1
|
Li X, Gan Y, Wang YY, Ye B. Selective Ni(I)/Ni(III) Process for Consecutive Geminal C(sp 3)-C(sp 2) Bond Formation. J Am Chem Soc 2024; 146:35275-35284. [PMID: 39670340 DOI: 10.1021/jacs.4c12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Ni-catalyzed multicomponent cross-couplings have emerged as a powerful strategy for efficiently constructing complex molecular architectures from a diverse array of organic halides. Despite its potential, selectively forming multiple chemical bonds in a single operation, particularly in the realm of cross-electrophile coupling catalysis, remains a significant challenge. In this study, we have developed a consecutive open-shell reductive Ni catalysis, enabling the formation of two geminal C(sp3)-C(sp2) bonds from two stereoelectronically similar C(sp2)-I reactants in conjunction with a methylene electrophile. Using zirconaaziridine and elemental Mg0 as reductants, this protocol exhibits broad applicability across a wide range of (hetero)aromatic, alkenyl, and glycal halides, allowing for the rapid assembly of medicinally relevant scaffolds with excellent functional group tolerance. Further kinetic studies suggest a dual "sequential reduction" catalytic process facilitated by a zirconaaziridine-mediated redox-transmetalation process in Ni catalysis. Notably, the concerted oxidative addition of Ni(I)-I across a C(sp2)-I bond, as well as the halide atom abstraction among various C(sp3) electrophiles by an open-shell C(sp2)-Ni(I) species, can proceed with high selectivity. The use of an unsymmetrical methylene electrophile with exceptionally high reactivity in XEC resulted in the rapid accumulation of a benzylic or allylic electrophile intermediate at the outset of reaction, thereby finely controlling the coupling sequence.
Collapse
Affiliation(s)
- Xuejiao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu Gan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baihua Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Wu YJ, Ma C, Bilal M, Liang YF. Nickel-Catalyzed Reductive Cyanation of Aryl Halides and Epoxides with Cyanogen Bromide. Molecules 2024; 29:6016. [PMID: 39770100 PMCID: PMC11678332 DOI: 10.3390/molecules29246016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent. A variety of aryl halides and epoxides featuring diverse functional groups, such as -TMS, -Bpin, -OH, -NH2, -CN, and -CHO, were successfully converted into nitriles in moderate-to-good yields. Moreover, the syntheses at gram-scale and application in late-stage cyanation of natural products and drugs reinforces its potentiality.
Collapse
Affiliation(s)
| | | | | | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (Y.-J.W.); (C.M.); (M.B.)
| |
Collapse
|
3
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Dawson GA, Seith MC, Neary MC, Diao T. Redox Activity and Potentials of Bidentate N-Ligands Commonly Applied in Nickel-Catalyzed Cross-Coupling Reactions. Angew Chem Int Ed Engl 2024; 63:e202411110. [PMID: 39264261 DOI: 10.1002/anie.202411110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Bidentate N-ligands are paramount to recent advances in nickel-catalyzed cross-coupling reactions. Through comprehensive organometallic, spectroscopic, and computational studies on bi-oxazoline and imidazoline ligands, we reveal that a square planar geometry enables redox activity of these ligands in stabilizing nickel radical species. This finding contrasts with the prior assumption that bi-oxazoline lacks redox activity due to strong mesomeric donation. Moreover, we conducted systematic cyclic voltammetry (CV) analyses of bidentate pyridyl, oxazoline, and imidazoline nitrogen ligands, along with their corresponding nickel complexes. Complexation with nickel shifts the reduction potentials to a more positive region and narrows the differences in redox potentials among the ligands. Additionally, various ligands led to different degrees of bromide dissociation from singly reduced (L)Ni(Ar)(Br) complexes, reflecting varying reactivity in the subsequent activation of alkyl halides, a crucial step in cross-electrophile coupling. These insights highlight the significant electronic effects of ligands on the stability of metalloradical species and their redox potentials, which interplay with coordination geometry. Quantifying the electron-donating, π-accepting properties of these ligands, as well as their effect on catalyst speciation, provides crucial benchmarks for controlling catalytic activity and enhancing catalyst stability.
Collapse
Affiliation(s)
- Gregory A Dawson
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Maria C Seith
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Michelle C Neary
- Department of Chemistry, CUNY - Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
5
|
McManus BD, Hung LC, Taylor OR, Nguyen PQ, Cedeño AL, Arriola K, Bradley RD, Saucedo PJ, Hannan RJ, Luna YA, Farias P, Bahamonde A. Mechanistic Interrogation of Photochemical Nickel-Catalyzed Tetrahydrofuran Arylation Leveraging Enantioinduction Data. J Am Chem Soc 2024; 146:32135-32146. [PMID: 39528417 DOI: 10.1021/jacs.4c13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This manuscript details the development of an asymmetric variant for the Ni-photoredox α-arylation of tetrahydrofuran (THF), which was originally reported in a racemic fashion by Doyle and Molander. Leveraging the enantioselectivity data that we obtained, a complex mechanistic scenario different from those originally proposed is uncovered. Specifically, an unexpected dependence of the product enantiomeric ratio was observed on both the halide identity (aryl chloride vs bromide substrates) and the Ni source. Stoichiometric experiments and time course analyses of the evolution of product enantioselectivity with time revealed a different initial behavior for reactions carried out with Ni(II) and Ni(0) precatalysts that later converge into a common mechanism. For studying the predominant pathway, this paper describes a rare example of the syntheses of chiral bisoxazoline Ni(II) aryl halide complexes, which proved essential for probing enantioselectivity via stochiometric experiments. These experiments identify the Ni(II) aryl halide complex as the primary species involved in the key THF radical trapping event. A multivariate linear regression model is presented that further validates the dominant mechanism and delineates structure-selectivity relationships between ligand properties and enantioselectivity. EPR analysis of Ni(0)/aryl halide mixtures highlights the fast access to a variety of Ni complexes in 0, +1, and +2 oxidation states that are proposed to be responsible for the initial divergence in mechanism observed when using Ni(0) precatalysts. More broadly, beyond advancing the mechanistic understanding of this THF arylation protocol, this work underscores the potential of leveraging enantioselectivity data to unravel intricate mechanistic manifolds within Ni-photoredox catalysis.
Collapse
Affiliation(s)
- Brennan D McManus
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Lang Cheng Hung
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Olivia R Taylor
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul Q Nguyen
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Alfredo L Cedeño
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Kyle Arriola
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert D Bradley
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Robert J Hannan
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Yvette A Luna
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Phillip Farias
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California Riverside, Riverside, California 92521, United States
| |
Collapse
|
6
|
Chen LM, Shin C, DeLano TJ, Carretero-Cerdán A, Gheibi G, Reisman SE. Ni-Catalyzed Asymmetric Reductive Arylation of α-Substituted Imides. J Am Chem Soc 2024; 146:29523-29530. [PMID: 39413404 PMCID: PMC11528402 DOI: 10.1021/jacs.4c09327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
α-Aryl imides are common structural motifs in bioactive molecules and proteolysis-targeting chimeras designed for targeted protein degradation. An asymmetric Ni-catalyzed reductive cross-coupling of imide electrophiles and (hetero)aryl halides has been developed to synthesize enantioenriched α-arylglutarimides from simple starting materials. Judicious selection of electrophile pairs allows for coupling of both electron-rich and electron-deficient (hetero)aryl halides in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Chungkeun Shin
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Travis J. DeLano
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alba Carretero-Cerdán
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Division
of Theoretical Chemistry & Biology, CBH School, KTH Royal Institute of Technology, Teknikringen 30, Stockholm S-10044, Sweden
| | - Golsa Gheibi
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Gan Y, Zhou JF, Li X, Liu JR, Liu FJ, Hong X, Ye B. Zirconaaziridine-Mediated Ni-Catalyzed Diastereoselective C(sp 2)-Glycosylation. J Am Chem Soc 2024. [PMID: 38859580 DOI: 10.1021/jacs.4c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In the realm of organic synthesis, the catalytic and stereoselective formation of C-glycosidic bonds is a pivotal process, bridging carbohydrates with aglycones. However, the inherent chirality of the saccharide scaffold often has a substantial impact on the stereoinduction imposed by a chiral ligand. In this study, we have established an unprecedented zirconaaziridine-mediated asymmetric nickel catalysis, enabling the diastereoselective coupling of bench-stable glycosyl phosphates with a range of (hetero)aromatic and glycal iodides as feasible coupling electrophiles. Our developed method showcases a broad scope and a high tolerance for various functional groups. More importantly, precise stereocontrol toward both anomeric configurations of forming C(sp2)-glycosides can be realized by simply utilizing the popular chiral bioxazoline (biOx) ligands in this reductive Ni catalysis. Regarding the operating mechanism, both experimental and computational studies support the occurrence of a redox transmetalation process, leading to the formation of a transient, bimetallic Ni-Zr species that acts as a potent and efficient single-electron reductant in the catalytic process.
Collapse
Affiliation(s)
- Yu Gan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Feng Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuejiao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Ren Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang-Jie Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street, No. 2, Beijing 100190, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Baihua Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Cusumano AQ, Chaffin BC, Doyle AG. Mechanism of Ni-Catalyzed Photochemical Halogen Atom-Mediated C(sp 3)-H Arylation. J Am Chem Soc 2024; 146:15331-15344. [PMID: 38778454 PMCID: PMC11246173 DOI: 10.1021/jacs.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Within the context of Ni photoredox catalysis, halogen atom photoelimination from Ni has emerged as a fruitful strategy for enabling hydrogen atom transfer (HAT)-mediated C(sp3)-H functionalization. Despite the numerous synthetic transformations invoking this paradigm, a unified mechanistic hypothesis that is consistent with experimental findings on the catalytic systems and accounts for halogen radical formation and facile C(sp2)-C(sp3) bond formation remains elusive. We employ kinetic analysis, organometallic synthesis, and computational investigations to decipher the mechanism of a prototypical Ni-catalyzed photochemical C(sp3)-H arylation reaction. Our findings revise the previous mechanistic proposals, first by examining the relevance of SET and EnT processes from Ni intermediates relevant to the HAT-based arylation reaction. Our investigation highlights the ability for blue light to promote efficient Ni-C(sp2) bond homolysis from cationic NiIII and C(sp2)-C(sp3) reductive elimination from bipyridine NiII complexes. However interesting, the rates and selectivities of these processes do not account for the productive catalytic pathway. Instead, our studies support a mechanism that involves halogen atom evolution from in situ generated NiII dihalide intermediates, radical capture by a NiII(aryl)(halide) resting state, and key C-C bond formation from NiIII. Oxidative addition to NiI, as opposed to Ni0, and rapid NiIII/NiI comproportionation play key roles in this process. The findings presented herein offer fundamental insight into the reactivity of Ni in the broader context of catalysis.
Collapse
Affiliation(s)
- Alexander Q Cusumano
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Braden C Chaffin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Huang S, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation of Common Ketones. J Am Chem Soc 2024; 146:12895-12900. [PMID: 38696162 DOI: 10.1021/jacs.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.
Collapse
Affiliation(s)
- Shuai Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
11
|
Mills LR, Simmons EM, Lee H, Nester E, Kim J, Wisniewski SR, Pecoraro MV, Chirik PJ. (Phenoxyimine)nickel-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling: Evidence for a Recovering Radical Chain Mechanism. J Am Chem Soc 2024; 146:10124-10141. [PMID: 38557045 DOI: 10.1021/jacs.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A β-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eva Nester
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Chen LM, Reisman SE. Enantioselective C(sp 2)-C(sp 3) Bond Construction by Ni Catalysis. Acc Chem Res 2024; 57:751-762. [PMID: 38346006 PMCID: PMC10918837 DOI: 10.1021/acs.accounts.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Ding L, Zhao Y, Lu H, Shi Z, Wang M. Nickel-Catalyzed Asymmetric Propargyl-Aryl Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202313655. [PMID: 37985415 DOI: 10.1002/anie.202313655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Performing asymmetric cross-coupling reactions between propargylic electrophiles and aryl nucleophiles is a well-established method to build enantioenriched benzylic alkynes. Here, a catalytic enantioselective propargyl-aryl cross-coupling between two electrophiles was achieved for the first time in a stereoconvergent manner. Propargylic chlorides were treated with aryl iodides as well as heteroaryl iodides in the presence of a chiral nickel complex, and manganese metal was used as a stoichiometric reductant, allowing for the construction of a propargyl C-aryl bond under mild conditions. An alternative dual nickel/photoredox catalytic protocol was also developed for this cross-electrophile coupling in the absence of a metal reductant. The potential utility of this conversion is demonstrated in the facile construction of stereoenriched bioactive molecule derivatives and medicinal compounds based on the diversity of acetylenic chemistry. Detailed experimental studies have revealed the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Dawson G, Spielvogel EH, Diao T. Nickel-Catalyzed Radical Mechanisms: Informing Cross-Coupling for Synthesizing Non-Canonical Biomolecules. Acc Chem Res 2023; 56:3640-3653. [PMID: 38033206 PMCID: PMC10734253 DOI: 10.1021/acs.accounts.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Nickel excels at facilitating selective radical chemistry, playing a pivotal role in metalloenzyme catalysis and modern cross-coupling reactions. Radicals, being nonpolar and neutral, exhibit orthogonal reactivity to nucleophilic and basic functional groups commonly present in biomolecules. Harnessing this compatibility, we delve into the application of nickel-catalyzed radical pathways in the synthesis of noncanonical peptides and carbohydrates, critical for chemical biology studies and drug discovery.We previously characterized a sequential reduction mechanism that accounts for chemoselectivity in cross-electrophile coupling reactions. This catalytic cycle begins with nickel(I)-mediated radical generation from alkyl halides, followed by carbon radical capture by nickel(II) complexes, and concludes with reductive elimination. These steps resonate with mechanistic proposals in nickel-catalyzed cross-coupling, photoredox, and electrocatalytic reactions. Herein, we present our insights into each step involving radicals, including initiation, propagation, termination, and the nuances of kinetics, origins of selectivity, and ligand effects.Radical generation from C(sp3) electrophiles via one-electron oxidative addition with low-valent nickel radical intermediates provides the basis for stereoconvergent and cross-electrophile couplings. Our electroanalytical studies elucidate a concerted halogen atom abstraction mechanism, where electron transfer is coupled with halide dissociation. Using this pathway, we have developed a nickel-catalyzed stereoselective radical addition to dehydroalanine, facilitating the synthesis of noncanonical peptides. In this application, chiral ligands modulate the stereochemical outcome through the asymmetric protonation of a nickel-enolate intermediate.The capture of the alkyl radical by nickel(II) expands the scope of cross-coupling, promotes reductive elimination through the formation of high-valent nickel(III) species, and governs chemo- and stereoselectivity. We discovered that nickel(II)-aryl efficiently traps radicals with a barrier ranging from 7 to 9 kcal/mol, followed by fast reductive elimination. In contrast, nickel(II)-alkyl captures radicals to form a nickel(III) species, which was characterized by EPR spectroscopy. However, the subsequent slow reductive elimination resulted in minimal product formation. The observed high diastereoselectivity of radical capture inspired investigations into C-aryl and C-acyl glycosylation reactions. We developed a redox auxiliary that readily couples with natural carbohydrates and produces glycosyl radicals upon photoredox activation. Nickel-catalyzed cross-coupling of the glycosyl radical with bromoarenes and carboxylic acids leads to diverse non-natural glycosides that can facilitate drug discovery.Stoichiometric studies on well-defined d8-nickel complexes have showcased means to promote reductive elimination, including ligand association, oxidation, and oxidative addition.In the final section, we address the influence of auxiliary ligands on the electronic structure and redox activity of organonickel intermediates. Synthesis of a series of low-valent nickel radical complexes and characterization of their electronic structures led us to a postulate that ligand redox activity correlates with coordination geometry. Our data reveal that a change in ligand redox activity can shift the redox potentials of reaction intermediates, potentially altering the mechanism of catalytic reactions. Moreover, coordinating additives and solvents may stabilize nickel radicals during catalysis by adjusting ligand redox activity, which is consistent with known catalytic conditions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ethan H. Spielvogel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
15
|
Williams WL, Gutiérrez-Valencia NE, Doyle AG. Branched-Selective Cross-Electrophile Coupling of 2-Alkyl Aziridines and (Hetero)aryl Iodides Using Ti/Ni Catalysis. J Am Chem Soc 2023; 145:24175-24183. [PMID: 37888947 DOI: 10.1021/jacs.3c08301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The arylation of 2-alkyl aziridines by nucleophilic ring-opening or transition-metal-catalyzed cross-coupling enables facile access to biologically relevant β-phenethylamine derivatives. However, both approaches largely favor C-C bond formation at the less-substituted carbon of the aziridine, thus enabling access to only linear products. Consequently, despite the attractive bond disconnection that it poses, the synthesis of branched arylated products from 2-alkyl aziridines has remained inaccessible. Herein, we address this long-standing challenge and report the first branched-selective cross-coupling of 2-alkyl aziridines with aryl iodides. This unique selectivity is enabled by a Ti/Ni dual-catalytic system. We demonstrate the robustness of the method by a twofold approach: an additive screening campaign to probe functional group tolerance and a feature-driven substrate scope to study the effect of the local steric and electronic profile of each coupling partner on reactivity. Furthermore, the diversity of this feature-driven substrate scope enabled the generation of predictive reactivity models that guided mechanistic understanding. Mechanistic studies demonstrated that the branched selectivity arises from a TiIII-induced radical ring-opening of the aziridine.
Collapse
Affiliation(s)
- Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neyci E Gutiérrez-Valencia
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
17
|
Day CS, Martin R. Comproportionation and disproportionation in nickel and copper complexes. Chem Soc Rev 2023; 52:6601-6616. [PMID: 37655600 DOI: 10.1039/d2cs00494a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Disproportionation and comproportionation reactions have become increasingly important electron transfer events in organometallic chemistry and catalysis. The renewed interest in these reactions is in part attributed to the improved understanding of first-row metals and their ability to occupy odd and even oxidation states. Disproportionation and comproportionation reactions enable metal complexes to shuttle between various oxidation states, a matter of utmost relevance for controlling the speciation and catalytic turnover. In addition, these reactions have a direct impact in the thermodynamic and kinetic stability of the corresponding metal complexes. This review covers the relevance and impact of these processes in electron transfer reactions and provides valuable information about their non-negligible influence in Ni- and Cu-catalysed transformations.
Collapse
Affiliation(s)
- Craig S Day
- The Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
18
|
Dawson G, Lin Q, Neary MC, Diao T. Ligand Redox Activity of Organonickel Radical Complexes Governed by the Geometry. J Am Chem Soc 2023; 145:20551-20561. [PMID: 37695362 PMCID: PMC10515493 DOI: 10.1021/jacs.3c07031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/12/2023]
Abstract
Nickel-catalyzed cross-coupling reactions often employ bidentate π-acceptor N-ligands to facilitate radical pathways. This report presents the synthesis and characterization of a series of organonickel radical complexes supported by bidentate N-ligands, including bpy, phen, and pyrox, which are commonly proposed and observed intermediates in catalytic reactions. Through a comparison of relevant analogues, we have established an empirical rule governing the electronic structures of these nickel radical complexes. The N-ligands exhibit redox activity in four-coordinate, square-planar nickel radical complexes, leading to the observation of ligand-centered radicals. In contrast, these ligands do not display redox activity when supporting three-coordinate, trigonal planar nickel radical complexes, which are better described as nickel-centered radicals. This trend holds true irrespective of the nature of the actor ligands. These results provide insights into the beneficial effect of coordinating salt additives and solvents in stabilizing nickel radical intermediates during catalytic reactions by modulating the redox activity of the ligands. Understanding the electronic structures of these active intermediates can contribute to the development and optimization of nickel catalysts for cross-coupling reactions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Qiao Lin
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Michelle C. Neary
- Department
of Chemistry, CUNY − Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
19
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
21
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
22
|
Tang T, Hazra A, Min DS, Williams WL, Jones E, Doyle AG, Sigman MS. Interrogating the Mechanistic Features of Ni(I)-Mediated Aryl Iodide Oxidative Addition Using Electroanalytical and Statistical Modeling Techniques. J Am Chem Soc 2023; 145:10.1021/jacs.3c01726. [PMID: 37014945 PMCID: PMC10548350 DOI: 10.1021/jacs.3c01726] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
While the oxidative addition of Ni(I) to aryl iodides has been commonly proposed in catalytic methods, an in-depth mechanistic understanding of this fundamental process is still lacking. Herein, we describe a detailed mechanistic study of the oxidative addition process using electroanalytical and statistical modeling techniques. Electroanalytical techniques allowed rapid measurement of the oxidative addition rates for a diverse set of aryl iodide substrates and four classes of catalytically relevant complexes (Ni(MeBPy), Ni(MePhen), Ni(Terpy), and Ni(BPP)). With >200 experimental rate measurements, we were able to identify essential electronic and steric factors impacting the rate of oxidative addition through multivariate linear regression models. This has led to a classification of oxidative addition mechanisms, either through a three-center concerted or halogen-atom abstraction pathway based on the ligand type. A global heat map of predicted oxidative addition rates was created and shown applicable to a better understanding of the reaction outcome in a case study of a Ni-catalyzed coupling reaction.
Collapse
Affiliation(s)
- Tianhua Tang
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Avijit Hazra
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Daniel S. Min
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wendy L. Williams
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eli Jones
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
23
|
Ji H, Lin D, Tai L, Li X, Shi Y, Han Q, Chen LA. Nickel-Catalyzed Enantioselective Coupling of Acid Chlorides with α-Bromobenzoates: An Asymmetric Acyloin Synthesis. J Am Chem Soc 2022; 144:23019-23029. [DOI: 10.1021/jacs.2c10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dengkai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lanzhu Tai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyu Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiaorong Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Sakhapov IF, Gafurov ZN, Kantyukov AO, Kagilev AA, Mikhailov IK, Zueva EM, Buzyurova DN, Babaev VM, Shteingolts SA, Faizullin RR, Bekmukhamedov GE, Yakhvarov DG. Specific Behavior of the Electrochemically Generated Organonickel Sigma-Complex [NiBr(Tcpp)(bpy)], where Tcpp is 2,4,6-Tricyclopentylphenyl, bpy is 2,2'-Bipyridine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat Commun 2022; 13:7318. [PMID: 36443306 PMCID: PMC9705544 DOI: 10.1038/s41467-022-35073-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
26
|
Zhang L, Zhao M, Pu M, Ma Z, Zhou J, Chen C, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Conjugate Arylation and Heteroarylation via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2022; 144:20249-20257. [DOI: 10.1021/jacs.2c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
| | - Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
27
|
Zott MD, Canestraight VM, Peters JC. Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State. ACS Catal 2022; 12:10781-10786. [PMID: 37388409 PMCID: PMC10306173 DOI: 10.1021/acscatal.2c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photochemical radical generation has become a modern staple in chemical synthesis and methodology. Herein, we detail the photochemistry of a highly reducing, highly luminescent dicopper system [Cu2] (Eox* ≈ -2.7 V vs SCE; τ0 ≈ 10 μs) within the context of a model reaction: single-electron reduction of benzyl chlorides. The dicopper system is mechanistically well defined. As we show, it is the [Cu2]* excited state that serves as the outer-sphere photoreductant of benzyl chloride substrates; the ground-state oxidized byproduct, [Cu2]+, is electrochemically recycled, demonstrating a catalytic electrophotochemical C-C coupling process.
Collapse
Affiliation(s)
- Michael D Zott
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Virginia M Canestraight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Wang F, Pan S, Zhu S, Chu L. Selective Three-Component Reductive Alkylalkenylation of Unbiased Alkenes via Carbonyl-Directed Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shiwei Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
29
|
Ju L, Hu CT, Diao T. Strategies for Promoting Reductive Elimination of Bi- and Bis-Oxazoline Ligated Organonickel Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luchuan Ju
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Chunhua T. Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
30
|
Cui N, Lin T, Wang YE, Wu J, Han Y, Xu X, Xue F, Xiong D, Walsh PJ, Mao J. Nickel-Catalyzed Reductive Coupling of γ-Metalated Ketones with Unactivated Alkyl Bromides. Org Lett 2022; 24:3987-3992. [PMID: 35639094 DOI: 10.1021/acs.orglett.2c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed reductive cross-coupling reaction of aryl cyclopropyl ketones with easily accessible unactivated alkyl bromides to access aryl alkyl ketones has been developed. This strategy facilitates access to various of γ-alkyl-substituted ketones via ring opening of cyclopropyl ketones (26 examples, 50-90% yield). Initial mechanistic studies revealed that the reaction proceeds via radical cleavage of the alkyl bromide.
Collapse
Affiliation(s)
- Ning Cui
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.,Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jian Wu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuheng Han
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xinyang Xu
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
31
|
Thane TA, Jarvo ER. Ligand-Based Control of Nickel Catalysts: Switching Chemoselectivity from One-Electron to Two-Electron Pathways in Competing Reactions of 4-Halotetrahydropyrans. Org Lett 2022; 24:5003-5008. [PMID: 35559652 DOI: 10.1021/acs.orglett.2c01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of nickel-catalyzed transformations would be facilitated by an improved ability to predict which ligands promote and suppress competing mechanisms. We evaluate ligand-based modulation of catalyst preference for one- or two-electron pathways employing 4-halotetrahydropyrans as model substrates that can undergo divergent reaction pathways. Chemoselectivity for one- or two-electron oxidative addition is predicted by ligand class. Phosphine-ligated nickel catalysts favor closed-shell oxidative addition. In contrast, nitrogen-ligated nickel catalysts prefer the one-electron pathway, initiating with halogen atom transfer.
Collapse
Affiliation(s)
- Taylor A Thane
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Elizabeth R Jarvo
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
32
|
Gabbey AL, Michel NWM, Hughes JME, Campeau LC, Rousseaux SAL. Synthesis of α-Aryl Secondary Amides via Nickel-Catalyzed Reductive Coupling of Redox-Active Esters. Org Lett 2022; 24:3173-3178. [PMID: 35471845 DOI: 10.1021/acs.orglett.2c00918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transition-metal-catalyzed α-arylation of secondary amides remains a synthetic challenge due to the presence of a free N-H bond. We report a strategy to synthesize secondary α-aryl amides via a Ni-catalyzed reductive arylation of redox-active N-hydroxyphthalimide (NHP) esters of malonic acid half amides. This transformation proceeds under mild conditions and displays excellent chemoselectivity for amide α-arylation in the presence of other enolizable carbonyls. The NHP ester substrates are readily prepared from Meldrum's acid.
Collapse
Affiliation(s)
- Alexis L Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Nicholas W M Michel
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
33
|
Hayton TW, Shafaat HS. Periodic TableTalks: An Oasis of Science within a Conference Desert. Inorg Chem 2022; 61:5965-5971. [PMID: 35465679 PMCID: PMC11717434 DOI: 10.1021/acs.inorgchem.2c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Ting SI, Williams WL, Doyle AG. Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. J Am Chem Soc 2022; 144:5575-5582. [PMID: 35298885 DOI: 10.1021/jacs.2c00462] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The oxidative addition of aryl halides to bipyridine- or phenanthroline-ligated nickel(I) is a commonly proposed step in nickel catalysis. However, there is a scarcity of complexes of this type that both are well-defined and undergo oxidative addition with aryl halides, hampering organometallic studies of this process. We report the synthesis of a well-defined Ni(I) complex, [(CO2Etbpy)NiICl]4 (1). Its solution-phase speciation is characterized by a significant population of monomer and a redox equilibrium that can be perturbed by π-acceptors and σ-donors. 1 reacts readily with aryl bromides, and mechanistic studies are consistent with a pathway proceeding through an initial Ni(I) → Ni(III) oxidative addition to form a Ni(III) aryl species. Such a process was demonstrated stoichiometrically for the first time, affording a structurally characterized Ni(III) aryl complex.
Collapse
Affiliation(s)
- Stephen I Ting
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
35
|
Tang T, Friede NC, Minteer SD, Sigman MS. Comparing Halogen Atom Abstraction Kinetics for Mn(I), Fe(I), Co(I), and Ni(I) Complexes by Combining Electroanalytical and Statistical Modeling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Shelley D. Minteer
- The University of Utah Department of Chemistry 315 S 1400 E Room 2020 84112 Salt Lake City UNITED STATES
| | | |
Collapse
|
36
|
Zhao TY, Xiao LJ, Zhou QL. Nickel-Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6-Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022; 61:e202115702. [PMID: 35043525 DOI: 10.1002/anie.202115702] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/13/2022]
Abstract
We have developed a nickel-catalyzed desymmetric reductive cyclization/coupling of 1,6-dienes. The reaction provides an efficient method for constructing a chiral tertiary alcohol and a quaternary stereocenter by a single operation. The method has excellent diastereoselectivity and high enantioselectivity, a broad substrate scope, as well as good tolerance of functional groups. Preliminary mechanism studies show that alkyl nickel(I) species are involved in the reaction.
Collapse
Affiliation(s)
- Tian-Yuan Zhao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Li-Jun Xiao
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| | - Qi-Lin Zhou
- College of Chemistry, Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry, Tianjin, 300071, China
| |
Collapse
|
37
|
Xiao J, Montgomery J. Nickel-Catalyzed Defluorinative Coupling of Aliphatic Aldehydes with Trifluoromethyl Alkenes. ACS Catal 2022; 12:2463-2471. [PMID: 35992737 PMCID: PMC9390876 DOI: 10.1021/acscatal.1c05801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple procedure is reported for the nickel-catalyzed defluorinative alkylation of unactivated aliphatic aldehydes. The process involves the catalytic reductive union of trifluoromethyl alkenes with aldehydes using a nickel complex of a 6,6'-disubstituted bipyridine ligand with zinc metal as the terminal reductant. The protocol is distinguished by its broad substrate scope, mild conditions, and simple catalytic setup. Reaction outcomes are consistent with the intermediacy of an α-silyloxy(alkyl)nickel intermediate generated by a low-valent nickel catalyst, silyl electrophile, and the aldehyde substrate. Mechanistic findings with cyclopropanecarboxaldehyde provide insights into nature of the reactive intermediates and illustrate fundamental reactivity differences that are governed by subtle changes in ligand and substrate structure.
Collapse
Affiliation(s)
| | - John Montgomery
- Corresponding authors: John Montgomery - Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48109-1055, USA,
| |
Collapse
|
38
|
Zhao T, Xiao L, Zhou Q. Nickel‐Catalyzed Desymmetric Reductive Cyclization/Coupling of 1,6‐Dienes: An Enantioselective Approach to Chiral Tertiary Alcohol. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian‐Yuan Zhao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Li‐Jun Xiao
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| | - Qi‐Lin Zhou
- College of Chemistry Nankai University State Key Laboratory and Institute of Elemento-Organic Chemistry Tianjin 300071 China
| |
Collapse
|
39
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
40
|
Lei W, Liu H, Li Y, Fang Y. Nickel-catalysed SET-reduction-based access to functionalized allenes via 1,4-carbohydrogenation of 1,3-enynes with alkyl bromides. Org Chem Front 2022. [DOI: 10.1039/d2qo00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allene synthesis: Using reductive radical–polar crossover as the strategy, functionalized allenes could be easily accessed via the reactions of 1,3-enynes with alkyl bromides enabled by nickel catalysis.
Collapse
Affiliation(s)
- Wan Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Hong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Yan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
41
|
Xiao J, Li Z, Montgomery J. Nickel-Catalyzed Decarboxylative Coupling of Redox-Active Esters with Aliphatic Aldehydes. J Am Chem Soc 2021; 143:21234-21240. [PMID: 34894690 DOI: 10.1021/jacs.1c11170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addition of alkyl fragments to aliphatic aldehydes is a highly desirable transformation for fragment couplings, yet existing methods come with operational challenges related to the basicity and instability of the nucleophilic reagents commonly employed. We report herein that nickel catalysis using a readily available bioxazoline (BiOx) ligand can catalyze the reductive coupling of redox-active esters with aliphatic aldehydes using zinc metal as the reducing agent to deliver silyl-protected secondary alcohols. This protocol is operationally simple, proceeds under mild conditions, and tolerates a variety of functional groups. Initial mechanistic studies suggest a radical chain pathway. Additionally, alkyl tosylates and epoxides are suitable alkyl precursors to this transformation providing a versatile suite of catalytic reactions for the functionalization of aliphatic aldehydes.
Collapse
Affiliation(s)
- Jichao Xiao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - Zhenning Li
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48108-1055, United States
| |
Collapse
|