1
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
2
|
Das A, Myers DL, Ganesh V, Greaney MF. Cascade Aryne Aminoarylation for Biaryl Phenol Synthesis. Org Lett 2024; 26:2612-2616. [PMID: 38512156 PMCID: PMC11002935 DOI: 10.1021/acs.orglett.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
We describe a transition metal-free approach to hindered 3-amino-2-aryl phenols through a cascade nucleophilic addition / Smiles-Truce rearrangement of a functionalized Kobayashi aryne precursor. Under anionic conditions, secondary alkyl amines add to the aryne intermediate to set up an aryl transfer from a neighboring sulfonate group. The use of a sulfonate, rather than the more typical sulfonamide, enables access to phenolic biaryl products that are important motifs in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Aniruddha Das
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Danielle L. Myers
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| | - Venkataraman Ganesh
- Department
of Chemistry, Indian Institute of Technology
Kharagpur, West Bengal-721302, India
| | - Michael F. Greaney
- Department
of Chemistry, University of Manchester, Oxford Rd, Manchester, M13 9PL, U.K.
| |
Collapse
|
3
|
Baldinelli L, De Angelis F, Bistoni G. Unraveling Atomic Contributions to the London Dispersion Energy: Insights into Molecular Recognition and Reactivity. J Chem Theory Comput 2024; 20:1923-1931. [PMID: 38324509 DOI: 10.1021/acs.jctc.3c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We present a general framework that enables quantification with atomic resolution of the overall London dispersion energy, which can be readily integrated with currently available energy decomposition schemes. This approach can be used to determine the contribution of individual atoms and functional groups to molecular recognition, conformational preferences, molecular stability, and reactivity. Its efficacy across diverse realms of molecular chemistry and biology is demonstrated with application to molecular balances in solution, asymmetric organocatalytic transformations, and a subcomplex of the F1FO ATP synthase.
Collapse
Affiliation(s)
- Lorenzo Baldinelli
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia, Via Elce di sotto, 8, Perugia 06123, Italy
| | - Filippo De Angelis
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia, Via Elce di sotto, 8, Perugia 06123, Italy
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche "Giulio Natta" (CNR-SCITEC), Perugia 06123, Italy
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 440-746, Korea
| | - Giovanni Bistoni
- Dipartmento di Chimica, Biologia e Biotecnologie, Università Degli Studi Di Perugia, Via Elce di sotto, 8, Perugia 06123, Italy
| |
Collapse
|
4
|
Mears KL, Power PP. London Dispersion Effects on the Stability of Heavy Tetrel Molecules. Chemistry 2023; 29:e202301247. [PMID: 37263972 DOI: 10.1002/chem.202301247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
London dispersion (LD) interactions, which stem from long-range electron correlations arising from instantaneously induced dipoles can occur between neighboring atoms or molecules, for example, between H atoms within ligand C-H groups. These interactions are currently of interest as a new method of stabilizing long bonds and species with unusual oxidation states. They can also limit reactivity by installing LD enhanced groups into organic frameworks or ligand substituents. Here, we address the most recent advances in the design of LD enhanced ligands, the sterically counterintuitive structures that can be generated and the consequences that these interactions can have on the structures and reactivity of sterically crowded heavy group 14 species.
Collapse
Affiliation(s)
- Kristian L Mears
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| | - Philip P Power
- Department of Chemistry, University of California One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
5
|
Coquerel Y. Aryne Atropisomers: Chiral Arynes for the Enantiospecific Synthesis of Atropisomers and Nanographene Atropisomers. Acc Chem Res 2023; 56:86-94. [PMID: 36595619 DOI: 10.1021/acs.accounts.2c00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The basics about arynes and their applications in synthetic organic chemistry are briefly presented, and the concept of atropisomerism is defined, highlighting that it is a time-dependent form of isomerism and chirality. It is remembered that racemization is a macroscopic and statistical irreversible process, while enantiomerization is a nanoscopic reversible process that occurs at the molecular scale, with racemization being twice as fast as enantiomerization. The concept of aryne atropisomers is introduced with a naive question: Can synthetically useful nonracemic aryne atropisomers having a triple bond ortho to the stereogenic single bond exist in solution? It was found that such aryne atropisomers can be generated in solution from easily available ortho-iodoaryl triflate precursors and excess trimethylsilylmethylmagnesium chloride. Analysis of the barriers to enantiomerization of some aryne atropisomers by computational modeling revealed the key contribution to the configurational stability of the H atom in tris-ortho-substituted biphenyl-based atropisomers. Using a specially designed prototype of aryne atropisomer, for which the barrier to enantiomerization was accurately evaluated by advanced computational modeling, the kinetic parameters of its reaction with furan were experimentally determined. From these measurements, it was concluded that any aryne atropisomer with a barrier to enantiomerization ΔGenant⧧ equal to or higher than 50 kJ mol-1 would lead to fully enantiospecific reactions. The synthetic applications of two structurally distinct aryne atropisomers built on a 1-phenylnaphthalene platform are described: one has the aryne triple bond embedded in the naphthyl moiety, and the other has the aryne triple bond embedded in the phenyl moiety. Both aryne atropisomers allowed for the fully enantiospecific, and possibly overall enantioselective, syntheses of original atropisomers based on standard aryne chemistry. For instance, reactions with anthracene and perylene afforded triptycene and nanographene atropisomers, respectively, in high enantiomeric excesses. A bis(aryne) atropisomer synthetic equivalent prepared from either enantiomer of BINOL is described for 3D bidirectional reactions with a single handedness. Its 2-fold reactions with anthracene and perylene afforded the corresponding severely congested bis(benzotriptycene) (99% ee) nanocarbon atropisomer and bis(anthra[1,2,3,4-ghi]perylene) (98% ee) nanographene atropisomer, respectively. This allowed the discovery of bis(twistacene) atropisomers as a new class of polycyclic aromatic hydrocarbons (PAH) with multiple stereogenicities. Cross reactions with the bis(aryne) atropisomer synthetic equivalent and two different arynophiles proved feasible, providing a nanographene atropisomer with a benzotriptycene unit and an anthra[1,2,3,4-ghi]perylene unit assembled around a stereogenic axis as a unique chiral PAH (99% ee). Overall, because the concept is simple and its implementation is easy, aryne atropisomers is an attractive approach to the synthesis of atropisomers in a broad meaning. Applications to the synthesis of large PAH atropisomers with single handedness are particularly promising.
Collapse
Affiliation(s)
- Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| |
Collapse
|
6
|
Hill NDD, Lilienthal E, Bender CO, Boeré RT. Accurate Crystal Structures of C 12H 9CN, C 12H 8(CN) 2, and C 16H 11CN Valence Isomers Using Nonspherical Atomic Scattering Factors. J Org Chem 2022; 87:16213-16229. [DOI: 10.1021/acs.joc.2c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nathan D. D. Hill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Elaura Lilienthal
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - Christopher O. Bender
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| | - René T. Boeré
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
- The Canadian Centre for Research in Advanced Fluorine Technologies (C-CRAFT), University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
7
|
Colgan AC, Proctor RSJ, Gibson DC, Chuentragool P, Lahdenperä ASK, Ermanis K, Phipps RJ. Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angew Chem Int Ed Engl 2022; 61:e202200266. [PMID: 35420220 PMCID: PMC9321721 DOI: 10.1002/anie.202200266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 12/25/2022]
Abstract
Catalytic enantioselective Minisci reactions have recently been developed but all instances so far utilize α-amino radical coupling partners. We report a substantial evolution of the enantioselective Minisci reaction that enables α-hydroxy radicals to be used, providing valuable enantioenriched secondary alcohol products. This is achieved through the direct oxidative coupling of two C-H bonds on simple alcohol and pyridine partners through a hydrogen atom transfer (HAT)-driven approach: a challenging process to achieve due to the numerous side reactions that can occur. Our approach is highly regioselective as well as highly enantioselective. Dicumyl peroxide, upon irradiation with 390 nm light, serves as both HAT reagent and oxidant whilst selectivity is controlled by use of a chiral phosphoric acid catalyst. Computational and experimental evidence provide mechanistic insight as to the origin of selectivity, revealing a stereodetermining deprotonation step distinct from the analogous reaction of amide-containing substrates.
Collapse
Affiliation(s)
- Avene C. Colgan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Rupert S. J. Proctor
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - David C. Gibson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Padon Chuentragool
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Antti S. K. Lahdenperä
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Kristaps Ermanis
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- School of ChemistryUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Robert J. Phipps
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
8
|
Colgan AC, Proctor RSJ, Gibson DC, Chuentragool P, Lahdenpera A, Ermanis K, Phipps RJ. Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Avene C. Colgan
- University of Cambridge Central Science Library: University of Cambridge Chemistry UNITED KINGDOM
| | | | | | | | - Antti Lahdenpera
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | | | - Robert J Phipps
- University of Cambridge Department of Chemistry Lensfield Road CB2 1EW Cambridge UNITED KINGDOM
| |
Collapse
|
9
|
Bürger M, Ehrhardt N, Barber T, Ball LT, Namyslo JC, Jones PG, Werz DB. Phosphine-Catalyzed Aryne Oligomerization: Direct Access to α,ω-Bisfunctionalized Oligo( ortho-arylenes). J Am Chem Soc 2021; 143:16796-16803. [PMID: 34585921 DOI: 10.1021/jacs.1c08689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A phosphine-catalyzed oligomerization of arynes using selenocyanates was developed. The use of JohnPhos as a bulky phosphine is the key to accessing α,ω-bisfunctionalized oligo(ortho-arylenes) with RSe as the substituent at one terminus and CN as the substituent at the other. The in situ formation of R3PSeR' cations, serving as sterically encumbered electrophiles, hinders the immediate reaction that affords the 1,2-bisfunctionalization product and instead opens a competitive pathway leading to oligomerization. Various optimized conditions for the predominant formation of dimers, but also for higher oligomers such as trimers and tetramers, were developed. Depending on the electronic properties of the electrophilic reaction partner, even compounds up to octamers were isolated. Optimization experiments revealed that a properly tuned phosphine as catalyst is of crucial importance. Mechanistic studies demonstrated that the cascade starts with the attack of cyanide; aryne insertion into n-mers leading to (n+1)-mers was ruled out.
Collapse
Affiliation(s)
| | | | - Thomas Barber
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Liam T Ball
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jan C Namyslo
- Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
| | | | | |
Collapse
|
10
|
Ritts CB, Hoye TR. Sulfurane [S(IV)]-Mediated Fusion of Benzynes Leads to Helical Dibenzofurans. J Am Chem Soc 2021; 143:13501-13506. [PMID: 34424692 DOI: 10.1021/jacs.1c07187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Here we disclose a sulfurane-mediated method for the formation of dimeric dibenzofuran helicenes via the reaction between diaryl sulfoxides and hexadehydro-Diels-Alder (HDDA) derived benzynes. A variety of S-shaped and U-shaped helicenes were formed under thermal conditions. Both experimental and DFT studies support a sulfur(IV)-based coupling (aka ligand coupling) mechanism involving tetracarbo-ligated S(IV) intermediates undergoing reductive elimination to afford the helicene products. This process involves the de novo generation of five new rings in a single operation and constitutes a new method for the construction of topologically interesting, polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Casey B Ritts
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|