1
|
Gravogl L, Kass D, Pyschny O, Heinemann FW, Haumann M, Katz S, Hildebrandt P, Dau H, Swain A, García-Serres R, Ray K, Munz D, Meyer K. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [Fe IV(μ-O) 2Fe IV] Diamond Core Derived from Dioxygen Activation. J Am Chem Soc 2024; 146:28757-28769. [PMID: 39382653 DOI: 10.1021/jacs.4c07582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The diiron(II) complex, [(OCO)Fe(MeCN)]2 (1, MeCN = acetonitrile), supported by the bis-phenolate carbene pincer ligand, 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)benzimidazolin-2-ylidene (OCO), was synthesized and characterized by single-crystal X-ray diffraction, 1H nuclear magnetic resonance, infrared (IR) vibrational, ultraviolet/visible/near-infrared (UV/vis/NIR) electronic absorption, 57Fe Mössbauer, X-band electron paramagnetic resonance (EPR) and SQUID magnetization measurements. Complex 1 activates dioxygen to yield the diferric, μ-oxo-bridged complex [(OCO)Fe(py)(μ-O)Fe(O(C═O)O)(py)] (2) that was isolated and fully characterized. In 2, one of the iron-carbene bonds was oxidized to give a urea motif, resulting in an O(CNHC═O)O binding site, while the other Fe(OCO) unit remained unchanged. When the reaction is performed at -80 °C, an intensively colored, purple intermediate is observed (INT, λmax = 570 nm; ε = 5600 mol L-1 cm-1). INT acts as a sluggish oxidant, reacting only with easily oxidizable substrates, such as PPh3 or 2-phenylpropionic aldehyde (2-PPA). The identity of INT can be best described as a dinuclear complex containing a closed diamond core motif [(OCO)FeIV(μ-O)2FeIV(OCO)]. This proposal is based on extensive spectroscopic [UV/vis/NIR electronic absorption, 57Fe Mössbauer, X-band EPR, resonance Raman (rRaman), X-ray absorption, and nuclear resonance vibrational (NRVS)] and computational studies. The conversion of the diiron(II) complex 1 to the oxo diiron(IV) intermediate INT is reminiscent of the O2 activation process in soluble methane monooxygenases (sMMO). Most importantly, the low reactivity of INT supports the consensus that the [FeIV(μ-O)2FeIV] diamond core in sMMO is kinetically inert and needs to open up to terminal FeIV═O cores to react with the strong C-H bonds of methane.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Dustin Kass
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Oliver Pyschny
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Abinash Swain
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Ricardo García-Serres
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str.2, 12489 Berlin, Germany
| | - Dominik Munz
- Inorganic Chemistry, Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Zhao R, Wang ZX, Guo M, Li J. DFT mechanistic insights into the formation of the metal-dioxygen complex [Co(12-TMC)O 2] + using H 2O 2 as an [O 2] unit source. Dalton Trans 2024; 53:16896-16904. [PMID: 39350670 DOI: 10.1039/d4dt02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The reaction of [M(L)]n with H2O2 as an [O2] unit source and NEt3 as a base is a widely used biomimetic transition metal-peroxo and -superoxo complex [M(L)O2]n-1 synthesis method, but the mechanism and accurate stoichiometry of the synthesis remain elusive. In this study, we performed DFT calculations to deeply understand the mechanism, using the synthesis of the cobalt-peroxo complex [CoIII(12-TMC)O2]+ (12-TMC = (1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane)) from the reaction of [CoII(12-TMC)]2+ and H2O2 in the presence of NEt3 as an example. The study found that cobalt-peroxo complex formation proceeds via three stages: (Stage I) the conversion of [CoII(12-TMC)]2+ and H2O2 to [CoIII(12-TMC)OH]2+ and OOH˙ radical, (Stage II) the coordination of OOH˙ to [CoII(12-TMC)]2+ to give [CoIII(12-TMC)OOH]2+, followed by deprotonation with NEt3, affording [CoIII(12-TMC)O2]+, and (Stage III) the transformation of [CoIII(12-TMC)OH]2+ which is generated in Stage I to [CoIII(12-TMC)O2]+. The overall stoichiometry of the synthesis is 2*[Co(12-TMC)]2+ + 3*H2O2 + 2*NEt3 → 2*[Co(12-TMC)O2]+ + 2*HNEt3+ + 2*H2O. In addition, compared to its analog [CoIII(TBDAP)O2]+ (TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)-pyridinophane) which is synthesized by the same method and has the same Co(III) oxidation state exhibits dioxygenase-like reactivity to nitriles, [CoIII(12-TMC)O2]+ could be inactive towards acetonitrile because the reaction severely deteriorates the coordination of the 12-TMC ligand to the Co center, which results in high reaction barriers.
Collapse
Affiliation(s)
- Ruihua Zhao
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, No. 2 Huan Shi Avenue South, Nansha District, Guangzhou, 511462, China.
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, Guangdong Province, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Jia #19, Yuquan Road, Beijing, 100039, China.
| | - Mian Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Jia Li
- Guangzhou HKUST Fok Ying Tung Research Institute, Science and Technology Building, Nansha Information Technology Park, No. 2 Huan Shi Avenue South, Nansha District, Guangzhou, 511462, China.
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, Guangdong Province, China
| |
Collapse
|
3
|
Zhang P, Lee WZ, Ye S. Insights into dioxygen binding on metal centers: an ab initio multireference electronic structure analysis. Phys Chem Chem Phys 2024; 26:25057-25068. [PMID: 39301704 DOI: 10.1039/d4cp02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Why does binding of dioxygen (O2) to metal centers, the initial step of O2 storage, transportation, and activation, almost inevitably induce metal-to-O2 single-electron transfer and generate superoxo (O2-˙) species, instead of genuine O02 adducts? To address this question, this study describes highly correlated wavefunction-based ab initio calculations using CASSCF/NEVPT2 (CASSCF = complete active space self-consistent field, and NEVPT2 = N-electron valence state second-order perturbation theory) approaches to explore the electronic-structure evolution of O2 association on Fe(II)(BDPP) (H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Co(II)(BDPP) to produce S = 3 Fe(III)(BDPP)(O2-˙) (1) and Co(III)(BDPP)(O2-˙) (2). CASSCF/NEVPT2 calculations suggest that the processes furnishing 1 and 2 feature an avoided crossing resulting from interactions of two diabatic curves, of which one is characterized as Co(II) and Fe(II) centers interacting with a triplet O2 ligand and the other as Co(III) and Fe(III) centers bound to a superoxo ligand. In both cases, the avoided crossing induces a one-electron transfer from the divalent metal center to the incoming O2 ligand and leads to formation of trivalent metal-O2-˙ complexes. To facilitate the interpretation of complicated multireference wavefunctions, we formulated two-fragment spin eigenfunctions utilizing Clebsch-Gordan coefficients (CGCs) to rationalize computed spin populations on the metal centers and the O2 ligand and compared these results with usual valence bonding (VB) analyses. It turns out that both methods give the same results and are complementary to each other. Finally, the limitation of DFT approaches in describing complex electronic structures involving metal-ligand magnetic couplings is delineated.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Bohn A, Robinson AL, Sénéchal-David K, Herrero C, Kanoufi F, Anxolabéhère-Mallart E, Banse F. Electrochemical approach of the reductive activation of O 2 by a nonheme Fe II complex. Some clues for the development of catalytic oxidations. Dalton Trans 2024; 53:15491-15500. [PMID: 39246009 DOI: 10.1039/d4dt01870b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We report an in-depth study of the reductive activation of O2 by the nonheme [FeII(L25)(MeCN)]2+ complex carried out by cyclic voltammetry. Experimental evidence is obtained for the slow coordination of dioxygen to the ferrous center yielding an FeII/O2 adduct with a strong FeII-O2 character rather than an FeIII-superoxo one. Electron injection in the FeII-O2 species occurs at a potential of ca. -700 mV vs. SCE, i.e. 200 mV above the O2 to O2˙- reduction, leading to the formation of a FeIII-peroxo intermediate and then FeIII-hydroperoxo upon protonation by residual water. The experimental CVs recorded at variable scan rate or variable FeII concentration are well simulated taking into account a detailed mechanism initiated by the competitive reduction of O2 and the FeII-O2 adduct. Analysis of the concentration of the reaction intermediates generated as a function of the applied potential indicates that the FeIII-peroxo intermediate significantly accumulates at a potential of -650 mV. Oxidative bromination of anisole is assayed under electrolytic conditions at this potential to yield bromoanisole products. The low faradaic yields observed reveal that deleterious reactions such as direct reduction of reaction intermediates likely occur. Based on the detailed mechanism elucidated, a number of improvements to achieve more efficient catalytic reactions can be proposed.
Collapse
Affiliation(s)
- Antoine Bohn
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| | - Amanda Lyn Robinson
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| | - Katell Sénéchal-David
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| | - Christian Herrero
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| | - Frédéric Kanoufi
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université de Paris, CNRS, F-75013 Paris, France
| | | | - Frédéric Banse
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91400, Orsay, France.
| |
Collapse
|
5
|
Hota PK, Panda S, Phan H, Kim B, Siegler MA, Karlin KD. Dioxygenase Chemistry in Nucleophilic Aldehyde Deformylations Utilizing Dicopper O 2-Derived Peroxide Complexes. J Am Chem Soc 2024; 146:23854-23871. [PMID: 39141923 PMCID: PMC11472664 DOI: 10.1021/jacs.4c06243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The chemistry of copper-dioxygen complexes is relevant to copper enzymes in biology as well as in (ligand)Cu-O2 (or Cu2-O2) species utilized in oxidative transformations. For overall energy considerations, as applicable in chemical synthesis, it is beneficial to have an appropriate atom economy; both O-atoms of O2(g) are transferred to the product(s). However, examples of such dioxygenase-type chemistry are extremely rare or not well documented. Herein, we report on nucleophilic oxidative aldehyde deformylation reactivity by the peroxo-dicopper(II) species [Cu2II(BPMPO-)(O22-)]1+ {BPMPO-H = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} and [Cu2II(XYLO-)(O22-)]1+ (XYLO- = a BPMPO- analogue possessing bis(2-{2-pyridyl}ethyl)amine chelating arms). Their dicopper(I) precursors are dioxygenase catalysts. The O2(g)-derived peroxo-dicopper(II) intermediates react rapidly with aldehydes like 2-phenylpropionaldehyde (2-PPA) and cyclohexanecarboxaldehyde (CCA) in 2-methyltetrahydrofuran at -90 °C. Warming to room temperature (RT) followed by workup results in good yields of formate (HC(O)O-) along with ketones (acetophenone or cyclohexanone). Mechanistic investigation shows that [Cu2II(BPMPO-)(O22-)]1+ species initially reacts reversibly with the aldehydes to form detectable dicopper(II) peroxyhemiacetal intermediates, for which optical titrations provide the Keq (at -90 °C) of 73.6 × 102 M-1 (2-PPA) and 10.4 × 102 M-1 (CCA). In the reaction of [Cu2II(XYLO-)(O22-)]1+ with 2-PPA, product complexes characterized by single-crystal X-ray crystallography are the anticipated dicopper(I) complex, [Cu2I(XYLO-)]1+ plus a mixed-valent Cu(I)Cu(II)-formate species. Formate was further identified and confirmed by 1H NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) analysis. Using 18O2(g)-isotope labeling the reaction produced a high yield of 18-O incorporated acetophenone as well as formate. The overall results signify that true dioxygenase reactions have occurred, supported by a thorough mechanistic investigation.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Bohee Kim
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Lundahl MN, Greiner MB, Piquette MC, Gannon PM, Kaminsky W, Kovacs JA. Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation. Chem Sci 2024; 15:12710-12720. [PMID: 39148773 PMCID: PMC11325341 DOI: 10.1039/d4sc02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O2-derived thiolate ligated FeIII-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species via two routes, involving either the addition of (a) O2 to [FeII(S2 Me2N3(Pr,Pr))] (1) or (b) superoxide to [FeIII(S2 Me2N3(Pr,Pr))]+ (3) is shown to provide insight into the mechanism of O2 activation. Route (b) was shown to be significantly slower, and the kinetic barrier 14.9 kJ mol-1 higher than route (a), implying that dioxygen activation involves inner-sphere, as opposed to outer sphere, electron transfer from Fe(ii). H-bond donors and ligand constraints are shown to dramatically influence O2 binding kinetics and reversibility. Dioxygen binds irreversibly to [FeII(S2 Me2N3(Pr,Pr))] (1) in tetrahydrofuran, but reversibly in methanol. Hydrogen bonding decreases the ability of the thiolate sulfur to stabilize the transition state and the FeIII-superoxo, as shown by the 10 kJ mol-1 increase in the kinetic barrier to O2 binding in methanol vs. tetrahydrofuran. Dioxygen release from [FeIII(S2 Me2N3(Pr,Pr))O2] (2) is shown to be 24 kJ mol-1 higher relative to previously reported [FeIII(SMe2N4(tren))(O2)]+ (5), the latter of which contains a more flexible ligand. These kinetic results afford an experimentally determined reaction coordinate that illustrates the influence of H-bonding and ligand constraints on the kinetic barrier to dioxygen activation an essential step in biosynthetic pathways critical to life.
Collapse
Affiliation(s)
- Maike N Lundahl
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Maria B Greiner
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Marc C Piquette
- Department of Chemistry, Tufts University 62 Talbot Avenue Medford Massachusetts 02155 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Julie A Kovacs
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| |
Collapse
|
7
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Winslow C, Rathke P, Rittle J. Multielectron Bond Cleavage Processes Enabled by Redox-Responsive Phosphinimide Ligands. Inorg Chem 2023; 62:17697-17704. [PMID: 37847032 PMCID: PMC10618924 DOI: 10.1021/acs.inorgchem.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 10/18/2023]
Abstract
The activation of small molecules via multielectron redox processes offers promise in mediating difficult transformations related to energy conversion processes. While molecular systems that engage in one- and two-electron redox processes are widespread, those that participate in the direct transfer of four or more electrons to small molecules are very rare. To that end, we report a mononuclear CrII complex competent for the 4-electron reduction of dioxygen (O2) and nitrosoarenes. These systems additionally engage in facile two-electron group transfer reactivity, including O atom excision and nitrene transfer. Structural, spectroscopic, and computational studies support bond activation processes that intimately occur at a mononuclear chromium(phosphinimide) center and highlight the unusual structural responsiveness of the phosphinimides in stabilizing a range of metal redox states.
Collapse
Affiliation(s)
- Charles
C. Winslow
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Paul Rathke
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| | - Jonathan Rittle
- Department of Chemistry, University
of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Rathke P, Rittle J. Four-Electron Oxidative Addition of an N=N Double Bond at a Chromium Metallocyclopropene. Angew Chem Int Ed Engl 2023; 62:e202310482. [PMID: 37656893 DOI: 10.1002/anie.202310482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
This report describes the synthesis of a pseudo-tetrahedral chromium alkyne complex supported by a bidentate phosphinimide ligand and its reactivity with an azobenzene derivative. Characterization of the former by structural and computational methods reveals an unprecedented extent of alkyne activation by a formal chromium(II) center, suggesting that this complex is best described as a chromium(IV)-metallocyclopropene. Exposure of this compound to 4,4'-difluoroazobenzene results in the formation of a chromium(VI) diimido complex, which constitutes a rare 4-electron oxidative addition of an N=N double bond. The isolation of a chromium(IV)-hydrazido intermediate enabled mechanistic investigations of this challenging bond cleavage process. This work substantiates the notion that terminal phosphinimide ligands can engender first-row transition metal ions with exceptional reactivity.
Collapse
Affiliation(s)
- Paul Rathke
- College of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathan Rittle
- College of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Tannoux T, Mazaud L, Cheisson T, Casaretto N, Auffrant A. Fe II complexes supported by an iminophosphorane ligand: synthesis and reactivity. Dalton Trans 2023; 52:12010-12019. [PMID: 37581245 DOI: 10.1039/d3dt00950e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis of iron complexes supported by a mixed phosphine-lutidine-iminophosphorane (PPyNP) ligand was carried out. While bidentate κ2-N,N coordination was observed for FeCl2, pincer coordination modes were adopted at cationic iron centers, either through dechlorination of [LFe(PPyNP)Cl2] (1) or direct coordination of PPyNP to Fe(OTf)2. Reaction with tert-butylisocyanide gave access to the diamagnetic octahedral complex [Fe(PPyNP)(CNtBu)3]X2 (X = OTf (4), Cl (4')). Both 1 and 4 were shown to undergo deprotonation of the phosphinomethyl group, but the resulting complexes were not active for the dehydrogenative coupling of hexan-1-ol. The hydrosilylation of acetophenones was catalyzed at room temperature with 1 mol% of a catalyst generated in situ from cationic PPyNP-supported iron triflate complexes and KHBEt3.
Collapse
Affiliation(s)
- Thibault Tannoux
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Louis Mazaud
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Thibault Cheisson
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| |
Collapse
|
11
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Popovici I, Barthes C, Tannoux T, Duhayon C, Casaretto N, Monari A, Auffrant A, Canac Y. Phosphonium Ylides vs Iminophosphoranes: The Role of the Coordinating Ylidic Atom in cis-[Phosphine-Ylide Rh(CO) 2] Complexes. Inorg Chem 2023; 62:2376-2388. [PMID: 36704899 DOI: 10.1021/acs.inorgchem.2c04151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The coordinating properties of two families of ylides, namely, phosphonium ylides and iminophosphoranes, differently substituted at the ylidic center (CH2- vs NiPr-), have been investigated in structurally related cationic phosphine-ylide Rh(CO)2 complexes obtained from readily available phosphine-phosphonium salt precursors derived from an ortho-phenylene bridge. However, while the Rh(CO)2 complex bearing the P+-CH2- donor moiety proved to be stable, the P═NiPr donor end appeared to induce lability to one of the CO groups. All of the RhI carbonyl complexes in both ylide series were fully characterized, including through X-ray diffraction analysis. Based on the experimental and calculated infrared (IR) CO stretching frequencies in Rh(CO)2 complexes, we evidenced that the phosphonium ylide ligand is a stronger donor than the iminophosphorane ligand. However, we also found that the difference in the intrinsic electronic properties can be largely compensated by the introduction of an iPr substituent on the N atom of the iminophosphorane, hence pointing to the noninnocent role of the peripheral substituent and opening novel possibilities to tune the properties of metal complexes containing ylide ligands.
Collapse
Affiliation(s)
- Ingrid Popovici
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
| | - Cécile Barthes
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Thibault Tannoux
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
| | - Antonio Monari
- ITODYS, Université Paris Cité and CNRS, F-75006 Paris, France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
13
|
Tannoux T, Auffrant A. Complexes featuring tridentate iminophosphorane ligands: Synthesis, reactivity, and catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Czaikowski ME, McNeece AJ, Boyn JN, Jesse KA, Anferov SW, Filatov AS, Mazziotti DA, Anderson JS. Generation and Aerobic Oxidative Catalysis of a Cu(II) Superoxo Complex Supported by a Redox-Active Ligand. J Am Chem Soc 2022; 144:15569-15580. [PMID: 35977083 PMCID: PMC10017013 DOI: 10.1021/jacs.2c04630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu systems feature prominently in aerobic oxidative catalysis in both biology and synthetic chemistry. Metal ligand cooperativity is a common theme in both areas as exemplified by galactose oxidase and by aminoxyl radicals in alcohol oxidations. This has motivated investigations into the aerobic chemistry of Cu and specifically the isolation and study of Cu-superoxo species that are invoked as key catalytic intermediates. While several examples of complexes that model biologically relevant Cu(II) superoxo intermediates have been reported, they are not typically competent aerobic catalysts. Here, we report a new Cu complex of the redox-active ligand tBu,TolDHP (2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) that activates O2 to generate a catalytically active Cu(II)-superoxo complex via ligand-based electron transfer. Characterization using ultraviolet (UV)-visible spectroscopy, Raman isotope labeling studies, and Cu extended X-ray absorption fine structure (EXAFS) analysis confirms the assignment of an end-on κ1 superoxo complex. This Cu-O2 complex engages in a range of aerobic catalytic oxidations with substrates including alcohols and aldehydes. These results demonstrate that bioinspired Cu systems can not only model important bioinorganic intermediates but can also mediate and provide mechanistic insight into aerobic oxidative transformations.
Collapse
Affiliation(s)
- Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew J McNeece
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Kate A Jesse
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Lee HB, Britt RD, Rittle J. N − H bond dissociation free energy of a terminal iron phosphinimine. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2103411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Heui Beom Lee
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - R. David Britt
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Jonathan Rittle
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
16
|
Lu X, Wang S, Qin JH. Isolating Fe-O 2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes. Molecules 2022; 27:4690. [PMID: 35897870 PMCID: PMC9332324 DOI: 10.3390/molecules27154690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge because of the thermodynamic stability of O2 in its triplet ground state. Nevertheless, nature is able to overcome the spin state barrier using enzymes, which contain transition metals with unpaired d-electrons facilitating the activation of O2 by metal coordination. This inspires bioinorganic chemists to synthesize biomimetic small-molecule iron porphyrin complexes to carry out the O2 activation, wherein Fe-O2 species have been implicated as the key reactive intermediates. In recent years, a number of Fe-O2 intermediates have been synthesized by activating O2 at iron centers supported on porphyrin ligands. In this review, we focus on a few examples of these advances with emphasis in each case on the particular design of iron porphyrin complexes and particular reaction environments to stabilize and isolate metal-O2 intermediates in dioxygen activation, which will provide clues to elucidate structures of reactive intermediates and mechanistic insights in biological processes.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (S.W.); (J.-H.Q.)
| | | | | |
Collapse
|
17
|
Hayton TW, Shafaat HS. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorg Chem 2022; 61:5965-5971. [DOI: 10.1021/acs.inorgchem.2c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
19
|
Sacramento JJD, Albert T, Siegler M, Moënne-Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022; 61:e202111492. [PMID: 34850509 PMCID: PMC8789326 DOI: 10.1002/anie.202111492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/20/2021] [Indexed: 01/12/2023]
Abstract
A new structurally characterized ferrous corrole [FeII (ttppc)]- (1) binds one equivalent of dioxygen to form [FeIII (O2-. )(ttppc)]- (2). This complex exhibits a 16/18 O2 -isotope sensitive ν(O-O) stretch at 1128 cm-1 concomitantly with a single ν(Fe-O2 ) at 555 cm-1 , indicating it is an η1 -superoxo ("end-on") iron(III) complex. Complex 2 is the first well characterized Fe-O2 corrole, and mediates the following biologically relevant oxidation reactions: dioxygenation of an indole derivative, and H-atom abstraction from an activated O-H bond.
Collapse
Affiliation(s)
- Jireh Joy D Sacramento
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - Maxime Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
20
|
Sacramento JJD, Albert T, Siegler M, Moënne‐Loccoz P, Goldberg DP. An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jireh Joy D. Sacramento
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - Maxime Siegler
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pierre Moënne‐Loccoz
- Department of Chemical Physiology and Biochemistry Oregon Health & Science University Portland OR 97239-3098 USA
| | - David P. Goldberg
- Department of Chemistry The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| |
Collapse
|