Collapse
|
4
|
Wang Q, Gu Y, Chen C, Han L, Fayaz MU, Pan F, Song C. Strain-Induced Uphill Hydrogen Distribution in Perovskite Oxide Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3726-3734. [PMID: 38197268 DOI: 10.1021/acsami.3c17472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Incorporating hydrogen into transition-metal oxides (TMOs) provides a facile and powerful way to manipulate the performances of TMOs, and thus numerous efforts have been invested in developing hydrogenation methods and exploring the property modulation via hydrogen doping. However, the distribution of hydrogen ions, which is a key factor in determining the physicochemical properties on a microscopic scale, has not been clearly illustrated. Here, focusing on prototypical perovskite oxide (NdNiO3 and La0.67Sr0.33MnO3) epitaxial films, we find that hydrogen distribution exhibits an anomalous "uphill" feature (against the concentration gradient) under tensile strain, namely, the proton concentration enhances upon getting farther from the hydrogen source. Distinctly, under a compressive strain state, hydrogen shows a normal distribution without uphill features. The epitaxial strain significantly influences the chemical lattice coupling and the energy profile as a function of the hydrogen doping position, thus dominating the hydrogen distribution. Furthermore, the strain-(H+) distribution relationship is maintained in different hydrogenation methods (metal-alkali treatment) which is first applied to perovskite oxides. The discovery of strain-dependent hydrogen distribution in oxides provides insights into tailoring the magnetoelectric and energy-conversion functionalities of TMOs via strain engineering.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Han
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Umer Fayaz
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Cheng C, Zhou Z, Long R. Time-Domain View of Polaron Dynamics in Metal Oxide Photocatalysts. J Phys Chem Lett 2023:10988-10998. [PMID: 38039093 DOI: 10.1021/acs.jpclett.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
The polaron is a fundamental physical phenomenon in transition metal oxides (TMOs), and it has been studied extensively for decades. However, the implication of a polaron on photochemistry is still ambiguous. As such, understanding the fundamental properties and controlling the dynamics of polarons at the atomistic level is desired. In this Perspective, we seek to highlight the recent advances in studying small polarons in TMOs, with a particular focus on nonadiabatic molecular dynamics at the ab initio level, and discuss the implications for photocatalysis from the aspects of the structure, intrinsic physical properties, formation, migration, and recombination of small polarons. Finally, various methods were proposed to advance our understanding of manipulating the small-polaron dynamics, and strategies to design high-performance TMO-based photoelectrodes were discussed.
Collapse
Affiliation(s)
- Cheng Cheng
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
- Center for Advanced Materials Research & College of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Zhaohui Zhou
- Chemical Engineering and Technology, School of Water and Environment, Chang'an University, Xi'an 710064, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Guan Y, Deng Q, Wang J, Wang S, Li Z, He H, Yan S, Zou Z. Carbonized Polymer Dots/Bi/β-Bi 2O 3 for Efficient Photosynthesis of H 2O 2 via Redox Dual Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38039067 DOI: 10.1021/acs.langmuir.3c02835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A novel heterojunction photocatalyst of carbonized polymer dots (CPDs)/Bi/β-Bi2O3 is successfully synthesized via a one-pot solvothermal method by adjusting the reaction temperature and time. As a solvent and carbon source, ethylene glycol not only supports the conversion of Bi3+ to β-Bi2O3 but also undergoes its polymerization, cross-linking, and carbonization to produce CPDs. In addition, partial Bi3+ is reduced to Bi by ethylene glycol. As a result, the CPDs and Bi are deposited in situ on the surface of β-Bi2O3 microspheres. There are four built-in electric fields in the CPDs/Bi/β-Bi2O3 system, namely, the n-type semiconductor β-Bi2O3/H2O interface, the p-type CPDs/H2O interface, the ohmic contact between Bi and β-Bi2O3, and the Schottky junction between Bi and CPDs. Under the action of four built-in electric fields, the Z-type charge separation mechanism is formed. It promotes the effective separation of the photogenerated electron-hole and greatly improves the yield of H2O2. Under irradiation for 2 h, the H2O2 production is 1590 μmol g-1 h-1. The solar energy to H2O2 conversion efficiency is 0.11%.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Qiankun Deng
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Zheng X, Shi X, Ning H, Yang R, Lu B, Luo Q, Mao S, Xi L, Wang Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat Commun 2023; 14:4209. [PMID: 37452036 PMCID: PMC10349089 DOI: 10.1038/s41467-023-39963-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Electrochemical hydrogen evolution reaction in neutral media is listed as the most difficult challenges of energy catalysis due to the sluggish kinetics. Herein, the Ir-HxWO3 catalyst is readily synthesized and exhibits enhanced performance for neutral hydrogen evolution reaction. HxWO3 support is functioned as proton sponge to create a local acid-like microenvironment around Ir metal sites by spontaneous injection of protons to WO3, as evidenced by spectroscopy and electrochemical analysis. Rationalize revitalized lattice-hydrogen species located in the interface are coupled with Had atoms on metallic Ir surfaces via thermodynamically favorable Volmer-Tafel steps, and thereby a fast kinetics. Elaborated Ir-HxWO3 demonstrates acid-like activity with a low overpotential of 20 mV at 10 mA cm-2 and low Tafel slope of 28 mV dec-1, which are even comparable to those in acidic environment. The concept exemplified in this work offer the possibilities for tailoring local reaction microenvironment to regulate catalytic activity and pathway.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Xiaoyun Shi
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Rui Yang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Lingling Xi
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
8
|
Wang J, Ni G, Liao W, Liu K, Chen J, Liu F, Zhang Z, Jia M, Li J, Fu J, Pensa E, Jiang L, Bian Z, Cortés E, Liu M. Subsurface Engineering Induced Fermi Level De-pinning in Metal Oxide Semiconductors for Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202217026. [PMID: 36577697 DOI: 10.1002/anie.202217026] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.
Collapse
Affiliation(s)
- Jun Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China.,Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Ganghai Ni
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Wanru Liao
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Jiawei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Fangyang Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Zongliang Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Ming Jia
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Jie Li
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Liangxing Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, Hunan, P.R. China.,Hunan Provincial Key Laboratory of Nonferrous Value-added Metallurgy, Changsha, 410083, Hunan, P.R. China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, P.R. China
| |
Collapse
|
9
|
Du Y, Yan S, Zou Z. Thermally Accelerated Surface Polaron Hopping in Photoelectrochemical Water Splitting. J Phys Chem Lett 2023; 14:413-419. [PMID: 36622299 DOI: 10.1021/acs.jpclett.2c03567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electron-hole separation is a main challenge that limits the energy efficiency of photoelectrochemical water splitting for hydrogen fuel production. Surface polaron states with an energy level distribution near the conduction band are highly efficient charge separation passageways to massively accept or transfer the photogenerated electrons. Here, we found that the charge separation via surface polaron states could be further enhanced by heating (<100 °C) to accelerate the electron mobility of surface polaron states. As a result of heating from 30 to 70 °C, the saturated photocurrent increased about 34.5% under 1 sun and 18.3% under 10 suns from heat-induced increase in electron flux of surface polaron states. The heat-sensitive surface-state electron transfer provides a new heat-photoelectricity coupling mechanism to guide the design of new photoanodes that are available for complementary multienergy systems with high energy efficiency.
Collapse
Affiliation(s)
- Yu Du
- Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
10
|
Wang Q, Gu Y, Chen C, Qiao L, Pan F, Song C. Realizing Metastable Cobaltite Perovskite via Proton-Induced Filling of Oxygen Vacancy Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1574-1582. [PMID: 36537655 DOI: 10.1021/acsami.2c18311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The interaction between transition-metal oxides (TMOs) and protons has become a key issue in magneto-ionics and proton-conducting fuel cells. Until now, most investigations on oxide-proton reactions rely on electrochemical tools, while the direct interplay between protons and oxides remains basically at simple dissolution of metal oxides by an acidic solution. In this work, we find classical TMO brownmillerite SrCoO2.5 (B-SCO) films with ordered oxygen vacancy channels experiencing an interesting transition to a metastable perovskite phase (M-SCO) in a weak acidic solution. M-SCO exhibits a strong ferromagnetism (1.01 μB/Co, Tc > 200 K) and a greatly elevated electrical conductivity (∼104 of pristine SrCoO2.5), which is similar to the prototypical perovskite SrCoO3. Besides, such M-SCO tends to transform back to B-SCO in a vacuum environment or heating at a relatively low temperature. Two possible mechanisms (H2O addition/active oxygen filling) have been proposed to explain the phenomenon, and the control experiments demonstrate that the latter mechanism is the dominant process. Our work finds a new way to realize cobaltite perovskite with enhanced magnetoelectric properties and may deepen the understanding of oxide-proton interaction in an aqueous solution.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Youdi Gu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Chong Chen
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Leilei Qiao
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Feng Pan
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
11
|
Wang J, Cheng H, Cui Y, Yang Y, He H, Cai Y, Wang Z, Wang L, Hu Y. Liquid-Metal-Induced Hydrogen Insertion in Photoelectrodes for Enhanced Photoelectrochemical Water Oxidation. ACS NANO 2022; 16:21248-21258. [PMID: 36480658 DOI: 10.1021/acsnano.2c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fast charge separation and transfer (CST) is essential for achieving efficient solar conversion processes. This CST process requires not only a strong driving force but also a sufficient charge carrier concentration, which is not easily achievable with traditional methods. Herein, we report a rapid hydrogenation method enabled by gallium-based liquid metals (GBLMs) to modify the prototypical WO3 photoelectrode to enhance the CST for a PEC process. Protons in solution are controllably embedded into the WO3 photoanode accompanied by electron injection due to the strong reduction capability of GBLMs. This process dramatically increases the carrier concentration of the WO3 photoanode, leading to improved charge separation and transfer. The hydrogenated WO3 photoanode exhibits over a 229% improvement in photocurrent density with long-term stability. The effectiveness of GBLMs treatment in accelerating the CST process is further proved using other more general semiconductor photoelectrodes, including Nb2O5 and TiO2.
Collapse
Affiliation(s)
- Jinshu Wang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Houyan Cheng
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yuntao Cui
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yunfei Yang
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng He
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yongfeng Cai
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhiliang Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Yuxiang Hu
- Key Laboratory of Advanced Functional Materials of Education Ministry of China, Faculty of Engineering and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| |
Collapse
|
12
|
Dondapati JS, Govindhan M, Chen A. Direct growth of three-dimensional nanoflower-like structures from flat metal surfaces. Chem Commun (Camb) 2022; 58:11127-11130. [PMID: 36106462 DOI: 10.1039/d2cc04358k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report on a facile top-down approach for the direct growth of Co3O4 hierarchical nanoflowers from a bulk Co surface via chemical etching and thermal annealing. The effect of the annealing temperature was investigated, showing that amorphous Co3O4 was formed at 250 °C, while crystalline Co3O4 with notable oxygen vacancies was created at 550 °C. The formed 3D nanostructures exhibited excellent oxygen evolution reaction (OER) activities with a low overpotential of 0.34 V at 10 mA cm-2 and high durability. The proposed novel approach was further demonstrated by the direct growth of 3D NiO and CuO nanostructures on Ni and Cu substrates.
Collapse
Affiliation(s)
- Jesse S Dondapati
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, ON-N1G 2W1, Canada.
| | - Maduraiveeran Govindhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, Guelph, ON-N1G 2W1, Canada.
| |
Collapse
|
13
|
Yang L, Feng J, Wang JN, Gao Z, Xu J, Mei Y, Song YY. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Hu M, Zhu Q, Zhao Y, Zhang G, Zou C, Prezhdo O, Jiang J. Facile Removal of Bulk Oxygen Vacancy Defects in Metal Oxides Driven by Hydrogen-Dopant Evaporation. J Phys Chem Lett 2021; 12:9579-9583. [PMID: 34582204 DOI: 10.1021/acs.jpclett.1c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxygen vacancy is a common defect in metal oxides that causes appreciable damage to material properties and performance. Removing bulk defects of oxygen vacancy (VO) typically needs harsh conditions such as high-temperature annealing. Supported by first-principles simulations, we propose an effective strategy of removing VO bulk defects in metal oxides by evaporating hydrogen dopants. The hydrogen dopants not only lower the migration barrier of VO but also push VO away due to their repulsive interaction. The coevaporation mechanism was supported by a neural networks potential-based molecular dynamics simulation, which shows that the migration of hydrogen dopants from inside to surface at 400 K promotes the migration of VO as well. Our proof-of-concept study suggests an alternative and efficient way of modulating oxygen vacancies in metal oxides via reversible hydrogen doping.
Collapse
Affiliation(s)
- Min Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuan Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|