1
|
Zhao H, Liu X, Zeng C, Liu W, Tan L. Thermochemical CO 2 Reduction to Methanol over Metal-Based Single-Atom Catalysts (SACs): Outlook and Challenges for Developments. J Am Chem Soc 2024; 146:23649-23662. [PMID: 39162361 DOI: 10.1021/jacs.4c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The conversion of thermodynamically inert CO2 into methanol holds immense promise for addressing the pressing environmental and energy challenges of our time. This article offers a succinct overview of the development of single-atom catalysts (SACs) for thermochemical hydrogenation of CO2 to methanol, encompassing research advancements, advantages, potential hurdles, and other essential aspects related to these catalysts. Our aim of this work is to provide a deeper understanding of the intricacies of the catalytic structures of the single-atom sites and their unique structure-activity relationships in catalyzing the conversion of CO2 to methanol. We also present insights into the optimal design of SACs, drawing from our own research and those of fellow scientists. This research thrust is poised to contribute significantly to the development of next-generation SACs, which are crucial in advancing the sustainable production of methanol from CO2.
Collapse
Affiliation(s)
- Huibo Zhao
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Xiaochen Liu
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chunyang Zeng
- Petroleum and Chemical Industry Federation, Beijing 100723, P. R. China
| | - Wen Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Li Tan
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
2
|
Ding Z, Chen S, Yang T, Sheng Z, Zhang X, Pei C, Fu D, Zhao ZJ, Gong J. Atomically dispersed MoNi alloy catalyst for partial oxidation of methane. Nat Commun 2024; 15:4636. [PMID: 38821951 PMCID: PMC11143339 DOI: 10.1038/s41467-024-49038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The catalytic partial oxidation of methane (POM) presents a promising technology for synthesizing syngas. However, it faces severe over-oxidation over catalyst surface. Attempts to modify metal surfaces by incorporating a secondary metal towards C-H bond activation of CH4 with moderate O* adsorption have remained the subject of intense research yet challenging. Herein, we report that high catalytic performance for POM can be achieved by the regulation of O* occupation in the atomically dispersed (AD) MoNi alloy, with over 95% CH4 conversion and 97% syngas selectivity at 800 °C. The combination of ex-situ/in-situ characterizations, kinetic analysis and DFT (density functional theory) calculations reveal that Mo-Ni dual sites in AD MoNi alloy afford the declined O2 poisoning on Ni sites with rarely weaken CH4 activation for partial oxidation pathway following the combustion reforming reaction (CRR) mechanism. These results underscore the effectiveness of CH4 turnovers by the design of atomically dispersed alloys with tunable O* adsorption.
Collapse
Affiliation(s)
- Zheyuan Ding
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Tingting Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Zunrong Sheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Xianhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), Tianjin, 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Jiang T, Li Y, Tang Y, Zhang S, Le D, Rahman TS, Tao F. Breaking Continuously Packed Bimetallic Sites to Singly Dispersed on Nonmetallic Support for Efficient Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21757-21770. [PMID: 38632669 DOI: 10.1021/acsami.3c18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
We have synthesized Pt1Zn3/ZnO, also termed 0.01 wt %Pt/ZnO-O2-H2, as a catalyst containing singly dispersed single-atom bimetallic sites, also called a catalyst of singly dispersed bimetallic sites or a catalyst of isolated single-atom bimetallic sites. Its catalytic activity in partial oxidation of methanol to hydrogen at 290 °C is found to be 2-3 orders of magnitude higher than that of Pt-Zn bimetallic nanoparticles supported on ZnO, 5.0 wt %Pt/ZnO-N2-H2. Selectivity for H2 on Pt1Zn3/ZnO reaches 96%-100% at 290-330 °C, arising from the uniform coordination environment of single-atom Pt1 in singly dispersed single-atom bimetallic sites, Pt1Zn3 on 0.01 wt %Pt/ZnO-O2-H2, which is sharply different from various coordination environments of Pt atoms in coexisting PtxZny (x ≥ 0, y ≥ 0) sites on Pt-Zn bimetallic nanoparticles. Computational simulations attribute the extraordinary catalytic performance of Pt1Zn3/ZnO to the stronger adsorption of methanol and the lower activation barriers in O-H dissociation of CH3OH, C-H dissociations of CH2O to CO, and coupling of intermediate CO with atomic oxygen to form CO2 on Pt1Zn3/ZnO as compared to those on Pt-Zn bimetallic nanoparticles. It demonstrates that anchoring uniform, isolated single-atom bimetallic sites, also called singly dispersed bimetallic sites on a nonmetallic support can create new catalysts for certain types of reactions with much higher activity and selectivity in contrast to bimetallic nanoparticle catalysts with coexisting, various metallic sites MxAy (x ≥ 0, y ≥ 0). As these single-atom bimetallic sites are cationic and anchored on a nonmetallic support, the catalyst of singly dispersed single-atom bimetallic sites is different from a single-atom alloy nanoparticle catalyst. The critical role of the 0.01 wt %Pt in the extraordinary catalytic performance calls on fundamental studies of the profound role of a trace amount of a metal in heterogeneous catalysis.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Yuting Li
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Shiran Zhang
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| | - Duy Le
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Talat S Rahman
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Franklin Tao
- Department of Chemical and Petroleum Engineering, Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
4
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
5
|
Wang Y, Zhao W, Chen X, Ji Y, Zhu X, Chen X, Mei D, Shi H, Lercher JA. Methane-H 2S Reforming Catalyzed by Carbon and Metal Sulfide Stabilized Sulfur Dimers. J Am Chem Soc 2024; 146:8630-8640. [PMID: 38488522 PMCID: PMC10979457 DOI: 10.1021/jacs.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
H2S reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of COx-free H2 and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that H2S decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.
Collapse
Affiliation(s)
- Yong Wang
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wenru Zhao
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Xiaofeng Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Yinjie Ji
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Xilei Zhu
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Xiaomai Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Donghai Mei
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Hui Shi
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou 225002, P. R. China
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Darkwah WK, Appiagyei AB, Puplampu JB, Otabil Bonsu J. Mechanistic Understanding of the Use of Single-Atom and Nanocluster Catalysts for Syngas Production via Partial Oxidation of Methane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37315185 DOI: 10.1021/acs.langmuir.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-atom and nanocluster catalysts presenting potent catalytic activity and excellent stability are used in high-temperature applications such as in structural composites, electrical devices, and catalytic chemical reactions. Recently, more attention has been drawn to application of these materials in clean fuel processing based on oxidation in terms of recovery and purification. The most popular media for catalytic oxidation reactions include gas phases, pure organic liquid phases, and aqueous solutions. It has been proven from the literature that catalysts are frequently selected as the finest in regulating organic wastewater, solar energy utilization, and environmental treatment applications in most catalytic oxidation of methane vis-à-vis photons and in environmental treatment applications. Single-atom and nanocluster catalysts have been engineered and applied in catalytic oxidations considering metal-support interactions and mechanisms facilitating catalytic deactivation. In this review, the present improvements on engineering single-atom and nano-catalysts are discussed. In detail, we summarize structure modification strategies, catalytic mechanisms, methods of synthesis, and application of single-atom and nano-catalysts for partial oxidation of methane (POM). We also present the catalytic performance of various atoms in the POM reaction. Full knowledge of the use of remarkable POM vis-à-vis the excellent structure is revealed. Based on the review conducted on single-atom and nanoclustered catalysts, we conclude their viability for POM reactions; however, the catalyst design must be carefully considered not only for isolating the individual influences from the active metal and support but also for incorporating the interactions of these components.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Alfred Bekoe Appiagyei
- Department of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B Puplampu
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 233, Ghana
| | - Jacob Otabil Bonsu
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales Sydney, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
Li Y, Tang Y, Tao FF. C-N Coupling through Hydroaminoalkylation on a Single-Atom Rh Heterogeneous Catalyst. Angew Chem Int Ed Engl 2023; 62:e202214332. [PMID: 36749904 DOI: 10.1002/anie.202214332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
C-N coupling is significant for the synthesis of fine chemicals toward various applications. Hydroaminoalkylation of olefins is a tandem reaction of C-N coupling involving first the formation of an aldehyde through hydroformylation of an olefin and then the production of amine through reductive amination of the aldehyde. Here we report a stable, supported catalyst of singly dispersed Rh1 atoms anchored on TiO2 (P25) nanoparticles designated as Rh1 /P25. Its high activity for C-N coupling was demonstrated by six hydroaminoalkylations of olefins and amines with selectivity of higher than 90% for producing tertiary amines. The singly dispersed Rh1 O4 on P25 exhibit activity and selectivity for hydroaminoalkylation comparable or even higher than some reported molecular catalysts. In contrast to molecular catalysts, the Rh-based single-atom Rh heterogeneous catalysis (Rh1 /P25) can be readily separated from reactants and products, reused for multiple runs of hydroaminoalkylation, and recycled with a low cost.
Collapse
Affiliation(s)
- Yuting Li
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66049, USA
| |
Collapse
|
8
|
Opalade AA, Tang Y, Tao FF. Integrated in situ spectroscopic studies on syngas production from partial oxidation of methane catalyzed by atomically dispersed rhodium cations on ceria. Phys Chem Chem Phys 2023; 25:4070-4080. [PMID: 36651173 DOI: 10.1039/d2cp03216c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Catalytic reforming of methane to produce syngas is an important strategy for producing value-added chemicals. The conventional reforming catalyst relies on supported nickel nanoparticles. In this work, we investigated singly dispersed Rh cations anchored on a CeO2 catalyst (Rh1/CeO2) for high activity and selectivity towards the production of syngas via partial oxidation of methane (POM) in the temperature range of 600-700 °C. The yields of H2 and CO at 700 °C are 83% and 91%, respectively. The anchored Rh1 atoms on CeO2 of Rh1/CeO2 are in the cationic state, and on an average each Rh1 atom coordinates with 4-5 surface lattice oxygen atoms of CeO2. Compared to inert CeO2 for POM, via the incorporation of single-atom sites, Rh1 modifies the electronic state of oxygen atoms proximal to the Rh1 atoms and thus triggers the catalytic activity of CeO2. The high activity of single-atom catalyst Rh1/CeO2 suggests that the incorporation of single atoms of transition metals to the surface of a reducible oxide can modulate the electronic state of proximal anions of the oxide support toward forming an electronic state favorable for the selective formation of ideal products.
Collapse
Affiliation(s)
- Adedamola A Opalade
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA. .,Department of Chemistry, University of Kansas, KS 66045, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| |
Collapse
|
9
|
Li H, Shen Y, Xiao X, Jiang H, Gu Q, Zhang Y, Lin L, Luo W, Zhou S, Zhao J, Wang A, Zhang T, Yang B. Controlled-Release Mechanism Regulates Rhodium Migration and Size Redistribution Boosting Catalytic Methane Conversion. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yuebo Shen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Xia Xiao
- Institute of Catalysis for Energy and Environment, Shenyang Normal University, Shenyang110034, China
| | - Hong Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Qingqing Gu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Yafeng Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Dalian116024, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
10
|
Chen S, Yang T, Lu H, Liu Y, He Y, Li Q, Gao J, Feng J, Yan H, Miller JT, Li D. Increased Hydrogenation Rates in Pd/La-Al 2O 3 Catalysts by Hydrogen Transfer O(-La) Sites Adjacent to Pd Nanoparticles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Tianxing Yang
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Hao Lu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Yanan Liu
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Yufei He
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Qiang Li
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing100083, People’s Republic of China
| | - Junxian Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana47907, United States
| | - Junting Feng
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Hong Yan
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana47907, United States
| | - Dianqing Li
- State Key Laboratory of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing100029, People’s Republic of China
| |
Collapse
|
11
|
Rao P, Deng Y, Fan W, Luo J, Deng P, Li J, Shen Y, Tian X. Movable type printing method to synthesize high-entropy single-atom catalysts. Nat Commun 2022; 13:5071. [PMID: 36038594 PMCID: PMC9424199 DOI: 10.1038/s41467-022-32850-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022] Open
Abstract
The controllable anchoring of multiple isolated metal atoms into a single support exhibits scientific and technological opportunities, while the synthesis of catalysts with multiple single metal atoms remains a challenge and has been rarely reported. Herein, we present a general route for anchoring up to eleven metals as highly dispersed single-atom centers on porous nitride-doped carbon supports with the developed movable type printing method, and label them as high-entropy single-atom catalysts. Various high-entropy single-atom catalysts with tunable multicomponent are successfully synthesized with the same method by adjusting only the printing templates and carbonization parameters. To prove utility, quinary high-entropy single-atom catalysts (FeCoNiCuMn) is investigated as oxygen reduction reaction catalyst with much more positive activity and durability than commercial Pt/C catalyst. This work broadens the family of single-atom catalysts and opens a way to investigate highly efficient single-atom catalysts with multiple compositions.
Collapse
Affiliation(s)
- Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yijie Deng
- School of Resource Environmental and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junming Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| |
Collapse
|