1
|
Yang Q, Wen MM, Ruan YJ, Wang XL, Zhang CZ, Wang PF, Hu XY, Xiao YH, Liu XG. Stereoretentive Conversion to C-Glycosides from S-Glycosides via Ligand-Coupling on Sulfur(IV). Org Lett 2025. [PMID: 39836883 DOI: 10.1021/acs.orglett.4c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A novel strategy is reported for the stereoselective synthesis of C(sp2)-C(sp3) C-glycosides, which converts heteroaryl S-glycosides into heteroaryl C-glycosides with retention of configuration through a sequential process involving oxidation and Grignard reagent attack. The new method involves the generation of a S(IV) intermediate, followed by ligand coupling of the glycosyl and heteroaryl groups to yield heteroaryl C-glycosides. The diverse heteroaryl C-glycosides were achieved with good efficiency.
Collapse
Affiliation(s)
- Qian Yang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Miao-Miao Wen
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-Jun Ruan
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xiao-Li Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Cong-Zhen Zhang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Peng-Fei Wang
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Yue Hu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Yu-He Xiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xu-Ge Liu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
2
|
Wang J, Zhou F, Xu Y, Zhang L. Recent Advances in Organic Photocatalyst-Promoted Carbohydrate Synthesis and Modification under Light Irradiation. Chem Asian J 2025:e202401114. [PMID: 39745292 DOI: 10.1002/asia.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Indexed: 01/14/2025]
Abstract
Photoredox catalysis has been developed as a sustainable and eco-friendly catalytic strategy, which might provide innovative solutions to solve the current synthetic challenges and barriers in carbohydrate chemistry. During the last few decades, the study of organic photocatalyst-promoted carbohydrate synthesis and modification has received significant attention, which provides an excellent and inexpensive metal-free alternative to photoredox catalysis as well as introduces a new fastest-growing era to access complex carbohydrates simply. In this review, we aim to provide an overview of organic photocatalyst-promoted carbohydrate synthesis and modification under light irradiation, which is expected to provide new directions for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, Kaili, 556011, China
| |
Collapse
|
3
|
Talukdar R, Chong D, Fairbanks AJ. Photoredox Chemistry of Sugars without Protecting Groups: Two-Step Production of C-Glycosides via Intermediate Dihydropyridine Glycosyl Esters. Org Lett 2024; 26:10536-10541. [PMID: 39602555 DOI: 10.1021/acs.orglett.4c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Unprotected sugars are converted directly into their corresponding dihydropyridine esters, which can be activated under photoredox conditions to produce glycosyl radicals, which in turn can react with a range of electron deficient alkenes to provide C-glycosides. This method does not involve any protection of sugar hydroxyl groups and represents a simple two-step method for the conversion of reducing sugars into unprotected C-glycosides.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daniel Chong
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
4
|
Bretón C, Oroz P, Torres M, Zurbano MM, Garcia-Orduna P, Avenoza A, Busto JH, Corzana F, Peregrina JM. Exploring Photoredox Catalytic Reactions as an Entry to Glycosyl-α-amino Acids. ACS OMEGA 2024; 9:45437-45446. [PMID: 39554407 PMCID: PMC11561640 DOI: 10.1021/acsomega.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
The synthesis of glycosyl-α-amino acids presents a significant challenge due to the need for precise glycosidic linkages connecting carbohydrate moieties to amino acids while maintaining stereo- and regiochemical fidelity. Classical methods relying on ionic intermediates (2e-) often involve intricate synthetic procedures, particularly when dealing with 2-N-acetamido-2-deoxyglycosides linked to α-amino acids-a crucial class of glycoconjugates that play important biological roles. Considering the growing prominence of photocatalysis, this study explores various photoredox catalytic approaches to achieving glycosylation reactions. Our focus lies on the notoriously difficult case of 2-N-acetamido-2-deoxyglycosyl-α-amino acids, which could be obtained efficiently by two methodologies that involved, on the one hand, photoredox Giese reactions using a chiral dehydroalanine (Dha) as an electron density-deficient alkene in these radical 1,4-additions and, on the other hand, photoredox glycosylations using selenoglycosides as glycosyl donors and hydroxyl groups of protected amino acids as acceptors.
Collapse
Affiliation(s)
- Carmen Bretón
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Paula Oroz
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Miguel Torres
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - María M. Zurbano
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Pilar Garcia-Orduna
- Departamento de
Química Inorgánica, Instituto de Síntesis Química
y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, C/Pedro Cerbuna, 12, Zaragoza 50009, Spain
| | - Alberto Avenoza
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús H. Busto
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Francisco Corzana
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| | - Jesús M. Peregrina
- Departamento de Química,
Instituto de Investigación en Química de la Universidad
de La Rioja (IQUR), Universidad de La Rioja, C/Madre de Dios, 53, Logroño, La Rioja 26006, Spain
| |
Collapse
|
5
|
Zhang J, Liu Q, Chiang A, Nitz M. Exploration of Glycosyl Dithioimidocarbonates in Photoinduced Desulfurative Cross-Coupling Reactions. Org Lett 2024; 26:8498-8502. [PMID: 39348920 DOI: 10.1021/acs.orglett.4c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Readily synthesized bench-stable glycosyl dithioimidocarbonates are useful C-glycoside precursors. Under mild photochemical conditions, these glycosides undergo desulfurative glycosyl radical generation in the presence of weak acid, 4CzIPN, and Hantzsch ester. These radicals perform well in Geise-like reactions to yield C-glycosides with high stereoselectivity.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S3H6, Canada
| | - Qi Liu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S3H6, Canada
| | - Angus Chiang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S3H6, Canada
| |
Collapse
|
6
|
Yang W, Ramadan S, Zu Y, Sun M, Huang X, Yu B. Chemical synthesis and functional evaluation of glycopeptides and glycoproteins containing rare glycosyl amino acid linkages. Nat Prod Rep 2024; 41:1403-1440. [PMID: 38888170 DOI: 10.1039/d4np00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: 1987 to 2023Naturally existing glycoproteins through post-translational protein glycosylation are highly heterogeneous, which not only impedes the structure-function studies, but also hinders the development of their potential medical usage. Chemical synthesis represents one of the most powerful tools to provide the structurally well-defined glycoforms. Being the key step of glycoprotein synthesis, glycosylation usually takes place at serine, threonine, and asparagine residues, leading to the predominant formation of the O- and N-glycans, respectively. However, other amino acid residues containing oxygen, nitrogen, sulfur, and nucleophilic carbon atoms have also been found to be glycosylated. These diverse glycoprotein linkages, occurring from microorganisms to plants and animals, play also pivotal biological roles, such as in cell-cell recognition and communication. The availability of these homogenous rare glycopeptides and glycoproteins can help decipher the glyco-code for developing therapeutic agents. This review highlights the chemical approaches for assembly of the functional glycopeptides and glycoproteins bearing these "rare" carbohydrate-amino acid linkages between saccharide and canonical amino acid residues and their derivatives.
Collapse
Affiliation(s)
- Weizhun Yang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Yan Zu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Mengxia Sun
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
7
|
Marco HG, Glendinning S, Ventura T, Gäde G. The gonadotropin-releasing hormone (GnRH) superfamily across Pancrustacea/Tetraconata: A role in metabolism? Mol Cell Endocrinol 2024; 590:112238. [PMID: 38616035 DOI: 10.1016/j.mce.2024.112238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Susan Glendinning
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Tomer Ventura
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, 4556, Australia
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
8
|
Ding Y, Yao B. Late-Stage Glycosylation of Peptides by Methionine-Directed β-C(sp 3)-H Functionalization with 1-Iodoglycals. Org Lett 2024; 26:7128-7133. [PMID: 39155450 DOI: 10.1021/acs.orglett.4c02392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Using l-methionine (Met) as the endogenous directing group, we developed Pd-catalyzed β-C(sp3)-H glycosylation of peptides with 1-iodoglycals. A wide range of tri- to hexapeptides containing the Ala-Met motifs underwent Ala C-H glycosylation under the standard conditions to give the glycopeptides smoothly. 15 proteinogenic amino acids (with easily removable protecting groups) were well tolerated. Control experiments indicated that Met acted as a N,S-bidentate directing group and exhibited an effect superior to other amino acid residues such as l-aspartic acid (Asp), l-asparagine (Asn), and S-protected l-cysteine (Cys). In addition, further transformation by HFIP-promoted 1,4-elimination furnished another type of glycopeptide with the 1,3-diene motif, which provides a handle for further derivatization.
Collapse
Affiliation(s)
- Yunhao Ding
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Bo Yao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic-Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
9
|
Shi WY, Ma JJ, Li HY, Chen D, Liu XY, Liang YM. Synthesis of C-Alkyl Glycosides from Alkyl Bromides and Glycosyl Carboxylic Acids via Ni/Photoredox Dual Catalysis. J Org Chem 2024; 89:11136-11147. [PMID: 39106492 DOI: 10.1021/acs.joc.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
C-Alkyl glycosides, an important class of C-glycosides, are widely found in various drugs and natural products. The synthesis of C-alkyl glycosides has attracted considerable attention. Herein, we developed a Ni/photoredox catalyzed decarboxylative C(sp3)-C(sp3) coupling reaction of stable glycosylcarboxylic acids with simple aliphatic bromides to generate C-alkyl glycosides. The method successfully linked several functional molecular fragments (natural products or drugs) to a sugar moiety, showing the extensive application prospects of this transformation. Controlled experiments and DFT calculations demonstrated that the reaction pathway contains a free radical process, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia-Jun Ma
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hu-Yi Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dongping Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. Stereoselective Construction of Multifunctional C-Glycosides Enabled by Nickel-Catalyzed Tandem Borylation/Glycosylation. J Am Chem Soc 2024; 146:22413-22423. [PMID: 39096292 DOI: 10.1021/jacs.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Kowloon, 999077 Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liqin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Siwei Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bin Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| |
Collapse
|
11
|
Wu J, Purushothaman R, Kallert F, Homölle SL, Ackermann L. Electrochemical Glycosylation via Halogen-Atom-Transfer for C-Glycoside Assembly. ACS Catal 2024; 14:11532-11544. [PMID: 39114086 PMCID: PMC11301629 DOI: 10.1021/acscatal.4c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Glycosyl donor activation emerged as an enabling technology for anomeric functionalization, but aimed primarily at O-glycosylation. In contrast, we herein disclose mechanistically distinct electrochemical glycosyl bromide donor activations via halogen-atom transfer and anomeric C-glycosylation. The anomeric radical addition to alkenes led to C-alkyl glycoside synthesis under precious metal-free reaction conditions from readily available glycosyl bromides. The robustness of our e-XAT strategy was further mirrored by C-aryl and C-acyl glycosides assembly through nickela-electrocatalysis. Our approach provides an orthogonal strategy for glycosyl donor activation with expedient scope, hence representing a general method for direct C-glycosides assembly.
Collapse
Affiliation(s)
| | | | - Felix Kallert
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Simon L. Homölle
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute
for Sustainable Chemistry, Georg-August-Universität
Göttingen, Tammannstraße
2, Göttingen 37077, Germany
| |
Collapse
|
12
|
Li J, Ni H, Zhang W, Lai Z, Jin H, Zeng L, Cui S. A multicomponent reaction for modular assembly of indole-fused heterocycles. Chem Sci 2024; 15:5211-5217. [PMID: 38577354 PMCID: PMC10988590 DOI: 10.1039/d4sc00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
Indoles are privileged chemical entities in natural products and drug discovery. Indole-fused heterocycles, particularly seven-membered ones, have received increasing attention due to their distinctive chemical characteristics and wide spectrum of bioactivities. However, the synthetic access to these compounds is highly limited. Herein, we report a unique multicomponent reaction (MCR) for modular assembly of indole-fused seven-membered heterocycles. In this process, indole, formaldehyde and amino hydrochloride could assemble rapidly to yield indole-fused oxadiazepines, and another addition of sodium thiosulphate would furnish indole-fused thiadiazepines. The biological evaluation disclosed the promising anticancer activity of these compounds. Furthermore, this MCR could be applicable in the late-stage and selective modifications of peptides. Therefore, this work provides a powerful strategy for indole functionalization and valuable tool for construction of seven-membered heterocycles.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hao Ni
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Weiwei Zhang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Huimin Jin
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Linwei Zeng
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- Jinhua Institute of Zhejiang University Jinhua Zhejiang Province 321299 China
| |
Collapse
|
13
|
Lang M, Tardieu D, Pousse B, Compain P, Kern N. Diastereoselective access to C, C-glycosyl amino acids via iron-catalyzed, auxiliary-enabled MHAT coupling. Chem Commun (Camb) 2024; 60:3154-3157. [PMID: 38407341 DOI: 10.1039/d3cc06249j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Access to C,C-glycosyl amino acids as a novel class of glycomimetics is reported by means of radical generation, intermolecular addition and stereoselective reduction via a metal-induced hydrogen atom transfer (MHAT) sequence. The 'matched' coupling of exo-D-glycals with an enantiopure dehydroalanine bearing a (R)-configured benzyl oxazolidinone enables a singular case of two-fold diastereocontrol under iron catalysis. In the common exo-D-glucal series, the nature of the C-2 substituent was found to play a key role from both reactivity and stereocontrol aspects.
Collapse
Affiliation(s)
- Mylène Lang
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Damien Tardieu
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Benoit Pousse
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Philippe Compain
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Nicolas Kern
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Strasbourg/Université de Haute-Alsace/CNRS, ECPM, 25 rue Becquerel, 67087, Strasbourg, France.
| |
Collapse
|
14
|
Gulzar T, Liu YH, Xia YN, Liu W, Liu P, Zhu D, Xu P, Yu B. Synthesis of C-Oligosaccharides via Ni-Catalyzed Reductive Hydroglycosylation. Org Lett 2024; 26:1718-1722. [PMID: 38380896 DOI: 10.1021/acs.orglett.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
C-Oligosaccharides are metabolically stable surrogates of native glycans containing O/N/S-glycosidic linkages and thus have therapeutic potential. Here we report a straightforward approach to the synthesis of vinyl C-linked oligosaccharides via the Ni-catalyzed reductive hydroglycosylation of alkynyl glycosides with glycosyl bromides.
Collapse
Affiliation(s)
- Tayyab Gulzar
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Hua Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu-Nong Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wei Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pengchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
15
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
16
|
Ye XY, Wang G, Jin Z, Yu B, Zhang J, Ren S, Chi YR. Direct Formation of Amide-Linked C-Glycosyl Amino Acids and Peptides via Photoredox/Nickel Dual Catalysis. J Am Chem Soc 2024; 146:5502-5510. [PMID: 38359445 DOI: 10.1021/jacs.3c13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.
Collapse
Affiliation(s)
- Xiang-Yu Ye
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Guanjie Wang
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Bin Yu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichao Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
18
|
Khanam A, Dubey S, Mandal PK. Mild method for the synthesis of α-glycosyl chlorides: A convenient protocol for quick one-pot glycosylation. Carbohydr Res 2023; 534:108976. [PMID: 37871478 DOI: 10.1016/j.carres.2023.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
A simple and efficient protocol for the preparation of α-glycosyl chlorides within 15-30 min is described which employs a stable, cheap, and commercially available Trichloroisocyanuric acid (TCCA) as non-toxic chlorinating agent along with PPh3. This process involved a wide range of substrate scope and is well-suited with labile hydroxyl protecting groups such as benzyl, acetyl, benzoyl, isopropylidene, benzylidene, and TBDPS (tert-butyldiphenylsilyl) groups. This process is operationally simple, mild conditions and obtained good yields with excellent α selectivity. Moreover, a multi-catalyst one-pot glycosylation can be carried out to transform the glycosyl hemiacetals directly to a various O-glycosides in high overall yields without the need for separation or purification of the α-glycosyl chloride donors.
Collapse
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Shashiprabha Dubey
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Jiang Y, Zhang Y, Lee BC, Koh MJ. Diversification of Glycosyl Compounds via Glycosyl Radicals. Angew Chem Int Ed Engl 2023; 62:e202305138. [PMID: 37278303 DOI: 10.1002/anie.202305138] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Glycosyl radical functionalization is one of the central topics in synthetic carbohydrate chemistry. Recent advances in metal-catalyzed cross-coupling chemistry and metallaphotoredox catalysis provided powerful platforms for glycosyl radical diversification. In particular, the discovery of new glycosyl radical precursors in conjunction with these advanced reaction technologies have significantly expanded the space for glycosyl compound synthesis. In this Review, we highlight the most recent progress in this area starting from 2021, and the reports included will be categorized based on different reaction types for better clarity.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
20
|
Xia Y, Wang Y, Zhang Z, Gulzar T, Lin Y, Wang J, Zhu D, Yu B. Synthesis of 2-Indolyl C-Glycoside Neopetrosins A and C and Congeners via Ni-Catalyzed Photoreductive Cross-Coupling. Org Lett 2023; 25:6741-6745. [PMID: 37646796 DOI: 10.1021/acs.orglett.3c02601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The synthesis of neopetrosins A and C, two 2-indolyl C-α-d-mannopyranosides, and their congeners has been realized via a direct Ni/photoredox-catalyzed reductive coupling of 3-methoxycarbonyl-2-iodo-1H-indoles with pyranosyl bromides.
Collapse
Affiliation(s)
- Yan Xia
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingjie Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhaolun Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tayyab Gulzar
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuqi Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dapeng Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Yu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Jiao RQ, Ding YN, Li M, Shi WY, Chen X, Zhang Z, Wei WX, Li XS, Gong XP, Luan YY, Liu XY, Liang YM. Visible-Light-Mediated Synthesis of C-Alkyl Glycosides via Glycosyl Radical Addition and Aryl Migration. Org Lett 2023; 25:6099-6104. [PMID: 37578285 DOI: 10.1021/acs.orglett.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A visible-light-induced glycoarylation of activated olefins has been accomplished. Glycosyl radicals are generated via radical transfer strategies between (TMS)3SiOH and glycosyl bromides. Subsequent radical translocation and rapid 1,4-aryl migration form β-sugar amide derivatives, and eight types of sugars are compatible with this reaction. Further, the cascade reaction produced a quaternary carbon center with good functional group adaptability and high regioselectivity in mild conditions.
Collapse
Affiliation(s)
- Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Yong Luan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
22
|
Chen A, Zhao S, Han Y, Zhou Z, Yang B, Xie LG, Walczak MA, Zhu F. Stereoselective alkyl C-glycosylation of glycosyl esters via anomeric C-O bond homolysis: efficient access to C-glycosyl amino acids and C-glycosyl peptides. Chem Sci 2023; 14:7569-7580. [PMID: 37449071 PMCID: PMC10337754 DOI: 10.1039/d3sc01995k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
C-Glycosyl peptides possess excellent metabolic stability and therapeutic properties and thus play critical roles in biological studies as well as drug discoveries. However, the limited accessibility of C-glycosyl amino acids has significantly hindered the broader research of their structural features and mode of action. Herein, for the first time we disclose a novel visible-light-driven radical conjugate addition of 1,4-dihydropyridine (DHP)-derived glycosyl esters with dehydroalanine derivatives, generating C-glycosyl amino acids and C-glycosyl peptides in good yields with excellent stereoselectivities. Redox-active glycosyl esters, as readily accessible and bench-stable radical precursors, could be easily converted to glycosyl radicals via anomeric C(sp3)-O bond homolysis under mild conditions. Importantly, the generality and practicality of this transformation were fully demonstrated in >40 examples including 2-dexosugars, oligosaccharides, oligopeptides, and complex drug molecules. Given its mild reaction conditions, robust sugar scope, and high anomeric control and diastereoselectivity, the method presented herein could find widespread utility in the preparation of C(sp3)-linked sugar-based peptidomimetics.
Collapse
Affiliation(s)
- Anrong Chen
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shiyin Zhao
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
- School of Chemistry and Materials Science, Nanjing Normal University Nanjing Jiangsu 210023 P. R. China
| | - Yang Han
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhenghong Zhou
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Bo Yang
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lan-Gui Xie
- School of Chemistry and Materials Science, Nanjing Normal University Nanjing Jiangsu 210023 P. R. China
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado Boulder CO 80309 USA
| | - Feng Zhu
- Frontiers Science Center for Transformative Molecules (FSCTM), Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Department of Chemical Biology, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
23
|
Bloch JS, John A, Mao R, Mukherjee S, Boilevin J, Irobalieva RN, Darbre T, Scott NE, Reymond JL, Kossiakoff AA, Goddard-Borger ED, Locher KP. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase. Nat Chem Biol 2023; 19:575-584. [PMID: 36604564 PMCID: PMC10154233 DOI: 10.1038/s41589-022-01219-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jérémy Boilevin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | - Tamis Darbre
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
24
|
Gäde G, Marco HG. The unique C-mannosylated hypertrehalosemic hormone of Carausius morosus: Identity, release, and biological activity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023:e22016. [PMID: 37073494 DOI: 10.1002/arch.22016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Previous studies had shown that the corpora cardiaca (CC) of the Indian stick insect, Carausius morosus, synthesizes two hypertrehalosemic hormones (HrTHs)-decapeptides which differ in the way that the chromatographically less-hydrophobic form, code-named Carmo-HrTH-I, is modified by an unique C-mannosylated tryptophan residue at position 8. The availability of milligram amounts of this modified peptide in synthetic form now makes it possible to study physico-chemical and physiological properties. This study revealed that the synthetic peptide co-elutes with the natural peptide from the CC chromatographically, is heat stable for at least 30 min at 100°C, and causes hyperlipemia in acceptor locusts (a heterologous bioassay) and hypertrehalosemia in ligated stick insects (conspecific bioassay). In vitro incubation of Carmo-HrTH-I together with stick insect hemolymph (a natural source of peptidases) demonstrated clearly via chromatographic separation that the C-mannosylated Trp bond is stable and is not broken down to Carmo-HrTH-II (the more-hydrophobic decapeptide with an unmodified Trp residue). This notwithstanding, breakdown of Carmo-HrTH-I did take place, and the half-life of the compound was calculated as about 5 min. Finally, the natural peptide is releasable when CC are treated in vitro with a depolarizing saline (high potassium concentration) suggesting its role as true HrTHs in the stick insect. In conclusion, the results indicate that Carmo-HrTH-I which is synthesized in the CC is released into the hemolymph, binds to a HrTH receptor in the fat body, activates the carbohydrate metabolism pathway and is quickly inactivated in the hemolymph by (an) as yet unknown peptidase(s).
Collapse
Affiliation(s)
- Gerd Gäde
- Department of Biological Sciences, University of Cape Town, Rondebosch, Republic of South Africa
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, Republic of South Africa
| |
Collapse
|
25
|
Twitty JC, Hong Y, Garcia B, Tsang S, Liao J, Schultz DM, Hanisak J, Zultanski SL, Dion A, Kalyani D, Watson MP. Diversifying Amino Acids and Peptides via Deaminative Reductive Cross-Couplings Leveraging High-Throughput Experimentation. J Am Chem Soc 2023; 145:5684-5695. [PMID: 36853652 PMCID: PMC10117303 DOI: 10.1021/jacs.2c11451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid, and diaminopropanoic acid to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include ability to transverse scales, tolerance of pharma-relevant (hetero)aryls and biorthogonal functional groups, and the applicability beyond monomeric amino acids to short and macrocyclic peptide substrates. The success of this work relied on high-throughput experimentation to identify complementary reaction conditions that proved critical for achieving the coupling of a broad scope of aryl bromides with a range of amino acid and peptide substrates including macrocyclic peptides.
Collapse
Affiliation(s)
- J. Cameron Twitty
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Yun Hong
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bria Garcia
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Tsang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennie Liao
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle M. Schultz
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Jennifer Hanisak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Amelie Dion
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Wang M, Wang C, Xie X, Pan D, Liu L, Chen Q, Li Z, Zhang Q, Xu Z. Non-classical C-saccharide linkage of dehydroalanine: synthesis of C-glycoamino acids and C-glycopeptides. Chem Commun (Camb) 2023; 59:3305-3308. [PMID: 36847114 DOI: 10.1039/d2cc06653j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, a non-classical C-saccharide linkage is reported via a C5 radical of pentose or C6 radical of hexose addition to Michael acceptors. C(sp3)-S cleaved glycosyl thianthrenium salts are developed as the glycosyl radical agents. The reaction provides an efficient toolkit to synthesize β-glycosyl substituted unnatural amino acids as well as for the late-stage C-saccharide modification of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuling Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
John A, M Bader S, Madiedo Soler N, Wiradiputri K, Tichkule S, Smyth ST, Ralph SA, Jex AR, Scott NE, Tonkin CJ, Goddard-Borger ED. Conservation, abundance, glycosylation profile, and localization of the TSP protein family in Cryptosporidium parvum. J Biol Chem 2023; 299:103006. [PMID: 36775128 PMCID: PMC10034466 DOI: 10.1016/j.jbc.2023.103006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cryptosporidium parvum is a zoonotic apicomplexan parasite and a common cause of diarrheal disease worldwide. The development of vaccines to prevent or limit infection remains an important goal for tackling cryptosporidiosis. At present, the only approved vaccine against any apicomplexan parasite targets a conserved adhesin possessing a thrombospondin repeat domain. C. parvum possesses 12 orthologous thrombospondin repeat domain-containing proteins known as CpTSP1-12, though little is known about these potentially important antigens. Here, we explore the architecture and conservation of the CpTSP protein family, as well as their abundance at the protein level within the sporozoite stage of the life cycle. We examine the glycosylation states of these proteins using a combination of glycopeptide enrichment techniques to demonstrate that these proteins are modified with C-, O-, and N-linked glycans. Using expansion microscopy, and an antibody against the C-linked mannose that is unique to the CpTSP protein family within C. parvum, we show that these proteins are found both on the cell surface and in structures that resemble the secretory pathway of C. parvum sporozoites. Finally, we generated a polyclonal antibody against CpTSP1 to show that it is found at the cell surface and within micronemes, in a pattern reminiscent of other apicomplexan motility-associated adhesins, and is present both in sporozoites and meronts. This work sheds new light on an understudied family of C. parvum proteins that are likely to be important to both parasite biology and the development of vaccines against cryptosporidiosis.
Collapse
Affiliation(s)
- Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie M Bader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Niccolay Madiedo Soler
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Kharizta Wiradiputri
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Swapnil Tichkule
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Sean T Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R Jex
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
28
|
Wang C, Qi R, Xu Z. Glycosyl Radical-Based Synthesis of C-Glycoamino Acids and C-Glycopeptides. Chemistry 2022; 29:e202203689. [PMID: 36586132 DOI: 10.1002/chem.202203689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
Radical-based reactions usually exhibit excellent functional-group compatibilities due to their mild initiation conditions. Glycosyl radical involved C-glycosylation modifications are important strategies to achieve highly regio- and chemoselective constructions of C-glycosidic bonds or C-glycoside linkages of peptides and proteins. In this Concept, we cover recent developments in glycosyl radical-based synthesis of unnatural amino acids and late-stage modification of peptides and proteins, and provide a preliminary outlook on the possible development of this direction in the future.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, P.R. China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, P.R. China
| |
Collapse
|
29
|
Afzal U, Bilal M, Zubair M, Rasool N, Adnan Ali Shah S, Amiruddin Zakaria Z. Stereospecific/stereoselective Nickel catalyzed reductive cross-coupling: An efficient tool for the synthesis of biological active targeted molecules. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Ghosh T, Nokami T. Recent development of stereoselective C-glycosylation via generation of glycosyl radical. Carbohydr Res 2022; 522:108677. [DOI: 10.1016/j.carres.2022.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
|
31
|
Chauhan NS, Dubey A, Mandal PK. Palladium-Catalyzed Direct C-H Glycosylation of Free ( N-H) Indole and Tryptophan by Norbornene-Mediated Regioselective C-H Activation. Org Lett 2022; 24:7067-7071. [PMID: 36165771 DOI: 10.1021/acs.orglett.2c02537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the palladium-catalyzed direct C-H glycosylation of free N-H indole or tryptophan for the stereoselective synthesis of 2-glycosylindoles and tryptophan-C-glycosides. This reaction relies on the ortho-directing transient mediator norbornene, which underwent regioselective C-H functionalization at the indole or tryptophan ring, providing high chemoselectivity. This method offers a more straightforward, step-economical, and cost-effective route to construct C-glycosides. The gram-scale amenable building blocks can be further functionalized at C3 and N-H, displaying the robustness of present method.
Collapse
Affiliation(s)
- Neha Singh Chauhan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Atul Dubey
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
32
|
Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission. Nat Commun 2022; 13:4400. [PMID: 35906227 PMCID: PMC9338275 DOI: 10.1038/s41467-022-32076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022] Open
Abstract
Tryptophan C-mannosylation stabilizes proteins bearing a thrombospondin repeat (TSR) domain in metazoans. Here we show that Plasmodium falciparum expresses a DPY19 tryptophan C-mannosyltransferase in the endoplasmic reticulum and that DPY19-deficiency abolishes C-glycosylation, destabilizes members of the TRAP adhesin family and inhibits transmission to mosquitoes. Imaging P. falciparum gametogenesis in its entirety in four dimensions using lattice light-sheet microscopy reveals defects in ΔDPY19 gametocyte egress and exflagellation. While egress is diminished, ΔDPY19 microgametes still fertilize macrogametes, forming ookinetes, but these are abrogated for mosquito infection. The gametogenesis defects correspond with destabilization of MTRAP, which we show is C-mannosylated in P. falciparum, and the ookinete defect is concordant with defective CTRP secretion on the ΔDPY19 background. Genetic complementation of DPY19 restores ookinete infectivity, sporozoite production and C-mannosylation activity. Therefore, tryptophan C-mannosylation by DPY19 ensures TSR protein quality control at two lifecycle stages for successful transmission of the human malaria parasite. Here, Lopaticki et al. show that Plasmodium falciparum expresses a Dpy19 C-mannosyltransferase in the endoplasmic reticulum that glycosylates TSR domains. Functional characterization shows that PfDpy19 plays a critical role in transmission through mosquitoes as PfDpy19-deficiency abolishes C-glycosylation and destabilizes proteins relevant for gametogenesis and oocyst formation.
Collapse
|
33
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible-Light-Promoted Stereoselective C(sp 3 )-H Glycosylation for the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew Chem Int Ed Engl 2022; 61:e202200822. [PMID: 35315966 DOI: 10.1002/anie.202200822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/09/2022]
Abstract
The glycosylative modification of peptides could improve the pharmacological properties of peptide drugs and deliver them efficiently to the target sites. Compared with O-/N-glycosides, C-glycosides exhibit more metabolic stability. We here disclose the first example of visible-light-promoted and Cu-catalyzed stereoselective C-glycosylation. The mild reaction conditions are compatible with various carbohydrate substrates, as demonstrated with a series of monosaccharides and a disaccharide, and are amenable to the synthesis of a wide variety of C-glycoamino acids and C-glycopeptidomimetics with good yields and excellent stereoselectivities. The dual-functional photocatalyst formed in situ via coordination of the glycine derivative and the chiral phosphine Cu complex could not only catalyze the photoredox process but also control the stereoselectivity of the glycosylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China.,Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
34
|
Qi R, Wang C, Ma Z, Wang H, Chen Q, Liu L, Pan D, Ren X, Wang R, Xu Z. Visible‐Light‐Promoted Stereoselective C(sp
3
)−H Glycosylation for the Synthesis of
C
‐Glycoamino Acids and
C
‐Glycopeptides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rupeng Qi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Chao Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Qiao Chen
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Liangyu Liu
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Da Pan
- School of Pharmacy Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Xiaoyu Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences Lanzhou University 199 West Donggang Road Lanzhou 730000 China
- Research Unit of Peptide Science 2019RU066 Chinese Academy of Medical Sciences 199 West Donggang Road Lanzhou 730000 China
| |
Collapse
|
35
|
Ding YN, Li N, Huang YC, Shi WY, Zheng N, Wang CT, An Y, Liu XY, Liang YM. One-Pot Stereoselective Synthesis of 2,3-Diglycosylindoles and Tryptophan-C-glycosides via Palladium-Catalyzed C-H Glycosylation of Indole and Tryptophan. Org Lett 2022; 24:2381-2386. [PMID: 35319894 DOI: 10.1021/acs.orglett.2c00602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We described a novel palladium-catalyzed C-H glycosylation of indole or tryptophan for a one-pot stereoselective synthesis of 2,3-diglycosylindoles and tryptophan-C-glycosides. In this strategy, the use of air and base-free and ligand-free conditions provided a highly efficient route to construct C-glycosides. The method can be applied to a wide range of cost-effective and convenient glycosyl chloride donors. Mechanistic studies indicated that the indole 2,3-diglycosylation sequence was C3 and then C2.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ning Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
36
|
Azeem Z, Mandal PK. Recent advances in palladium-catalyzed C(sp 3)/C(sp 2)-H bond functionalizations: access to C-branched glycosides. Org Biomol Chem 2022; 20:264-281. [PMID: 34904995 DOI: 10.1039/d1ob02142g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the recent decades, tremendous interest has developed in the transformation of complex substrates by C-H activation and functionalization. In particular, palladium-catalyzed directing and non-directing group-assisted C-H functionalization has emerged as a powerful avenue to access C-branched glycosides. Due to the extreme complexity, delicate functionalities, and high stability of C-H bonds, site-selective functionalization of carbohydrate under mild conditions is highly desirable. The purpose of this review is to cover most of the recent advances in palladium-catalyzed C(sp3) and C(sp2)-H bond functionalizations for the synthesis of C-branched glycosides along with future directions.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| | - Pintu Kumar Mandal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extn, Sitapur Road, P.O. Box 173, Lucknow 226031, India. .,Academy of Scientific and Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
37
|
Li CY, Ma Y, Lei ZW, Hu XG. Glycosyl-Radical-Based Synthesis of C-Alkyl Glycosides via Photomediated Defluorinative gem-Difluoroallylation. Org Lett 2021; 23:8899-8904. [PMID: 34726057 DOI: 10.1021/acs.orglett.1c03390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed a stereoselective, glycosyl radical-based method for the synthesis of C-alkyl glycosides via a photomediated defluorinative gem-difluoroallylation reaction. We demonstrate for the first time that glycosyl radicals, generated from glycosyl bromides, can readily participate in a photomediated radical polar crossover process, affording a diverse array of gem-difluoroalkene containing C-glycosides. Notable features of this method include scalability, mild conditions, broad substrate scope, and suitability for the late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Cai-Yi Li
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Yue Ma
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Zhi-Wei Lei
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xiang-Guo Hu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
38
|
Ikezaki M, Nishitsuji K, Matsumura K, Manabe S, Shibukawa Y, Wada Y, Ito Y, Ihara Y. C-Mannosylated tryptophan-containing WSPW peptide binds to actinin-4 and alters E-cadherin subcellular localization in lung epithelial-like A549 cells. Biochimie 2021; 192:136-146. [PMID: 34673139 DOI: 10.1016/j.biochi.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022]
Abstract
The Trp-x-x-Trp (W-x-x-W) peptide motif, a consensus site for C-mannosylation, is the functional motif in cytokine type I receptors or thrombospondin type I repeat (TSR) superfamily proteins. W-x-x-W motifs are important for physiological and pathological functions of their parental proteins, but effects of C-mannosylation on protein functions remain to be elucidated. By using chemically synthesized WSPW peptides and C-mannosylated WSPW peptides (C-Man-WSPW), we herein investigated whether C-mannosylation of WSPW peptides confer additional biological functions to WSPW peptides. C-Man-WSPW peptide, but not non-mannosylated WSPW, reduced E-cadherin levels in A549 cells. Via peptide mass fingerprinting analysis, we identified actinin-4 as a C-Man-WSPW-binding protein in A549 cells. Actinin-4 partly co-localized with E-cadherin or β-catenin, despite no direct interaction between actinin-4 and E-cadherin. C-Man-WSPW reduced co-localization of E-cadherin and actinin-4; non-mannosylated WSPW had no effect on localization. In actinin-4-knockdown cells, E-cadherin was upregulated and demonstrated a punctate staining pattern in the cytoplasm, which suggests that actinin-4 regulated cell-surface E-cadherin localization. Thus, C-mannosylation of WSPW peptides is required for interaction with actinin-4 that subsequently alters expression and subcellular localization of E-cadherin and morphology of epithelial-like cells. Our results therefore suggest a regulatory role of C-mannosylation of the W-x-x-W motif in interactions between the motif and its binding partner and will thereby enhance understanding of protein C-mannosylation.
Collapse
Affiliation(s)
- Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Kazuchika Nishitsuji
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan.
| | - Ko Matsumura
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Shino Manabe
- Laboratory of Functional Molecule Chemistry, Pharmaceutical Department and Institute of Medicinal Chemistry, Hoshi University, Tokyo, 142-8501, Japan; Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Tohoku University, Miyagi, 980-8578, Japan
| | - Yukinao Shibukawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, 594-1101, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, 594-1101, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan; Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, 641-8509, Japan.
| |
Collapse
|
39
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|