1
|
Millet CRP, Willcox DR, Nichol GS, Anstöter CS, Ingleson MJ. A Base-Free Two-Coordinate Oxoborane. Angew Chem Int Ed Engl 2024:e202419094. [PMID: 39556463 DOI: 10.1002/anie.202419094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Oxoboranes (R-BO) are transient species that rapidly trimerise to form boroxines. To date, the only method used to stabilise oxoboranes is to add a Lewis base, but this forms a three-coordinate at boron oxoborane that has a different bonding/reactivity profile. Herein we report a base-free, two-coordinate oxoborane that is isolated as a Lewis adduct with AlCl3. This species, Mes*BO-AlCl3 (Mes*=2,4,6-tBu-C6H2), has a ν11ΒΟ stretching frequency of 1843 cm-1, indicating a strong BO bond. Computational analysis indicates this is due to a highly polarised BO bonding interaction combined with modest BO multiple bond character. While the polarisation of the BO bond on AlCl3 coordination enhances the Lewis acidity at boron it also reduces the basicity at oxygen and the latter is key to accessing a base-free oxoborane. Finally, this oxoborane reacts with PhN3 in a unique way to form an unprecedented boron heterocycle.
Collapse
Affiliation(s)
- Clement R P Millet
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
2
|
Walther L, Radacki K, Dewhurst RD, Bertermann R, Finze M, Braunschweig H. All-Inorganic sp-Chain Ligands: Isoelectronic B/N Analogues of E. O. Fischer's Alkynylcarbynes. Angew Chem Int Ed Engl 2024; 63:e202404930. [PMID: 38746995 DOI: 10.1002/anie.202404930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 07/16/2024]
Abstract
Borylation of a tungsten-bound N2 ligand and halide abstraction provides access to a cationic complex with an unprecedented linear NNBR ligand. This complex undergoes [3+2] cycloaddition with azides, and an unexpected chain-extension reaction with an iminoborane, leading to a complex with a five-atom B/N chain. These two [NNBR]-containing complexes, inorganic analogues of E. O. Fischer's alkynylcarbynes, are very rare examples of molecules containing all-inorganic chains of sp-hybridized atoms.
Collapse
Affiliation(s)
- Luis Walther
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rüdiger Bertermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
3
|
Zhang C, Cummins CC, Gilliard RJ. Synthesis and reactivity of an N-heterocyclic carbene-stabilized diazoborane. Science 2024; 385:327-331. [PMID: 39024440 DOI: 10.1126/science.adp5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Diazo compounds and organic azides are widely used as reagents for accessing valuable molecules in multiple areas of fundamental and applied chemistry. Their capacity to undergo versatile chemical transformations arises from the reactive nature of an incipient dinitrogen molecule at the terminal position. In this work, we report the synthesis and characterization of an N-heterocyclic carbene (NHC)-stabilized diazoborane-a boron-centered analog of organic azides and diazoalkanes. The diazoborane displays a strong tendency to release dinitrogen, thus serving as a borylene source, in analogy to organic azides and diazoalkanes serving as nitrene and carbene sources, respectively. Also reminiscent of diazoalkane and organic azide reactivity, the diazoborane serves as a 1,3-dipole that undergoes uncatalyzed [3+2] cycloaddition with an unactivated terminal alkyne, affording a five-membered heterocycle after a two-step rearrangement.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Mao X, Qiu S, Guo R, Dai Y, Zhang J, Kong L, Xie Z. Cyclic (Alkyl)(Amino)Carbene-Iminoboryl Compounds with Three Formal Oxidation States. J Am Chem Soc 2024; 146:10917-10924. [PMID: 38587904 DOI: 10.1021/jacs.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BN/CC isosterism is an effective strategy to build hybrid functional molecules with unique properties. In contrast to the alkynyl iminium salts derived from cyclic (alkyl)(amino)carbenes (CAACs) that feature only one reversible reduction wave, the isoelectronic cationic CAAC-iminoboryl adducts could be singly and doubly reduced smoothly. Both the resultant neutral radical and anionic azaborataallenes bear NBC-mixed allenic structures. The former radical has a high spin-density of 0.55e at CCAAC carbon, yet exhibits formal boron-centered radical reactivity. The latter azaborataallenes feature the nucleophilic CCAAC center and polar N(δ-)═B(δ+)═C(δ-) unit, and readily undergo nucleophilic substitution, isocyanide insertion, dipolar addition and cycloaddition reactions etc. The N-substituents have been shown to have a significant influence on the solid-state structure, thermal stability, and reactivity of azaborataallenes. This work showcases the allenic BN-unsaturated species as versatile building blocks in organic synthesis.
Collapse
Affiliation(s)
- Xiaofeng Mao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Shuang Qiu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Wang H. Synthesis, structure and reactivity of iminoborane radicals. Chem Commun (Camb) 2024; 60:3806-3809. [PMID: 38487988 DOI: 10.1039/d4cc00720d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The synthesis, characterization and reactivities of iminoborane radicals were reported. Both X-ray analysis and density functional theory calculations revealed that the unpaired electron delocalizes over the N(1)-C(1)-B(1)-N(2) moiety. Radical trap reactions showed that this radical species acts as a boron radical. These reactions also serve as methods for the synthesis of Lewis base-stabilized oxyl-terminated iminoboranes.
Collapse
Affiliation(s)
- Hanqiang Wang
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan 523000, China.
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Gupta D, Einholz R, Bettinger HF. Strain induced reactivity of cyclic iminoboranes: the (2 + 2) cycloaddition of a 1 H-1,3,2-diazaborepine with ethene. Chem Sci 2024; 15:666-674. [PMID: 38179531 PMCID: PMC10763563 DOI: 10.1039/d3sc04901a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024] Open
Abstract
Iminoboranes have gathered immense attention due to their reactivity and potential applications as isoelectronic and isosteric alkynes. While cyclic alkynes are well investigated and useful reagents, cyclic iminoboranes are underexplored and their existence was inferred only via trapping experiments. We report the first direct spectroscopic evidence of a cyclic seven-membered iminoborane, 1-(tert-butyldimethylsilyl)-1H-1,3,2-diazaborepine 2, under cryogenic matrix isolation conditions. The amino-iminoborane 2 was photochemically generated in solid argon at 4 K from 2-azido-1-(tert-butyldimethylsilyl)-1,2-dihydro-1,2-azaborinine (3) and was characterized using FT-IR, UV-vis spectroscopy, and computational chemistry. The characteristic BN stretching vibration (1751 cm-1) is shifted by about 240 cm-1 compared to linear amino-iminoboranes indicating a significant weakening of the bond. The Lewis acidity value determined computationally (LAB = 9.1 ± 2.6) is similar to that of boron trichloride, and twelve orders of magnitude lower than that of 1,2-azaborinine (BN-aryne, LAB = 21.5 ± 2.6), a six-membered cyclic iminoborane. In contrast to the latter, the reduced ring strain of 2 precludes nitrogen fixation, but it unexpectedly allows facile (2 + 2) cycloaddition reaction with C2H4 under matrix isolation conditions at 30 K.
Collapse
Affiliation(s)
- Divanshu Gupta
- Institut für Organische Chemie, Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Ralf Einholz
- Institut für Organische Chemie, Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Holger F Bettinger
- Institut für Organische Chemie, Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
7
|
Li J, Mei Y, Wang XF, Liu LL. Alkylation and Arylation at Boron in NHC-Stabilized Phosphaborenes. Chem Asian J 2024; 19:e202300794. [PMID: 37937445 DOI: 10.1002/asia.202300794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Phosphaborenes, featuring a phosphorus-boron multiple bond, remain a relatively untapped area in chemical research due to the limited synthetic methods. Introducing leaving groups as substituents to the phosphorus or boron can pave the way for enhanced functionalization and modification. In this study, we present the synthesis of phosphaborenes featuring an N-heterocyclic boryl group on phosphorus and halogen substituent on boron, with stabilization provided by an N-heterocyclic carbene. Straightforward alkylation/arylation of these phosphaborenes is achieved by substituting the halogen with benzyl and aryl groups at the boron terminus. Our approach offers an efficient route to produce a diverse array of phosphaborene structures.
Collapse
Affiliation(s)
- Jiancheng Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanbo Mei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan, 523000, China
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Zhu L, Kinjo R. Reactions of main group compounds with azides forming organic nitrogen-containing species. Chem Soc Rev 2023; 52:5563-5606. [PMID: 37519098 DOI: 10.1039/d3cs00290j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Since the seminal discovery of phenyl azide by Grieß in 1864, a variety of organic azides (R-N3) have been developed and extensively studied. The amenability of azides to a number of reactions has expanded their utility as building blocks not only in organic synthesis but also in bioorthogonal chemistry and materials science. Over the decades, it has been demonstrated that the reactions of main group compounds with azides lead to diverse N-containing main group molecules. In view of the pronounced progress in this area, this review summarizes the reactions of main group compounds with azides, emphatically introducing their reaction patterns and mechanisms. The reactions of forming inorganic nitrogen species are not included in this review.
Collapse
Affiliation(s)
- Lizhao Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore 637371, Singapore.
| |
Collapse
|
9
|
Omaña AA, Watt R, Zhou Y, Ferguson MJ, Rivard E. Frustrated Lewis Pair Chelation and Reactivity of Complexed Parent Iminoborane and Aminoborane. Inorg Chem 2022; 61:16430-16440. [PMID: 36197137 DOI: 10.1021/acs.inorgchem.2c02535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An intramolecular phosphine-borane frustrated Lewis pair (FLP) chelate, iPr2P(C6H4)BCy2 or PB (Cy = cyclohexyl), was used to coordinate aminoborane (H2BNH2) and iminoborane (HBNH) units via donor-acceptor stabilization. Attempts to induce dehydrogenation from these B-N adducts with known metal catalysts (or pre-catalysts) have been unsuccessful thus far, and related observations were noted with an H2BNH2 complex supported by a modified FLP chelate bearing a geometrically constrained bicyclic 9-borabicyclo(3.3.1)nonane (BBN) unit. Treatment of the iminoborane adduct [PB{HBNH}] with a chlorinating agent led to ligand activation via B-C bond cleavage instead of the expected H/Cl exchange at boron to give [PB{ClBNH}]. Nucleophilic attack at the boron center in [PB{HBNH}] was observed upon addition of BnK (Bn = benzyl), yielding the amidoborate complex [PB{H(Bn)BNH}{K(THF)2}].
Collapse
Affiliation(s)
- Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Ryan Watt
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Zhu L, Kinjo R. An Inorganic Huisgen Reaction between a 1,2‐Diboraallene and an Azide to Access a Diboratriazole. Angew Chem Int Ed Engl 2022; 61:e202207631. [DOI: 10.1002/anie.202207631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Lizhao Zhu
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Nanyang Link 21 Singapore 637371 Singapore
| |
Collapse
|
11
|
Zhu L, Kinjo R. An Inorganic Huisgen Reaction between a 1,2‐Diboraallene and an Azide to Access a Diboratriazole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lizhao Zhu
- Nanyang Technological University Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| | - Rei Kinjo
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| |
Collapse
|
12
|
Koner A, Morgenstern B, Andrada DM. Metathesis Reactions of a NHC-Stabilized Phosphaborene. Angew Chem Int Ed Engl 2022; 61:e202203345. [PMID: 35583052 PMCID: PMC9401048 DOI: 10.1002/anie.202203345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/25/2022]
Abstract
The BP unsaturated unit is a very attractive functional group as it provides novel reactivity and unique physical properties. Nonetheless, applications remain limited so far due to the bulky nature of B/P-protecting groups, required to prevent oligomerization. Herein, we report the synthesis and isolation of a N-heterocyclic carbene (NHC)-stabilized phosphaborene, bearing a trimethylsilyl (TMS) functionality at the P-terminal, as a room-temperature-stable crystalline solid accessible via facile NHC-induced trimethylsilyl chloride (TMSCl) elimination from its phosphinoborane precursor. This phosphaborene compound, bearing a genuine B=P bond, exhibits a remarkable ability for undergoing P-centre metathesis reactions, which allows the isolation of a series of unprecedented phosphaborenes. X-ray crystallographic analysis, UV/Vis spectroscopy, and DFT calculations provide insights into the B=P bonding situation.
Collapse
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| |
Collapse
|
13
|
Bao M, Dai Y, Liu C, Su Y. Acid/Base-Free Acyclic Anionic Oxoborane and Iminoborane Bearing Diboryl Groups. Inorg Chem 2022; 61:11137-11142. [PMID: 35815522 DOI: 10.1021/acs.inorgchem.2c00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anionic oxoboranes and neutral iminoboranes, which are isoelectronic to ketones and alkynes, respectively, have attracted much attention because of their unique structures and various reactivity. However, acid/base-free oxoboranes and iminoboranes are still limited, and readily accessible examples with diverse electronic and steric characteristics are highly desirable. Herein, we report the first syntheses of the acyclic anionic oxoborane 2 and iminoborane 4 bearing two boryl ligands, both of which are acid/base-free. Spectroscopic analysis, X-ray crystallography, and theoretical calculations reveal that 2 and 4 possess a polarized terminal B═O double bond and central B≡N triple bond, respectively.
Collapse
Affiliation(s)
- Manling Bao
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yuyang Dai
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Chunmeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Li J, Mei Y, Liu LL. An Isolable Phosphaborene Stabilized by an Intramolecular Lewis Base. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiancheng Li
- Southern University of Science and Technology Chemistry CHINA
| | - Yanbo Mei
- Southern University of Science and Technology Chemistry CHINA
| | - Liu Leo Liu
- Southern University of Science and Technology Chemistry 1088 Xueyuandadao 518055 Shenzhen CHINA
| |
Collapse
|
15
|
Koner A, Morgenstern B, Andrada DM. Metathese Reaktionen eines NHC‐stabilisierten Phosphaborens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Bernd Morgenstern
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Diego M. Andrada
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| |
Collapse
|
16
|
Wang J, Jia P, Sun W, Wei Y, Lin Z, Ye Q. Synthesis of Iminoboryl o-Carboranes by Lewis Base Promoted Aminoborirane-to-Iminoborane Isomerization. Inorg Chem 2022; 61:8879-8886. [PMID: 35649271 DOI: 10.1021/acs.inorgchem.2c00944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The iminoboryl o-carboranes (Me3Si)-Cb-B≡N-R (Cb = B10C2H10, 3a, R = SiMe3; 3b, R = tBu) have been successfully synthesized by tetrahydrofuran (THF)-promoted isomerization from the corresponding o-carborane-fused aminoboriranes Cb{BN(SiMe3)R} (2). The synthetic protocol of the previously reported borirane 2a was optimized. The borirane Cb{BN(SiMe3)tBu} (2b) and the iminoboranes 3a and 3b were fully characterized by NMR, IR, and single-crystal X-ray diffraction analyses. The borirane 2a isomerizes more readily than 2b. The kinetics study revealed a bimolecular mechanism between borirane and THF, which is in good agreement with the computationally proposed reaction pathway. The title compounds are thermally robust, but compound 3a dimerized in the presence of a catalytic amount of tBuNC to give the cyclodimer 4. Quick equilibrium between 4 and the isonitrile adduct 4·tBuNC was observed in solution.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Penghui Jia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Weicheng Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yuxiang Wei
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
17
|
Frenette BL, Omaña AA, Ferguson MJ, Zhou Y, Rivard E. Access to adducts of parent iminoborane isomers, HBNH and NBH 2, using frustrated Lewis pair chelation. Chem Commun (Camb) 2021; 57:10895-10898. [PMID: 34580682 DOI: 10.1039/d1cc04923b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adducts of the parent iminoborane isomers, HBNH and NBH2, have been prepared, each stabilized by the frustrated Lewis pair (FLP) chelate iPr2P(C6H4)BCy2 (PB). PB{HBNH} was accessed via dehydrohalogenation, while the corresponding isomer PB{NBH2} was obtained from the borylation of the formal nitrene-FLP complex PB{NH}.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|