1
|
Yan X, Pang Y, Zhou Y, Chang R, Ye J. Photochemical Deracemization of Lactams with Deuteration Enabled by Dual Hydrogen Atom Transfer. J Am Chem Soc 2024. [PMID: 39692147 DOI: 10.1021/jacs.4c14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Photochemical deracemization has emerged as one of the most straightforward approaches to access highly enantioenriched compounds in recent years. While excited-state events such as energy transfer, single electron transfer, and ligand-to-metal charge transfer have been leveraged to promote stereoablation, approaches relying on hydrogen atom transfer, which circumvent the limitations imposed by the triplet energy and redox potential of racemic substrates, remain underexplored. Conceptually, the most attractive method for tertiary stereocenter deracemization might be hydrogen atom abstraction followed by hydrogen atom donation. However, implementing such a strategy poses significant challenges, primarily because the enantioenriched products are also reactive if the chiral catalyst is unable to differentiate between the two enantiomers. Herein we report a distinct dual hydrogen atom transfer strategy for photochemical deracemization of δ- and γ-lactams, achieving high enantioenrichment and deuterium incorporation despite the inherent reactivity of the products. Mechanistic studies reveal that benzophenone enables nonselective hydrogen atom abstraction while a tetrapeptide-derived thiol dictates the enantioselectivity of the hydrogen atom donation step. More importantly, a pyridine-based alcohol was found to play crucial roles in facilitating the hydrogen atom abstraction as well as enhancing the enantioselectivity of the hydrogen atom donation step.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Liu Y, Chu M, Li X, Cao Z, Zhao X, Yin Y, Jiang Z. Photoredox Catalytic Deracemization Enabled Enantioselective and Modular Access to Axially Chiral N-Arylquinazolinones. Angew Chem Int Ed Engl 2024; 63:e202411236. [PMID: 39045910 DOI: 10.1002/anie.202411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Visible light-driven photocatalytic deracemization is highly esteemed as an ideal tool for organic synthesis due to its exceptional atom economy and synthetic efficiency. Consequently, successful instances of deracemization of allenes have been established, where the activated energy of photosensitizer should surpass that of the substrates, representing an intrinsic requirement. Accordingly, this method is not applicable for axially chiral molecules with significantly high triplet energies. In this study, we present a photoredox catalytic deracemization approach that enables the efficient synthesis of valuable yet challenging-to-access axially chiral 2-azaarene-functionalized quinazolinones. The substrate scope is extensive, allowing for both 3-axis and unmet 1-axis assembly through facile oxidation of diverse central chiral 2,3-dihydroquinazolin-4(1H)-ones that can be easily prepared and achieve enantiomer enrichment via deracemization. Mechanistic studies reveal the importance of photosensitizer selection in attaining excellent chemoselectivity and highlight the indispensability of a chiral Brønsted acid in enabling highly enantioselective protonation to accomplish efficient deracemization.
Collapse
Affiliation(s)
- Yilin Liu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Mengqi Chu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Zheng Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R., China, 451001
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| |
Collapse
|
3
|
Zhang Z, Dai L. Construction of axially chiral molecules enabled by photoinduced enantioselective reactions. Chem Sci 2024; 15:12636-12643. [PMID: 39148771 PMCID: PMC11323314 DOI: 10.1039/d4sc03766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Axially chiral molecular scaffolds are widely found in pharmaceutical molecules, functionalized materials, and chiral ligands. The synthesis of these compounds has garnered considerable interest from both academia and industry. The construction of such molecules, enabled by transition metal catalysis and organocatalysis under thermodynamic conditions, has been extensively studied and well-reviewed. In recent years, photoinduced enantioselective reactions have emerged as powerful methods for the catalytic construction of axial chirality. In this review, we provide an overview of various synthetic strategies for the photoinduced construction of axial chirality, with a specific focus on reaction design and catalytic mechanisms. Additionally, we discuss the limitations of current methods and highlight future directions in this field.
Collapse
Affiliation(s)
- Zhaofei Zhang
- Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Lei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
4
|
Wang J, Fu Q, Cao S, Lv X, Yin Y, Ban X, Zhao X, Jiang Z. Enantioselective [2 + 2] Photocycloreversion Enables De Novo Deracemization Synthesis of Cyclobutanes. J Am Chem Soc 2024; 146:22840-22849. [PMID: 39094097 DOI: 10.1021/jacs.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While photochemical deracemization significantly enhances atom economy by eliminating the necessity for additional oxidants or reductants, the laborious presynthesis of substrates from feedstock chemicals is often required, thereby compromising the practicality of this method. In this study, we propose a novel approach known as de novo deracemization synthesis, which involves direct utilization of simple substrates undergoing both photochemical transformation and reversible photochemical transformation. The efficient enantiocontrol of chiral catalysts in the latter process establishes an effective platform for deracemization. This alternative and practical approach to address the challenges of asymmetric photocatalysis has been successfully demonstrated in the photosensitized de novo deracemization synthesis of azaarene-functionalized cyclobutanes featuring three stereocenters, including an all-carbon quaternary center. By exclusively employing a suitable chiral catalyst to enable kinetically controlled [2 + 2] photocycloreversion, we pave a creative path toward achieving more cost-effective photochemical deracemization.
Collapse
Affiliation(s)
- Jiahao Wang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianqian Fu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shanshan Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xinxin Lv
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xu Ban
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
5
|
Song C, Bai X, Li B, Dang Y, Yu S. Photoexcited Palladium-Catalyzed Deracemization of Allenes. J Am Chem Soc 2024. [PMID: 39024194 DOI: 10.1021/jacs.4c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Collapse
Affiliation(s)
- Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Sun X, Liu Y, Yin Y, Ban X, Zhao X, Jiang Z. Asymmetric photoredox catalytic formal de Mayo reaction enabled by sensitization-initiated electron transfer. Nat Chem 2024; 16:1169-1176. [PMID: 38565977 DOI: 10.1038/s41557-024-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Visible-light-driven photoredox catalysis is known to be a powerful tool for organic synthesis. Its occurrence critically depends on the twice exothermic single-electron transfer processes of photosensitizers, which are governed by the redox properties of the species involved. Hence, the inherently narrow range of redox potentials of photosensitizers inevitably constrains their further availability. Sensitization-initiated electron transfer has recently been found to effectively overcome this substantial challenge. However, feasible and practical strategies for designing such complicated catalytic systems are rather scarce. Herein we report an elaborate dual-catalyst platform, with dicyanopyrazine as a visible light photosensitizer and a pyrenyl-incorporated chiral phosphoric acid as a co-sensitizer, and we demonstrate the applicability of this sensitization-initiated electron transfer strategy in an asymmetric formal de Mayo-type reaction. The catalysis platform enables otherwise thermodynamically unfavourable electron transfer processes to close the redox cycle and allows for precise access to valuable enantioenriched 1,5-diketones with a wide substrate range.
Collapse
Affiliation(s)
- Xin Sun
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, P. R. China
| | - Yilin Liu
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, P. R. China
| | - Xu Ban
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, P. R. China
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, P. R. China.
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, P. R. China.
| |
Collapse
|
7
|
Zhang J, Wang K, Zhu C. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS AU 2024; 4:502-511. [PMID: 38425940 PMCID: PMC10900502 DOI: 10.1021/jacsau.3c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.
Collapse
Affiliation(s)
| | | | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
8
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
9
|
Großkopf J, Bach T. Catalytic Photochemical Deracemization via Short-Lived Intermediates. Angew Chem Int Ed Engl 2023; 62:e202308241. [PMID: 37428113 DOI: 10.1002/anie.202308241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
10
|
Tang Y, Shi W, Du J, Ren Y, Xiao Y, Guo H. Diastereoselective Synthesis of Allenes through Phosphine-Catalyzed Cascade Isomerization/Annulation. Org Lett 2023. [PMID: 38019529 DOI: 10.1021/acs.orglett.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phosphine-catalyzed cascade isomerization/annulation has been developed to realize a diastereoselective synthesis of allenes installed on the hexahydropentalene skeleton, which contains five chiral centers (and one axial chirality). This reaction tolerated a broad range of allenoates and enynes. The allene products were transformed to various halogen-substituted fused-ring compounds.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Juan Du
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
11
|
Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Creating a Defined Chirality in Amino Acids and Cyclic Dipeptides by Photochemical Deracemization. Angew Chem Int Ed Engl 2023; 62:e202313606. [PMID: 37793026 DOI: 10.1002/anie.202313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
12
|
Liang F, Chen N, Cheng K, Wang Q. N-Heterocyclic Carbene and Manganese Synergistic Catalysis: A Three-Component Radical Acylmonofluoroalkylation of Alkenes. Org Lett 2023; 25:8168-8172. [PMID: 37922199 DOI: 10.1021/acs.orglett.3c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Despite the importance of monofluoroalkyl groups in pharmaceutically relevant molecules, catalytic protocols for their incorporation into alkenes remain limited. We describe herein a three-component acylmonofluoroalkylation of alkenes for the introduction of such moieties through an unprecedented cooperativity between the N-heterocyclic carbene catalyst and earth-abundant Mn(II) complex. This general method can be applied to a variety of alkenes, including styrenes, 1,3-enynes, and allenes, as well as complex substrates containing natural product and drug motifs.
Collapse
Affiliation(s)
- Feng Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Keguang Cheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Quande Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| |
Collapse
|
13
|
Usui K, Amano A, Murayama K, Sasaya M, Kusumoto R, Umeno T, Murase S, Iizuka N, Matsumoto S, Fuchi Y, Takahashi K, Kawahata M, Kobori Y, Karasawa S. Photoisomerization of "Partially Embedded Dihydropyridazine" with a Helical Structure. Chemistry 2023; 29:e202302413. [PMID: 37612241 DOI: 10.1002/chem.202302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
Herein, we report the synthesis of two "partially embedded fused-dihydropyridazine N-aryl aza[5]helicene derivatives" (PDHs) and the demonstration of their intrinsic photo-triggered multi-functional properties based on a Kekulé biradical structure. Introducing bulky electron-withdrawing trifluoromethyl or pentafluoroethyl groups into the aza[5]helicene framework (PDH-CF3 and -C2 F5 ) gives PDH axial chirality based on the helicity of the P and M forms, even at room temperature. Upon photo-irradiation of PDH-CF3 in a frozen solution, an ESR signal from the triplet biradical with zero-field splitting values, generated by N-N bond dissociation, was observed. However, when the irradiation was turned off, the ESR signal became silent, thus indicating the existence of two equilibria: between the biradical and quinoidal forms based on the Kekulé structure, and between N-N bond cleavage and recombination. The observed photo- and thermally induced behaviors indicate that T-type photochromic molecules are involved in the photoisomerization mechanism involving the two equilibria. Inspired by the photoisomerization, chirality control of PDH by photoracemization was achieved. Multiple functionalities, such as T-type photochromism, photo-excitation-mediated triplet biradical formation, and photoracemization, which are attributed to the "partially embedded dihydropyridazine" structure, are demonstrated.
Collapse
Affiliation(s)
- Kazuteru Usui
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ami Amano
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kasumi Murayama
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miho Sasaya
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Ryota Kusumoto
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Satsuki Murase
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Naoko Iizuka
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shota Matsumoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasufumi Fuchi
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Kazuyuki Takahashi
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Masatoshi Kawahata
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
- Molecular Photoscience Research Center, Graduate School of Science Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Satoru Karasawa
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3512-1 Higashi-tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| |
Collapse
|
14
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Onneken C, Morack T, Soika J, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 2023; 621:753-759. [PMID: 37612509 PMCID: PMC10533403 DOI: 10.1038/s41586-023-06407-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.
Collapse
Affiliation(s)
- Carina Onneken
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Tobias Morack
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Julia Soika
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Olga Sokolova
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Niklas Niemeyer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Johannes Neugebauer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| | - Ryan Gilmour
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
16
|
Liu Y, Zhang L, Zhang Y, Cao S, Ban X, Yin Y, Zhao X, Jiang Z. Asymmetric Olefin Isomerization via Photoredox Catalytic Hydrogen Atom Transfer and Enantioselective Protonation. J Am Chem Soc 2023; 145:18307-18315. [PMID: 37552539 DOI: 10.1021/jacs.3c03732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Asymmetric olefin isomerization can be appreciated as an ideal synthetic approach to access valuable enantioenriched C═C-containing molecules due to the excellent atom economy. Nonetheless, its occurrence usually requires a thermodynamic advantage, namely, a higher stability of the product to the substrate. It has thus led to rather limited examples of success. Herein, we report a photoredox catalytic hydrogen atom transfer (HAT) and enantioselective protonation strategy for the challenging asymmetric olefin isomerization. As a paradigm, by establishing a dual catalyst system involving a visible light photosensitizer DPZ and a chiral phosphoric acid, with the assistance of N-hydroxyimide to perform HAT, a wide array of allylic azaarene derivatives, featuring α-tertiary carbon stereocenters and β-C═C bonds, was synthesized with high yields, ees, and E/Z ratios starting from the conjugated α-substituted alkenylazaarene E/Z-mixtures. The good compatibility of assembling deuterium on stereocenters by using inexpensive D2O as a deuterium source further underscores the broad applicability and promising utility of this strategy. Moreover, mechanistic studies have provided clear insights into its challenges in terms of reactivity and enantioselectivity. The exploration will robustly inspire the development of thermodynamically unfavorable asymmetric olefin isomerizations.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Linghong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 451001, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
17
|
Li C, Zhou Z, Ma S. A Pd-catalyzed highly selective three-component protocol for trisubstituted allenes. Chem Sci 2023; 14:7709-7715. [PMID: 37476716 PMCID: PMC10355113 DOI: 10.1039/d3sc01849k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Herein we report the first example of a Pd-catalyzed highly selective three-component reaction of alkynyl-1,4-diol dicarbonates, organoboronic acids, and malonate anions for the efficient synthesis of trisubstituted 2,3-allenyl malonates not readily available by the known protocols. The reaction demonstrates an excellent regio- and chemo-selectivity for both the oxidative addition referring to the two C-O bonds and the subsequent coupling with the nucleophile with a remarkable functional group compatibility. A series of control experiments confirm a unique mechanism involving β-O elimination forming alka-1,2,3-triene and the subsequent insertion of its terminal C[double bond, length as m-dash]C bond into the Ar-Pd bond.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhengnan Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
18
|
Harvey FM, Heidecker AH, Merten C, Bach T. Diastereoselective, Lewis acid-mediated Diels-Alder reactions of allenoic acid derivatives and 1,3-cyclopentadienes. Org Biomol Chem 2023; 21:4422-4428. [PMID: 37184215 DOI: 10.1039/d3ob00598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Allenes with different substituents at their terminal carbon atom display axial chirality and can be obtained in enantiopure form by a photochemical deracemization protocol. It has now been studied under which conditions allenoic acid derivatives undergo a Diels-Alder reaction with 1,3-cyclopentadienes and which products result. Cyclic derivatives (lactams, lactones) underwent an exo-selective reaction catalyzed by the Lewis acid Eu(fod)3, while acyclic derivatives yielded with high preference the endo-products (EtAlCl2 as the preferred Lewis acid). The exocyclic double bond forms with exquisite diastereoselectivity and the chirality transfer is close to perfect. The method was applied to the synthesis of the sesquiterpenes β-santalol (1) and 10(E)-β-santalic acid (13).
Collapse
Affiliation(s)
- Freya M Harvey
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Alexandra H Heidecker
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
19
|
Abstract
Deracemization, which converts a racemate into its single enantiomer without separation of the intermediate, has gained renewed interest in asymmetric synthesis with its inherent atomic economy and high efficiency. However, this ideal process requires selective energy input and delicate reaction design to surmount the thermodynamical and kinetical constraints. With the rapid development of asymmetric catalysis, many catalytic strategies in concert with exogenous energy input have been exploited to facilitate this nonspontaneous enantioenrichment. In this perspective, we will discuss the basic ideas to accomplish catalytic deracemization, categorized by the three major exogenous energy sources including chemical (redox)-, photo- and mechanical energy from attrition. Emphasis will be given to the catalytic features and the underlying deracemization mechanism together with perspectives on future development.
Collapse
Affiliation(s)
- Mouxin Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Medicinal Chemistry, Third Military of Medical University, Chongqing 400038, China
| | - Tianrun Pan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xieyang Jiang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Pracht P, Bannwarth C. Finding Excited-State Minimum Energy Crossing Points on a Budget: Non-Self-Consistent Tight-Binding Methods. J Phys Chem Lett 2023; 14:4440-4448. [PMID: 37144783 DOI: 10.1021/acs.jpclett.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The automated exploration and identification of minimum energy conical intersections (MECIs) is a valuable computational strategy for the study of photochemical processes. Due to the immense computational effort involved in calculating non-adiabatic derivative coupling vectors, simplifications have been introduced focusing instead on minimum energy crossing points (MECPs), where promising attempts were made with semiempirical quantum mechanical methods. A simplified treatment for describing crossing points between almost arbitrary diabatic states based on a non-self-consistent extended tight-binding method, GFN0-xTB, is presented. Involving only a single diagonalization of the Hamiltonian, the method can provide energies and gradients for multiple electronic states, which can be used in a derivative coupling-vector-free scheme to calculate MECPs. By comparison with high-lying MECIs of benchmark systems, it is demonstrated that the identified geometries are good starting points for further MECI refinement with ab initio methods.
Collapse
Affiliation(s)
- Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph Bannwarth
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52074 Aachen, Germany
| |
Collapse
|
21
|
Jiang H, He XK, Jiang X, Zhao W, Lu LQ, Cheng Y, Xiao WJ. Photoinduced Cobalt-Catalyzed Desymmetrization of Dialdehydes to Access Axial Chirality. J Am Chem Soc 2023; 145:6944-6952. [PMID: 36920031 DOI: 10.1021/jacs.3c00462] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Enantioselective metallaphotoredox catalysis, which combines photoredox catalysis and asymmetric transition-metal catalysis, has become an effective approach to achieve stereoconvergence under mild conditions. Although many impressive synthetic approaches have been developed to access central chirality, the construction of axial chirality by metallaphotoredox catalysis still remains underexplored. Herein, we report two visible light-induced cobalt-catalyzed asymmetric reductive couplings of biaryl dialdehydes to synthesize axially chiral aldehydes (60 examples, up to 98% yield, >19:1 dr, and >99% ee). This protocol shows good functional group tolerance, broad substrate scope, and excellent diastereo- and enantioselectivity.
Collapse
Affiliation(s)
- Hao Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiang-Kui He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wei Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.,Wuhan Institute of Photochemistry and Technology, 7 Bingang North Road, Wuhan 430083, P. R. China
| |
Collapse
|
22
|
Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chem Sci 2023; 14:1715-1723. [PMID: 36819858 PMCID: PMC9930931 DOI: 10.1039/d2sc06340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.
Collapse
Affiliation(s)
- Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuanli Zhu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Xujing Shi
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Renfu Huang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Chuang Jiang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Kun Zhang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
23
|
Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. Multifaceted View on the Mechanism of a Photochemical Deracemization Reaction. J Am Chem Soc 2023; 145:2354-2363. [PMID: 36660908 DOI: 10.1021/jacs.2c11265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Upon irradiation in the presence of a chiral benzophenone catalyst (5 mol %), a racemic mixture of a given chiral imidazolidine-2,4-dione (hydantoin) can be converted almost quantitatively into the same compound with high enantiomeric excess (80-99% ee). The mechanism of this photochemical deracemization reaction was elucidated by a suite of mechanistic experiments. It was corroborated by nuclear magnetic resonance titration that the catalyst binds the two enantiomers by two-point hydrogen bonding. In one of the diastereomeric complexes, the hydrogen atom at the stereogenic carbon atom is ideally positioned for hydrogen atom transfer (HAT) to the photoexcited benzophenone. Detection of the protonated ketyl radical by transient absorption revealed hydrogen abstraction to occur from only one but not from the other hydantoin enantiomer. Quantum chemical calculations allowed us to visualize the HAT within this complex and, more importantly, showed that the back HAT does not occur to the carbon atom of the hydantoin radical but to its oxygen atom. The achiral enol formed in this process could be directly monitored by its characteristic transient absorption signal at λ ≅ 330 nm. Subsequent tautomerization leads to both hydantoin enantiomers, but only one of them returns to the catalytic cycle, thus leading to an enrichment of the other enantiomer. The data are fully consistent with deuterium labeling experiments and deliver a detailed picture of a synthetically useful photochemical deracemization reaction.
Collapse
Affiliation(s)
- Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Nils van Staalduinen
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Antonia Seitz
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Philipp Pracht
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stefan Breitenlechner
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| |
Collapse
|
24
|
Liu D, Lu X, Chai Z, Yang H, Sun Y, Yu F. Progress in Construction of 2 H-Pyrrol-2-ones Skeleton. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
25
|
Abstract
Creating, conserving and modifying the stereochemistry of organic compounds has been the subject of significant research efforts in synthetic chemistry. Most synthetic routes are designed according to the stereoselectivity-determining step. Stereochemical editing is an alternative strategy, wherein the chiral-defining or geometry-defining steps are independent of the construction of the major scaffold or complexity. It enables late-stage alterations of stereochemistry and can generate isomers from a single compound. However, in many instances, stereochemical editing processes are contra-thermodynamic, meaning the transformation is unfavourable. To overcome this barrier, photocatalysis uses photogenerated radical species and introduces thermochemical biases. A range of synthetically valuable contra-thermodynamic stereochemical editing processes have been invented, including deracemization of chiral molecules, positional alkene isomerization and dynamic epimerization of sugars and diols. In this Review, we highlight the fundamental mechanisms of visible-light photocatalysis and the general reactivity modes of the photogenerated radical intermediates towards contra-thermodynamic stereochemical editing processes.
Collapse
|
26
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
27
|
Pracht P, Bannwarth C. Fast Screening of Minimum Energy Crossing Points with Semiempirical Tight-Binding Methods. J Chem Theory Comput 2022; 18:6370-6385. [PMID: 36121838 DOI: 10.1021/acs.jctc.2c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The investigation of photochemical processes is a highly active field in computational chemistry. One research direction is the automated exploration and identification of minimum energy conical intersection (MECI) geometries. However, due to the immense technical effort required to calculate nonadiabatic potential energy landscapes, the routine application of such computational protocols is severely limited. In this study, we will discuss the prospect of combining adiabatic potential energy surfaces from semiempirical quantum mechanical calculations with specialized confinement potential and metadynamics simulations to identify S0/T1 minimum energy crossing point (MECP) geometries. It is shown that MECPs calculated at the GFN2-xTB level can provide suitable approximations to high-level S0/S1ab initio conical intersection geometries at a fraction of the computational cost. Reference MECIs of benzene are studied to illustrate the basic concept. An example application of the presented protocol is demonstrated for a set of photoswitch molecules.
Collapse
Affiliation(s)
- Philipp Pracht
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056Aachen, Germany
| |
Collapse
|
28
|
|
29
|
Liang D, Xiao W, Lakhdar S, Chen J. Construction of axially chiral compounds via catalytic asymmetric radical reaction. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
30
|
DeHovitz JS, Hyster TK. Photoinduced Dynamic Radical Processes for Isomerizations, Deracemizations, and Dynamic Kinetic Resolutions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob S. DeHovitz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Zhang H, Huang C, Yuan XA, Yu S. Photoexcited Chiral Copper Complex-Mediated Alkene E → Z Isomerization Enables Kinetic Resolution. J Am Chem Soc 2022; 144:10958-10967. [PMID: 35675512 DOI: 10.1021/jacs.2c04040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While asymmetric synthesis has been established as a powerful synthetic tool for the construction of versatile enantioenriched molecules in the most efficient and practical manner, the resolution of racemates is still the most universal industrial approach to the synthesis of chiral compounds. However, the direct formation of enantiopure Z-isomers through the catalytic nonenzymatic kinetic resolution of racemic E-alkenes remains challenging. Herein, we disclose an unprecedented enantioselective E → Z isomerization mediated by a photoexcited chiral copper complex. This catalytic system enables kinetic resolution of 2-styrylpyrrolidines. This process is difficult to realize under thermal conditions. Mechanistic experiments and density functional theory (DFT) calculations revealed that different overall sensitization rates of the substrate-catalyst complex of the two enantiomers led to the observed excellent kinetic resolution efficiency. This photochemical transformation expands the potential of kinetic resolution beyond their established ground-state reactivity, furnishing a novel reaction mode for enantioselective catalysis at its excited state.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. Photochemical Deracemization of Chiral Alkenes via Triplet Energy Transfer. J Am Chem Soc 2022; 144:10133-10138. [PMID: 35658423 DOI: 10.1021/jacs.2c02511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated, enantioselective approach to axially chiral alkenes is described. Starting from a racemic mixture, a major alkene enantiomer is formed due to selective triplet energy transfer from a catalytically active chiral sensitizer. A catalyst loading of 2 mol % was sufficient to guarantee consistently high enantioselectivities and yields (16 examples, 51%-quant., 81-96% ee). NMR studies and DFT computations revealed that triplet energy transfer is more rapid within the substrate-catalyst complex of the minor alkene enantiomer. Since this enantiomer is continuously racemized, the major enantiomer is enriched in the photostationary state.
Collapse
Affiliation(s)
- Thilo Kratz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Pit Steinbach
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
33
|
Photochemical α-Deracemization of Carbonyl Compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Liang D, Chen JR, Tan LP, He ZW, Xiao WJ. Catalytic Asymmetric Construction of Axially and Centrally Chiral Heterobiaryls by Minisci Reaction. J Am Chem Soc 2022; 144:6040-6049. [PMID: 35322666 DOI: 10.1021/jacs.2c01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Axially chiral biaryls and heterobiaryls constitute the most represented subclass of atropisomers with prevalence in natural products, bioactive compounds, privileged chiral ligand/catalysts, and optically pure materials. Despite many ionic protocols for their construction, radical-based variants represent another highly desirable and intriguing strategy but are far less developed. Moreover, efficient synthesis of axially chiral heterobiaryl molecules, especially ones having multiple heteroatoms and other types of chiral elements, through radical routes remains extremely limited. We herein disclose the first catalytic asymmetric, metal-free construction of axially and centrally chiral heterobiaryls by Minisci reaction of 5-arylpyrimidines and α-amino acid-derived redox-active esters. This is enabled by the use of 4CzIPN as an organic photoredox catalyst in conjunction with a chiral phosphoric acid catalyst. The reaction achieved a variety of interesting 5-arylpyrimidines featuring the union of an axially chiral heterobiaryl and a centrally chiral α-branched amine with generally excellent regio-, diastereo-, and enantioselectivity (up to 82% yield; >19:1 dr; >99% ee). This finding also builds up a new platform for the development of desymmetrization methods via radical-involved atroposelective functionalization at heteroarene of prochiral heterobiaryls.
Collapse
Affiliation(s)
- Dong Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Li-Ping Tan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zi-Wei He
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Serafino A, Chiminelli M, Balestri D, Marchiò L, Bigi F, Maggi RM, Malacria M, Maestri G. Dimerizing cascades of enallenamides reveal the visible-light-promoted activation of cumulated C-C double bonds. Chem Sci 2022; 13:2632-2639. [PMID: 35340858 PMCID: PMC8890112 DOI: 10.1039/d1sc06719b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/07/2023] Open
Abstract
The visible-light-promoted activation of conjugated C-C double bonds is well developed, while that of cumulated systems is underexplored. We present the feasibility of this challenging approach. The localization of a triplet on an allenamide arm can be favored over that on a conjugated alkene. Allenamides with an arylacryloyl arm dimerize at room temperature in the presence of visible light and an iridium(iii) photocatalyst. Two orthogonal polycyclizations took place and their outcome is entirely dictated by the substitution of the alkene partner. Both cascades afford complex molecular architectures with high selectivity. Products form through the ordered rearrangement of twelve π electrons, providing a [3.2.0] bicyclic unit tethered to a fused tricycle, whose formation included an aryl C-H functionalization step, using disubstituted alkenes. The outcome was reverted with trisubstituted ones, which gave rise to taxane-like bridged tricycles that had two six-membered lactams flanking a cyclooctane ring, which was established through the creation of four alternate C-C bonds.
Collapse
Affiliation(s)
- Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Davide Balestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
- IMEM-CNR Parco Area Delle Scienze 37/A 43124 Parma Italy
| | - Rai-Mondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| | - Max Malacria
- Sorbonne Université, Faculty of Science and Engineering, IPCM (UMR CNRS 8232) 4 Place Jussieu 75252 Paris Cedex 05 France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma Parco Area Delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|
36
|
Zhou C, Gan QC, Zhou TP, Lei T, Ye C, He XJ, Chen B, Lu H, Wan Q, Liao RZ, Tung CH, Wu LZ. Site-Selective N-1 and C-3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angew Chem Int Ed Engl 2022; 61:e202116421. [PMID: 34985181 DOI: 10.1002/anie.202116421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/10/2023]
Abstract
Site-selective N-1 and C-3 arylation of indole has been sought after because of the prevalent application of arylindoles and the intricate reactivities associated with the multiple sites of the N-unsubstituted indole. Represented herein is the first regioselective heteroarylation of indole via a radical-radical cross-coupling by visible-light irradiation. Steady and time-resolved spectroscopic and computational studies revealed that the hydrogen-bonding interaction of organic base and its conjugated acid, namely with indole and heteroarylnitrile, determined the reaction pathway, which underwent either proton-coupled electron-transfer or energy-transfer for the subsequent radical-radical cross-coupling, leading to the regioselective formation of C-3 and N-1 heteroarylation of indoles, respectively. The parallel methodologies for regioisomeric N-1 and C-3 heteroaryl indoles with good functional group compatibility could be applied to large-scale synthesis and late-stage derivatization of bioactive compounds under extremely mild reaction conditions.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tai-Ping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun He
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Zhou C, Gan Q, Zhou T, Lei T, Ye C, He X, Chen B, Lu H, Wan Q, Liao R, Tung C, Wu L. Site‐Selective
N
‐1 and C‐3 Heteroarylation of Indole with Heteroarylnitriles by Organocatalysis under Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi‐Chao Gan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Tai‐Ping Zhou
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Jun He
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Heng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Wan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong‐Zhen Liao
- School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Su Y, Zou Y, Xiao W. Recent Advances in Photocatalytic Deracemization. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Sun B, Tian H, Ni Z, Huang P, Ding H, Li B, Jin C, Wu C, Shen RP. Photocatalyst-, metal- and additive-free, regioselective radical cascade sulfonylation/cyclization of benzimidazoles derivatives with sulfonyl chlorides induced by visible light. Org Chem Front 2022. [DOI: 10.1039/d2qo00518b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an environmental and practical protocol for the visible-light-triggered regioselective radical cascade sulfonylation/cyclization of unactivated alkenes towards synthesis of polycyclic benzimidazoles containing sulfone group has been developed. Notably, the control...
Collapse
|
41
|
Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. Photochemical Deracemization at sp 3-Hybridized Carbon Centers via a Reversible Hydrogen Atom Transfer. J Am Chem Soc 2021; 143:21241-21245. [PMID: 34902253 DOI: 10.1021/jacs.1c11266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A photochemical deracemization of 5-substituted 3-phenylimidazolidine-2,4-diones (hydantoins) is reported (27 examples, 69%-quant., 80-99% ee). The reaction is catalyzed by a chiral diarylketone which displays a two-point hydrogen bonding site. Mechanistic evidence (DFT calculations, radical clock experiments, H/D labeling) suggests the reaction to occur by selective hydrogen atom transfer (HAT). Upon hydrogen binding, one substrate enantiomer displays the hydrogen atom at the stereogenic center to the photoexcited catalyst allowing for a HAT from the substrate and eventually for its conversion into the product enantiomer. The product enantiomer is not processed by the catalyst and is thus enriched in the photostationary state.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Manuel Plaza
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Antonia Seitz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
42
|
Sun B, Ding H, Tian H, Huang P, Jin C, Wu C, Shen R. Photo‐Triggered Self‐Induced Homolytic Dechlorinative Sulfonylation/Cyclization of Unactivated Alkenes: Synthesis of Quinazolinones Containing a Sulfonyl Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hao Ding
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Hai‐Xia Tian
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Pan‐Yi Huang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chun‐Lei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| | - Run‐Pu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 People's Republic of China
| |
Collapse
|
43
|
Oddy MJ, Kusza DA, Petersen WF. Visible-Light Mediated Metal-Free 6π-Photocyclization of N-Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones. Org Lett 2021; 23:8963-8967. [PMID: 34756046 DOI: 10.1021/acs.orglett.1c03487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient thioxanthone-catalyzed triplet energy transfer process for the synthesis of 3,4-dihydroquinolin-2-ones via a 6π-photocyclization is reported. Featuring a rare example of a metal-free formal C(sp2)-H/C(sp3)-H arylation mediated by visible-light, this work hopes to inspire further interest in these small molecules as sustainable alternatives to existing transition-metal photocatalysts in related processes.
Collapse
Affiliation(s)
- Meghan J Oddy
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
44
|
Chen L, Lin C, Zhang S, Zhang X, Zhang J, Xing L, Guo Y, Feng J, Gao J, Du D. 1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones via an NHC-Catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lei Chen
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chen Lin
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaojin Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianming Zhang
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lianjie Xing
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yage Guo
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- Department of Organic Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
45
|
Zhang C, Gao AZ, Nie X, Ye CX, Ivlev SI, Chen S, Meggers E. Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation. J Am Chem Soc 2021; 143:13393-13400. [PMID: 34392683 DOI: 10.1021/jacs.1c06637] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.
Collapse
Affiliation(s)
- Chenhao Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Anthony Z Gao
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Xin Nie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|