1
|
Goodwin MJ, Deetz AM, Griffin PJ, Meyer GJ. Periodic Trends in Intra-ionic Excited State Quenching by Halide. Inorg Chem 2024; 63:15772-15783. [PMID: 39120873 DOI: 10.1021/acs.inorgchem.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The preassociation of reactants in a photoinitiated redox reaction through the use of noncovalent interactions can have a significant impact on excited state reactivity. As these noncovalent interactions render some stabilization to the associated species, they impact the kinetics and thermodynamics of photoinitiated electron transfer. Reported herein is a novel iridium(III) photocatalyst, equipped with an anion-sensitive, amide-substituted bipyridine ligand, and its reactivity with the halides (X = I-, Br-, Cl-) in acetonitrile and dichloromethane. A noteworthy periodic trend was observed, where the size and electron affinity dramatically altered the observed photoredox behavior. The binding affinity for the halides increased with decreasing ionic radius (Keq ∼103 to >106) in a polar medium but association was stoichiometric for each halide in a nonpolar medium. Evidence for the static quenching of iodide and bromide is presented while dynamic quenching was observed with all halides. These results highlight how the photophysics of halide adducts and the thermodynamics of intra-ionic photo-oxidation are impacted as a consequence of preassociation of a quencher through hydrogen bonding.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Paul J Griffin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Deng J, Huang H, Li Z, Jing X, Duan C. A novel Cu(I)-based coordination polymer for efficient photocatalytic oxidation of C(sp 3)-H bonds. Dalton Trans 2024; 53:10055-10059. [PMID: 38832528 DOI: 10.1039/d4dt01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
A novel coordination polymer CuCl-Pyhc was successfully synthesized, which can catalyze efficient and selective oxidation of C(sp3)-H bonds under mild conditions, exhibiting exceptional stability and remarkable recyclability. Furthermore, CuCl-Pyhc can mimic natural monooxygenases and activate oxygen into singlet oxygen (1O2).
Collapse
Affiliation(s)
- Jiangtao Deng
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Huilin Huang
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Zhentao Li
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
3
|
Chen H, Shen C, Dong K. Parallel Paired Photoelectrochemical Bromination of Alkylarenes with Electrochemical Pinacol Coupling. J Org Chem 2024; 89:2550-2555. [PMID: 38289158 DOI: 10.1021/acs.joc.3c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A paired electrochemical method for paralleling benzylic bromination of alkylarenes under irradiation with reductive pinacol coupling in a divided cell has been developed. A variety of benzyl bromides at the anode and pinacols at the cathode were obtained simultaneously in moderate-to-high faradaic efficiency. This parallel paired electrochemical protocol showed a broad substrate scope and high chemoselectivity as well as high synthetic and faradaic efficiencies.
Collapse
Affiliation(s)
- Hongshuai Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chaoren Shen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Kaiwu Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
4
|
Liu M, Cai J, Huang L, Duan C. Photocatalytic C(sp 3)-H bond functionalization by Cu(I) halide cluster-mediated O 2 activation. Dalton Trans 2023; 52:17109-17113. [PMID: 37987084 DOI: 10.1039/d3dt02862c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photocatalytic C-H bond activation is a challenging approach to selectively functionalize C(sp3)-H bonds with dioxygen under mild conditions. Herein, by merging transition metal- and photo-catalysis, photoactive Cu(I)-halide(X) (X = Cl, Br, I) clusters are employed to effectively catalyse the selective monooxygenation and C-C oxidative cross-coupling of C(sp3)-H bonds with unreactive O2 upon light irradiation. This modern protocol promises a photoinduced SET process between Cu(I)-clusters and O2, and possibly forms Cu(II)-O2˙- species for abstracting the H-atom from the C(sp3)-H bond. This process produces alkyl radicals to react with -OOH or nucleophiles for oxidation or cross-coupling products, advancing the Cu(I)-cluster mediated photoredox catalysis toward functional fine chemicals with pursued selectivity.
Collapse
Affiliation(s)
- Mingxu Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Junkai Cai
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China.
| | - Lei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
5
|
Deetz AM, Goodwin MJ, Kober EA, Meyer GJ. Nanosecond Intra-Ionic Chloride Photo-Oxidation. Inorg Chem 2023; 62:11414-11425. [PMID: 37428627 DOI: 10.1021/acs.inorgchem.3c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Transition-metal photocatalysts capable of oxidizing chloride are rare yet serve as an attractive means to controllably generate chlorine atoms, which have continued to garner the interest of researchers for notable applications in photoredox catalysis and solar energy storage. Herein, a new series of four Ir-photocatalysts with different dicationic chloride-sequestering ligands were synthesized and characterized to probe the relationship between chloride binding affinities, ion pair solution structures, and rate constants for chloride photo-oxidation in acetonitrile at room temperature. The substituents on the quaternary amines of dicationic bipyridine ligands had negligible effects on the photocatalyst excited-state reduction potential, yet dramatically influenced the affinity for chloride binding, indicating that synthetic design can be utilized to independently tune these important properties. An inverse correlation was observed between the equilibrium constant for chloride ion pairing and the rate constant for intra-ionic chloride oxidation. Exceptions to this trend suggest structural differences in the ion-paired solution structures, which were probed by 1H NMR binding experiments. This study provides new insights into light-induced oxidation of ion-paired substrates, a burgeoning approach that offers to circumvent diffusional constraints of photocatalysts with short excited-state lifetimes. Ground-state association of chloride with these photocatalysts enables intra-ionic chloride oxidation on a rapid nanosecond timescale.
Collapse
Affiliation(s)
- Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erin A Kober
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
7
|
Sustainable methane utilization technology via photocatalytic halogenation with alkali halides. Nat Commun 2023; 14:1410. [PMID: 36918590 PMCID: PMC10014990 DOI: 10.1038/s41467-023-36977-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Methyl halides are versatile platform molecules, which have been widely adopted as precursors for producing value-added chemicals and fuels. Despite their high importance, the green and economical synthesis of the methyl halides remains challenging. Here we demonstrate sustainable and efficient photocatalytic methane halogenation for methyl halide production over copper-doped titania using alkali halides as a widely available and noncorrosive halogenation agent. This approach affords a methyl halide production rate of up to 0.61 mmol h-1 m-2 for chloromethane or 1.08 mmol h-1 m-2 for bromomethane with a stability of 28 h, which are further proven transformable to methanol and pharmaceutical intermediates. Furthermore, we demonstrate that such a reaction can also operate solely using seawater and methane as resources, showing its high practicability as general technology for offshore methane exploitation. This work opens an avenue for the sustainable utilization of methane from various resources and toward designated applications.
Collapse
|
8
|
Li P, Deetz AM, Hu J, Meyer GJ, Hu K. Chloride Oxidation by One- or Two-Photon Excitation of N-Phenylphenothiazine. J Am Chem Soc 2022; 144:17604-17610. [DOI: 10.1021/jacs.2c07107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Alexander M. Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Jiaming Hu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
| | - Gerald J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
9
|
Li D, Shen J, Zhang J, Chai Y, Xie Y, Qiu C, Ni M, Zheng Y, Wang X, Zhang Z. Photocatalytic Chlorination of Methane Using Alkali Chloride Solution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Jiangjie Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yao Chai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yanyu Xie
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Chengwei Qiu
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Mengmeng Ni
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Yuanhui Zheng
- College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou 362801, People’s Republic of China
| |
Collapse
|
10
|
Coutard N, Musgrave CB, Moon J, Liebov NS, Nielsen RM, Goldberg JM, Li M, Jia X, Lee S, Dickie DA, Schinski WL, Wu Z, Groves JT, Goddard WA, Gunnoe TB. Manganese Catalyzed Partial Oxidation of Light Alkanes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Charles B. Musgrave
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jisue Moon
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Nichole S. Liebov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Robert M. Nielsen
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonathan M. Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Meijun Li
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | | | - Zili Wu
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, Tennessee 37831, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
11
|
Li DS, Liu T, Hong Y, Cao CL, Wu J, Deng HP. Stop-Flow Microtubing Reactor-Assisted Visible Light-Induced Hydrogen-Evolution Cross Coupling of Heteroarenes with C(sp 3)–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chen-Lin Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
12
|
Yamane M, Kanzaki Y, Mitsunuma H, Kanai M. Titanium(IV) Chloride-Catalyzed Photoalkylation via C(sp 3)-H Bond Activation of Alkanes. Org Lett 2022; 24:1486-1490. [PMID: 35166548 DOI: 10.1021/acs.orglett.2c00138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the sophistication of C-H functionalization as one of the most powerful tools in organic synthesis, methodology for performing hydrogen-atom transfer of unactivated alkanes remains rather scarce. Herein, we describe chlorine radical-catalyzed C(sp3)-H photoalkylation using titanium(IV) chloride via a ligand-to-metal charge transfer process. Enabled by the unique properties of this abundant metal salt, the reaction not only effected the coupling of various alkanes with radical acceptors but also was shown to be applicable to direct photoalkylation of aromatic ketones.
Collapse
Affiliation(s)
- Mina Yamane
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Kanzaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Zhang X, Zeng R. Neutrally Photoinduced MgCl2-Catalyzed Alkenylation and Imidoylation of Alkanes. Org Chem Front 2022. [DOI: 10.1039/d2qo01003h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a practical protocol for oxidation of the chloride ion (Cl-) to chlorine radical (Cl.) via a photoinduced MgCl2 catalysis, avoiding the use of strong acid, formal oxidant, and...
Collapse
|
14
|
Coutard N, Goldberg JM, Valle HU, Cao Y, Jia X, Jeffrey PD, Gunnoe TB, Groves JT. Aerobic Partial Oxidation of Alkanes Using Photodriven Iron Catalysis. Inorg Chem 2021; 61:759-766. [PMID: 34962799 DOI: 10.1021/acs.inorgchem.1c03086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodriven oxidations of alkanes in trifluoroacetic acid using commercial and synthesized Fe(III) sources as catalyst precursors and dioxygen (O2) as the terminal oxidant are reported. The reactions produce alkyl esters and occur at ambient temperature in the presence of air, and catalytic turnover is observed for the oxidation of methane in a pure O2 atmosphere. Under optimized conditions, approximately 17% conversion of methane to methyl trifluoroacetate at more than 50% selectivity is observed. It is demonstrated that methyl trifluoroacetate is stable under catalytic conditions, and thus overoxidized products are not formed through secondary oxidation of methyl trifluoroacetate.
Collapse
Affiliation(s)
- Nathan Coutard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jonathan M Goldberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Henry U Valle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yuan Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaofan Jia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - T Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|