1
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
2
|
Dilissen S, Silva PL, Smolentseva A, Kache T, Thoelen R, Hendrix J. Characterisation of biocondensate microfluidic flow using array-detector FCS. Biochim Biophys Acta Gen Subj 2024; 1868:130673. [PMID: 39029539 DOI: 10.1016/j.bbagen.2024.130673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. METHODS We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. RESULTS The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. CONCLUSION Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. GENERAL SIGNIFICANCE We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.
Collapse
Affiliation(s)
- Stijn Dilissen
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium; UHasselt, Biomedical Device Engineering group, Institute for Materials Research (IMO-IMOMEC), Wetenschapspark 1, B3590 Diepenbeek, Belgium
| | - Pedro L Silva
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Anastasia Smolentseva
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Tom Kache
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium
| | - Ronald Thoelen
- UHasselt, Biomedical Device Engineering group, Institute for Materials Research (IMO-IMOMEC), Wetenschapspark 1, B3590 Diepenbeek, Belgium; IMOMEC Division, IMEC vzw, Wetenschapspark 1, B3590 Diepenbeek, Belgium
| | - Jelle Hendrix
- UHasselt, Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre, Biomedical Research Institute, Agoralaan C (BIOMED), B3590 Diepenbeek, Belgium.
| |
Collapse
|
3
|
Kitamura K, Oshima A, Sasaki F, Shiramasa Y, Yamamoto R, Kameda T, Kitazawa S, Kitahara R. Modulation of Biomolecular Liquid-Liquid Phase Separation by Preferential Hydration and Interaction of Small Osmolytes with Proteins. J Phys Chem Lett 2024; 15:7620-7627. [PMID: 39029245 DOI: 10.1021/acs.jpclett.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
We examined the effects of trimethylamine N-oxide (TMAO) and urea (known osmolytes) on the liquid-liquid phase separation (LLPS) of fused in sarcoma (FUS) and three FUS-LLPS states: LLPS states at atmospheric pressure with low- and high-salt concentrations and a re-entrant LLPS state above 2 kbar. Temperature- and pressure-scan turbidity measurements revealed that TMAO and urea contributed to stabilizing and destabilizing LLPS, respectively. These results can be attributed to the excluded volume effect of TMAO (preferential hydration) and preferential interaction of urea with proteins. Additionally, TMAO counteracted the effects of equimolar urea on LLPS, a phenomenon not previously reported. The concept of the m-value for osmolyte-induced protein folding and unfolding can be applied to the osmolyte's effects on LLPS. In conclusion, biomolecular LLPS can be modulated by preferential hydration and the interaction of small osmolytes with proteins, thereby facilitating LLPS formation, even in extreme environments characterized by high-salt, high-urea, and high-pressure conditions.
Collapse
Affiliation(s)
- Keiji Kitamura
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ayano Oshima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Fuka Sasaki
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yutaro Shiramasa
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryu Yamamoto
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Ryo Kitahara
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
4
|
Shiramasa Y, Yamamoto R, Kashiwagi N, Sasaki F, Imai S, Ike M, Kitazawa S, Kameda T, Kitahara R. An aberrant fused in sarcoma liquid droplet of amyotrophic lateral sclerosis pathological variant, R495X, accelerates liquid-solid phase transition. Sci Rep 2024; 14:8914. [PMID: 38632300 PMCID: PMC11024109 DOI: 10.1038/s41598-024-59604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Intracellular aggregation of fused in sarcoma (FUS) is associated with the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Under stress, FUS forms liquid droplets via liquid-liquid phase separation (LLPS). Two types of wild-type FUS LLPS exist in equilibrium: low-pressure LLPS (LP-LLPS) and high-pressure LLPS (HP-LLPS); the former dominates below 2 kbar and the latter over 2 kbar. Although several disease-type FUS variants have been identified, the molecular mechanism underlying accelerated cytoplasmic granule formation in ALS patients remains poorly understood. Herein, we report the reversible formation of the two LLPS states and the irreversible liquid-solid transition, namely droplet aging, of the ALS patient-type FUS variant R495X using fluorescence microscopy and ultraviolet-visible absorption spectroscopy combined with perturbations in pressure and temperature. Liquid-to-solid phase transition was accelerated in the HP-LLPS of R495X than in the wild-type variant; arginine slowed the aging of droplets at atmospheric conditions by inhibiting the formation of HP-LLPS more selectively compared to that of LP-LLPS. Our findings provide new insight into the mechanism by which R495X readily forms cytoplasmic aggregates. Targeting the aberrantly formed liquid droplets (the HP-LLPS state) of proteins with minimal impact on physiological functions could be a novel therapeutic strategy for LLPS-mediated protein diseases.
Collapse
Affiliation(s)
- Yutaro Shiramasa
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryu Yamamoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Norika Kashiwagi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fuka Sasaki
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Sawaka Imai
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Mikihito Ike
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Ryo Kitahara
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
5
|
Mukherjee S, Schäfer LV. Thermodynamic forces from protein and water govern condensate formation of an intrinsically disordered protein domain. Nat Commun 2023; 14:5892. [PMID: 37735186 PMCID: PMC10514047 DOI: 10.1038/s41467-023-41586-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) can drive a multitude of cellular processes by compartmentalizing biological cells via the formation of dense liquid biomolecular condensates, which can function as membraneless organelles. Despite its importance, the molecular-level understanding of the underlying thermodynamics of this process remains incomplete. In this study, we use atomistic molecular dynamics simulations of the low complexity domain (LCD) of human fused in sarcoma (FUS) protein to investigate the contributions of water and protein molecules to the free energy changes that govern LLPS. Both protein and water components are found to have comparably sizeable thermodynamic contributions to the formation of FUS condensates. Moreover, we quantify the counteracting effects of water molecules that are released into the bulk upon condensate formation and the waters retained within the protein droplets. Among the various factors considered, solvation entropy and protein interaction enthalpy are identified as the most important contributions, while solvation enthalpy and protein entropy changes are smaller. These results provide detailed molecular insights on the intricate thermodynamic interplay between protein- and solvation-related forces underlying the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Saumyak Mukherjee
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, D-44780, Bochum, Germany.
| |
Collapse
|
6
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
7
|
Matsuura U, Tahara S, Kajimoto S, Nakabayashi T. Label-free autofluorescence lifetime reveals the structural dynamics of ataxin-3 inside droplets formed via liquid-liquid phase separation. Sci Rep 2023; 13:6389. [PMID: 37076520 PMCID: PMC10113985 DOI: 10.1038/s41598-023-33268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Liquid-liquid phase separation is a phenomenon that features the formation of liquid droplets containing concentrated solutes. The droplets of neurodegeneration-associated proteins are prone to generate aggregates and cause diseases. To uncover the aggregation process from the droplets, it is necessary to analyze the protein structure with keeping the droplet state in a label-free manner, but there was no suitable method. In this study, we observed the structural changes of ataxin-3, a protein associated with Machado-Joseph disease, inside the droplets, using autofluorescence lifetime microscopy. Each droplet showed autofluorescence due to tryptophan (Trp) residues, and its lifetime increased with time, reflecting structural changes toward aggregation. We used Trp mutants to reveal the structural changes around each Trp and showed that the structural change consists of several steps on different timescales. We demonstrated that the present method visualizes the protein dynamics inside a droplet in a label-free manner. Further investigations revealed that the aggregate structure formed in the droplets differs from that formed in dispersed solutions and that a polyglutamine repeat extension in ataxin-3 hardly modulates the aggregation dynamics in the droplets. These findings highlight that the droplet environment facilitates unique protein dynamics different from those in solutions.
Collapse
Affiliation(s)
- Uchu Matsuura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Shinya Tahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- JST PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
8
|
Dong W, Tang C, Chu WT, Wang E, Wang J. Effects of Mass Change on Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. Biomolecules 2023; 13:biom13040625. [PMID: 37189373 DOI: 10.3390/biom13040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
In recent years, many experimental and theoretical studies of protein liquid–liquid phase separation (LLPS) have shown its important role in the processes of physiology and pathology. However, there is a lack of definite information on the regulation mechanism of LLPS in vital activities. Recently, we found that the intrinsically disordered proteins with the insertion/deletion of a non-interacting peptide segment or upon isotope replacement could form droplets, and the LLPS states are different from the proteins without those. We believed that there is an opportunity to decipher the LLPS mechanism with the mass change perspective. To investigate the effect of molecular mass on LLPS, we developed a coarse-grained model with different bead masses, including mass 1.0, mass 1.1, mass 1.2, mass 1.3, and mass 1.5 in atomic units or with the insertion of a non-interacting peptide (10 aa) and performed molecular dynamic simulations. Consequently, we found that the mass increase promotes the LLPS stability, which is based on decreasing the z motion rate and increasing the density and the inter-chain interaction of droplets. This insight into LLPS by mass change paves the way for the regulation and relevant diseases on LLPS.
Collapse
|
9
|
Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B 2022; 10:8616-8628. [PMID: 36268634 DOI: 10.1039/d2tb01688e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules inspires the construction of protocells and drives the formation of cellular membraneless organelles. The resulting biomolecular condensates featuring dynamic assembly, disassembly, and phase transition play significant roles in a series of biological processes, including RNA metabolism, DNA damage response, signal transduction and neurodegenerative disease. Intensive investigations have been conducted for understanding and manipulating intracellular phase-separated disease-related proteins (e.g., FUS, tau and TDP-43). Herein, we review current studies on the regulation strategies of intracellular LLPS focusing on FUS, which are categorized into physical stimuli, biochemical modulators, and protein structural modifications, with summarized molecular mechanisms. This review is expected to provide a sketch of the modulation of FUS LLPS with its pros and cons, and an outlook for the potential clinical treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Fetahaj Z, Jaworek MW, Oliva R, Winter R. Suppression of Liquid‐Liquid Phase Separation and Aggregation of Antibodies by Modest Pressure Application. Chemistry 2022; 28:e202201658. [PMID: 35759377 PMCID: PMC9544093 DOI: 10.1002/chem.202201658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/09/2022]
Abstract
The high colloidal stability of antibody (immunoglobulin) solutions is important for pharmaceutical applications. Inert cosolutes, excipients, are generally used in therapeutic protein formulations to minimize physical instabilities, such as liquid–liquid phase separation (LLPS), aggregation and precipitation, which are often encountered during manufacturing and storage. Despite their widespread use, a detailed understanding of how excipients modulate the specific protein‐protein interactions responsible for these instabilities is still lacking. In this work, we demonstrate the high sensitivity to pressure of globulin condensates as a suitable means to suppress LLPS and subsequent aggregation of concentrated antibody solutions. The addition of excipients has only a minor effect. The high pressure sensitivity observed is due to the fact that these flexible Y‐shaped molecules create a considerable amount of void volume in the condensed phase, leading to an overall decrease in the volume of the system upon dissociation of the droplet phase by pressure already at a few tens of to hundred bar. Moreover, we show that immunoglobulin molecules themselves are highly resistant to unfolding under pressure, and can even sustain pressures up to about 6 kbar without conformational changes. This implies that immunoglobulins are resistant to the pressure treatment of foods, such as milk, in high‐pressure food‐processing technologies, thereby preserving their immunological activity.
Collapse
Affiliation(s)
- Zamira Fetahaj
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Michel W. Jaworek
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Rosario Oliva
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
- Department of Chemical Sciences University of Naples Federico II Via Cintia 4 80126 Naples Italy
| | - Roland Winter
- Physical Chemistry I–Biophysical Chemistry Department of Chemistry and Chemical Biology TU Dortmund Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
11
|
Li S, Yoshizawa T, Shiramasa Y, Kanamaru M, Ide F, Kitamura K, Kashiwagi N, Sasahara N, Kitazawa S, Kitahara R. Mechanism underlying liquid-to-solid phase transition in fused in sarcoma liquid droplets. Phys Chem Chem Phys 2022; 24:19346-19353. [PMID: 35943083 DOI: 10.1039/d2cp02171d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The RNA-binding protein fused in sarcoma (FUS) forms ribonucleoprotein granules via liquid-liquid phase separation (LLPS) in the cytoplasm. The phase separation of FUS accelerates aberrant liquid-solid phase separation and leads to the onset of familial amyotrophic lateral sclerosis (ALS). We previously found that FUS forms two types of liquid condensates in equilibrium, specifically LP-LLPS (i.e., normal type) and HP-LLPS (i.e., aberrant type), each with different partial molar volumes. However, it is unclear how liquid condensates are converted to the pathogenic solid phase. Here, we report a mechanism underlying the aberrant liquid-to-solid phase transition of FUS liquid condensates and the inhibition of this transition with small molecules. We found that the liquid condensate formed via HP-LLPS had greatly reduced dynamics, which is a common feature of aged wild-type FUS droplets and the droplet-like assembly of the ALS patient-type FUS variant. The longer FUS remained on the HP-LLPS, the harder it was to transform it into a mixed state (i.e., one-phase). These results indicate that liquid-to-solid phase transition, namely the aging of droplets, is accelerated with HP-LLPS. Interestingly, arginine suppressed the aging of droplets and HP-LLPS formation more strongly than LP-LLPS formation. These data indicate that the formation of HP-LLPS via the one-phase state or LP-LLPS is a pathway leading to irreversible solid aggregates. Dopamine and pyrocatechol also suppressed HP-LLPS formation. Our data highlight the potential of HP-LLPS to be used as a therapeutic target and arginine as a plausible drug candidate for ALS-causing FUS.
Collapse
Affiliation(s)
- Shujie Li
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yutaro Shiramasa
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Mako Kanamaru
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumika Ide
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Keiji Kitamura
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Norika Kashiwagi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Naoya Sasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Soichiro Kitazawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Ryo Kitahara
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan. .,College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
12
|
Cinar H, Oliva R, Wu H, Zhang M, Chan HS, Winter R. Effects of Cosolvents and Crowding Agents on the Stability and Phase Transition Kinetics of the SynGAP/PSD-95 Condensate Model of Postsynaptic Densities. J Phys Chem B 2022; 126:1734-1741. [PMID: 35171623 DOI: 10.1021/acs.jpcb.2c00794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The SynGAP/PSD-95 binary protein system serves as a simple mimicry of postsynaptic densities (PSDs), which are protein assemblies based largely on liquid-liquid phase separation (LLPS), that are located underneath the plasma membrane of excitatory synapses. Surprisingly, the LLPS of the SynGAP/PSD-95 system is much more pressure sensitive than typical folded states of proteins or nucleic acids. It was found that phase-separated SynGAP/PSD-95 droplets dissolve into a homogeneous solution at a pressure of tens to hundred bar. Since organisms in the deep sea are exposed to pressures of up to ∼1000 bar, this observation suggests that deep-sea organisms must counteract the high pressure sensitivity of PSDs to avoid neurological impairment. We demonstrate here that the compatible osmolyte trimethylamine-N-oxide (TMAO) as well as macromolecular crowding agents at moderate concentrations can mitigate the deleterious effect of pressure on SynGAP/PSD-95 droplet stability, extending stable LLPS up to almost a kbar level. Moreover, the formation of SynGAP/PSD-95 droplets is a very rapid process that can be switched on and off in seconds. In contrast with the marked effects of the cosolutes on droplet stability, at the cosolutes' respective biologically relevant concentrations, their impact on the phase transformation kinetics is rather small. Only a high TMAO concentration results in a significant kinetic retardation of LLPS. Taken together, these findings offer new biophysical insights into the neurological effects of hydrostatic pressure. In particular, our results indicate how pressure-induced neurological disorders might be alleviated by upregulating certain cosolutes in the cellular milieu.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Rosario Oliva
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Haowei Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.,School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
13
|
Kitahara R, Kameda T. Phase separation by biopolymers: Basics and applications. Biophys Physicobiol 2022; 19:e190028. [DOI: 10.2142/biophysico.bppb-v19.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Kitahara
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|