1
|
Zhang Y, Cheng Y, Liu X, Tang H, Wang F, Tang LJ, Jiang JH. Visualization of Mitochondrial DNA G-Quadruplexes with Isaindigotone Derived Near-Infrared Fluorogenic Probe. Anal Chem 2024; 96:17329-17336. [PMID: 39412418 DOI: 10.1021/acs.analchem.4c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mitochondrial DNA G-quadruplexes (mtDNA G4s) play potential regulatory roles in mitochondrial functions. Fluorescent probes for imaging mtDNA G4s may provide useful information to unveil their regulating dynamics and functions. However, the existing probes for mtDNA G4s still exhibit short absorption and emission wavelengths and limited sensitivity. Here, we develop a new isaindigotone-derived near-infrared (NIR) fluorogenic probe for imaging mtDNA G4s in live cells and in vivo. Different fluorescent probes are engineered by conjugating the isaindigotone scaffold with varying electron-donating groups. It is shown that the probe ISAP using dimethylaminophenyl as the electron-donating group exhibits near-infrared absorption/emission and a high fluorescence activation fold in response to G4s. Molecular docking simulations reveal that ISAP binds to c-Myc G4 via multiple π-π stacking and hydrogen-bond interaction. Cellular studies show that ISAP exhibits an excellent mitochondrial targeting ability and allows specific imaging of mtDNA G4s. We further employed ISAP to image the dynamics of mtDNA G4s under glycolysis and oxidative stresses in live cells. Its capability to mtDNA G4s in vivo is showcased using a tumor-bearing mice model. This probe may serve as a useful tool to image mtDNA G4s and interrogate their biological roles in living systems.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yidan Cheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
2
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Liu J, Sun L, Hong Y, Deng J, Luo Q, Zeng R, Chen W. Near-infrared fluorescent probe for sensitive detection and imaging of DNA G4s in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124489. [PMID: 38788507 DOI: 10.1016/j.saa.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
G-quadruplexs (G4s), four-stranded nucleic acid secondary structures, which formed by guanine-rich sequences play a vital role in human biological systems. Studies have shown that the formation of G4s is closely related to tumor development and apoptosis, which is considered as a new target for the development of anti-tumor drugs. Therefore, it is important to develop novel probes for G4s imaging. In this article, we engineered a near-infrared fluorescent probe (TOH) which can be activated by DNA G4s in living cells and tumor. TOH exhibits high selectivity to the structure of DNA G4s with the limit of detection for DNA G4s (Mito-0.5-2) is calculated to be 0.43 nM. Imaging studies of different cell lines revealed that the brighter fluorescence in cancer cell lines than in normal, indicating that DNA G4s maybe highly express in tumor cell lines. Simultaneously, TOH is also introduced into live tumor tissue imaging and found that the fluorescence intensity of tumor is the brightest relative to normal tissue, further validating the high expression of DNA G4s structures in tumor tissue. These features demonstrate TOH not only have the ability to image DNA G4 structures in real time, but also may have tumor diagnostic capabilities.
Collapse
Affiliation(s)
- Junjie Liu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leying Sun
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yongxiang Hong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Deng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Qingyun Luo
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Wen Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
4
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Chen KY, Zeng YL, Mao ZW, Liu W. Development of a high quantum yield probe for detection of mitochondrial G-quadruplexes in live cells based on fluorescence lifetime imaging microscopy. Bioorg Med Chem 2024; 111:117856. [PMID: 39074413 DOI: 10.1016/j.bmc.2024.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial G-quadruplexes are components that are potentially involved in regulating mitochondrial function and play crucial roles in the replication and transcription of mitochondrial genes. Consequently, it is imperative to develop probes that can detect mitochondrial G-quadruplexes to understand their functions and mechanisms. In this study, a triphenylamine fluorescent probe, TPPE, which has excellent cytocompatibility and does not affect the natural state of G-quadruplexes, was designed and demonstrated to localize primarily to the mitochondria. Owing to the unique binding mode between TPPE and G-quadruplexes, TPPE was able to distinguish G-quadruplexes from other substances due to the higher fluorescence lifetime and quantum yield. On the basis of the photon counts determined via fluorescence lifetime imaging microscopy, we analyzed the differences in the numbers of mitochondrial G-quadruplexes in various cell lines. We observed reductions in the number of mitochondrial G-quadruplexes during apoptosis, ferroptosis and glycolysis inhibition. This study shows the great potential of using TPPE to track and analyze mitochondrial G-quadruplexes and presents a novel perspective in the development of probes to detect mitochondrial G-quadruplexes in live cells.
Collapse
Affiliation(s)
- Kai-Yi Chen
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You-Liang Zeng
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Su H, Rong G, Li L, Cheng Y. Subcellular targeting strategies for protein and peptide delivery. Adv Drug Deliv Rev 2024; 212:115387. [PMID: 38964543 DOI: 10.1016/j.addr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Cytosolic delivery of proteins and peptides provides opportunities for effective disease treatment, as they can specifically modulate intracellular processes. However, most of protein-based therapeutics only have extracellular targets and are cell-membrane impermeable due to relatively large size and hydrophilicity. The use of organelle-targeting strategy offers great potential to overcome extracellular and cell membrane barriers, and enables localization of protein and peptide therapeutics in the organelles. Although progresses have been made in the recent years, organelle-targeted protein and peptide delivery is still challenging and under exploration. We reviewed recent advances in subcellular targeted delivery of proteins/peptides with a focus on targeting mechanisms and strategies, and highlight recent examples of active and passive organelle-specific protein and peptide delivery systems. This emerging platform could open a new avenue to develop more effective protein and peptide therapeutics.
Collapse
Affiliation(s)
- Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangyu Rong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, 200030, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Liu B, Sun T, Wang Y, Xia XY, Cao S, Wang KN, Chen Q, Mao ZW. Real-Time Monitoring of mtDNA Aggregation and Mitophagy Induced by a Fluorescent Platinum Complex in Living Cells. Anal Chem 2024; 96:13421-13428. [PMID: 39109704 DOI: 10.1021/acs.analchem.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology. Controllable induction and real-time tracking of mtDNA dynamics and behavior are of paramount significance for studying mitochondrial function and morphology, facilitating a deeper understanding of mitochondria-related diseases. In this work, a fluorescent platinum complex was designed and developed that not only induces mitochondrial DNA (mtDNA) aggregation but also triggers mitochondrial autophagy (mitophagy) through the MDV pathway for damaged mtDNA clearance in living cells. Additionally, this complex allows for the real-time monitoring of these processes. This complex may serve as a valuable tool for studying mitochondrial microautophagy and holds promise for broader applications in cellular imaging and disease research.
Collapse
Affiliation(s)
- Bing Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ting Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xiao-Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shixian Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Qixin Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
Yu KK, Li K, Wang HY, Li XL, Wu SX, Xu WM, Liu YH, Wu CF, Yu XQ, Bao JK. Construction of Near-Infrared Probes with Remarkable Large Stokes Shift Based on a Novel Purine Platform for the Visualization of mtG4 Upregulation during Mitochondrial Disorder in Somatic Cells and Human Sperms. Anal Chem 2024; 96:11915-11922. [PMID: 39007441 DOI: 10.1021/acs.analchem.4c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
G-quadruplex structures within the nuclear genome (nG4) is an important regulatory factor, while the function of G4 in the mitochondrial genome (mtG4) still needs to be explored, especially in human sperms. To gain a better understanding of the relationship between mtG4 and mitochondrial function, it is crucial to develop excellent probes that can selectively visualize and track mtG4 in both somatic cells and sperms. Herein, based on our previous research on purine frameworks, we attempted for the first time to extend the conjugated structure from the C-8 site of purine skeleton and discovered that the purine derivative modified by the C-8 aldehyde group is an ideal platform for constructing near-infrared probes with extremely large Stokes shift (>220 nm). Compared with the compound substituted with methylpyridine (PAP), the molecule substituted with methylthiazole orange (PATO) showed better G4 recognition ability, including longer emission (∼720 nm), more significant fluorescent enhancement (∼67-fold), lower background, and excellent photostability. PATO exhibited a sensitive response to mtG4 variation in both somatic cells and human sperms. Most importantly, PATO helped us to discover that mtG4 was significantly increased in cells with mitochondrial respiratory chain damage caused by complex I inhibitors (6-OHDA and rotenone), as well as in human sperms that suffer from oxidative stress. Altogether, our study not only provides a novel ideal molecular platform for constructing high-performance probes but also develops an effective tool for studying the relationship between mtG4 and mitochondrial function in both somatic cells and human sperms.
Collapse
Affiliation(s)
- Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hao-Yuan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Liang Li
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Si-Xian Wu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Wen-Ming Xu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chuan-Fang Wu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jin-Ku Bao
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Ma TZ, Liu LY, Zeng YL, Ding K, Zhang H, Liu W, Cao Q, Xia W, Xiong X, Wu C, Mao ZW. G-quadruplex-guided cisplatin triggers multiple pathways in targeted chemotherapy and immunotherapy. Chem Sci 2024; 15:9756-9774. [PMID: 38939132 PMCID: PMC11206235 DOI: 10.1039/d4sc00643g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.
Collapse
Affiliation(s)
- Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ke Ding
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University Guangzhou 510080 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
10
|
Nie QW, Zhang X, Hu MH. Discovery of a mitochondrial G-quadruplex targeted fluorescent ligand via a slight variation on the near-infrared heptamethine cyanine scaffold. Int J Biol Macromol 2024; 269:132230. [PMID: 38729485 DOI: 10.1016/j.ijbiomac.2024.132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The heptamethine cyanine dyes are one kind of promising near-infrared (NIR) compounds, holding great potential in both diagnostic and therapeutic regions. Remolding such structures to realize detection of unclarified biotargets or interfering with them seems to be important in the field of chemical biology. In this study, we developed a fluorescent ligand (IR1) targeting mitochondrial G-quadruplexes (mitoG4s) by a slight variation on the typical NIR scaffold (IR780). This ligand could be applied for sensing mitoG4s by fluorescence, making it different from the unmodified dye whose fluorescence was quenched by mitoG4s. Then, IR1 was demonstrated to accumulate in the mitochondria through a mitochondrial membrane potential (MMP) dependent manner. Some of IR1 then bound to mitoG4s, causing mtDNA loss and mitochondrial dysfunction, which thereby triggered PANoptosis, including apoptosis, autophagy and pyroptosis. To the best of our knowledge, IR1 was the first NIR fluorescent ligand with emission centered at above 800 nm for mitoG4s, and the first example causing PANoptosis among the reported mitoG4-targeted ligands.
Collapse
Affiliation(s)
- Qian-Wen Nie
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Xiao Zhang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
11
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Zheng BX, Long W, Zheng W, Zeng Y, Guo XC, Chan KH, She MT, Leung ASL, Lu YJ, Wong WL. Mitochondria-Selective Dicationic Small-Molecule Ligand Targeting G-Quadruplex Structures for Human Colorectal Cancer Therapy. J Med Chem 2024; 67:6292-6312. [PMID: 38624086 DOI: 10.1021/acs.jmedchem.3c02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Mitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold. The ligand designed with lipophilic small-sized scaffolds bearing multipositive charges targeting the unique feature of high mitochondrial membrane potential (MMP) is lacking and most mitochondria-selective ligands are not G4-targeting. Herein, we report a new small-sized dicationic lipophilic ligand to target MMP and mitochondrial DNA G4s to enhance drug delivery for anticancer. The ligand showed marked alteration of mitochondrial gene expression and substantial induction of ROS production, mitochondrial dysfunction, DNA damage, cellular senescence, and apoptosis. The ligand also exhibited high anticancer activity against HCT116 cancer cells (IC50, 3.4 μM) and high antitumor efficacy in the HCT116 tumor xenograft mouse model (∼70% tumor weight reduction).
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Wende Zheng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Yaoxun Zeng
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Xiao-Chun Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
13
|
Wang XD, Liu YS, Hu MH. Discovery of a near-infrared fluorescent probe for G-quadruplexes by exploiting the concept of unfolding-intramolecular-aggregation-induced emission. Bioorg Chem 2024; 143:107006. [PMID: 38035514 DOI: 10.1016/j.bioorg.2023.107006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/11/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
In the very recent years, the concept of disaggregation-induced emission (DIE) has been applied to design G4 probes, thereby rendering several fluorophores that may suffer from aggregation-induced quenching (ACQ) to develop into desirable G4-selective probes. However, the design idea based on DIE was often limited by the instability and irreversibility of the "intermolecular" aggregation/disaggregation process. In this study, a self-folded, near-infrared fluorescent probe for selectively illuminating G4s was engineered. This probe restored its fluorescence via unfolding of its intramolecular aggregation (UIA) mediated by distinctive G4 binding, which may display more controllable background emission as well as more promising ability to track G4 forming dynamics as compared to the reported DIE probes. Altogether, this study provided insights into the development of new types of applicable G4 selective fluorescent probes.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yong-Si Liu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
14
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Wang Z, Zhou J, Lin L, Hu MH. Discovery of a far-red carbazole-benzoindolium fluorescent ligand that selectively targets mitochondrial DNA and suppresses breast cancer growth. Eur J Med Chem 2024; 264:116046. [PMID: 38103539 DOI: 10.1016/j.ejmech.2023.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
G-quadruplex (G4) formation was considered to be more prevalent in the mitochondrial DNA (mtDNA) of cancer cells compared with normal cells. Stabilization of these G4s may induce mtDNA instability and cause mitochondrial dysfunction and subsequent cell death, which may be treated as a new strategy for cancer treatment. However, few ligands were developed to target mtG4s, leaving a huge room to improve. In this study, we designed and synthesized a series of carbazole-based ligands, among which, BKN-1 was identified as the most promising mitochondrial targeting fluorescent ligand with far-red emission. Then, we demonstrated that BKN-1 may robustly interact with mtG4s via a variety of biophysical, biological experiments. Subsequently, we proved that BKN-1 may cause mtDNA loss, disrupt mitochondrial integrity, decrease ATP level and trigger unbalanced ROS, thereby leading to apoptosis and autophagy. Finally, we verified that BKN-1 had good anti-tumor activity in both cellular and in vivo models. Altogether, this study provided a dual-function ligand that may not only track the formation of mtG4s but also induce mitochondrial dysfunction, which may be developed into an applicable chemical tool for investigating the structure and function of mtG4s, and moreover, an effective therapeutic agent for cancer interference.
Collapse
Affiliation(s)
- Zhigang Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Jianghong Zhou
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Long Lin
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Yang H, Xu P, Pan F, Gao J, Yuan L, Lu K. Recent Advances in Fluorescent Probes for G-quadruplex DNAs / RNAs. Mini Rev Med Chem 2024; 24:1940-1952. [PMID: 38798221 DOI: 10.2174/0113895575301818240510151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Guanine-quadruplexes (G4s) are high-level structures formed by the folding of guaninerich nucleic acid sequences. G4s play important roles in various physiological processes, such as gene transcription, replication, recombination, and maintenance of chromosomal stability. Specific and sensitive monitoring of G4s lays the foundation for further understanding the structure, content, distribution, and function of G4s in organisms, which is important for the treatment and diagnosis of diseases. Moreover, visualization of G4s will provide new ideas for developing antitumor strategies targeting G4s. The design and development of G4-specific ligands are challenging due to the subtle differences in the structure of G4s. This review focuses on the progress of research on G4 fluorescent probes and their binding mechanisms to G4s. Finally, the challenges and future prospects for better detection and targeting of G4s in different organisms are discussed. This paper provides ideas for the development of novel G4 fluorescent probes.
Collapse
Affiliation(s)
- Hongyan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044, China
| | - Ping Xu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jinhong Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Libo Yuan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Kui Lu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044, China
| |
Collapse
|
17
|
Dong Y, Hu MH. Discovery of a minimalistic DIE-based fluorescent probe for detection of parallel G-quadruplex forms. Bioorg Chem 2023; 141:106879. [PMID: 37748327 DOI: 10.1016/j.bioorg.2023.106879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-quadruplexes (G4s) are considered to be involved in some key biological processes, leading to the development of a large number of G4 fluorescent probes, which offer possibilities to study G4 dynamics as well as their biological roles. However, the structures of G4s show high polymorphism, which can be classified into parallel, hybrid and antiparallel forms, and the probes targeting a certain topology are limited. In this study, we have developed a minimalistic fluorescent probe by exploiting the disaggregation-induced emission (DIE) principle. The further studies demonstrated that this probe exhibited promising selectivity toward parallel DNA and RNA G4 forms in vitro. Moreover, it was found that this probe could be applied to map the RNA G4s that always form into parallel topologies in live cells, which distinguished it from other reported DIE-based probes that often targeted the mitochondrial or nuclear DNA G4s. To the best of our knowledge, this was the first DIE-based fluorescent probe for mapping cellular RNA G4s.
Collapse
Affiliation(s)
- Yun Dong
- School of Pharmacy and Food Sciences, Zhuhai College of Science and Technology, Zhuhai 519041, China; Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, China.
| |
Collapse
|
18
|
Rao LS, Hao L, Liu LY, Zeng YL, Liang BB, Liu W, Mao ZW. Detection and tracking of cytoplasmic G-quadruplexes in live cells. Chem Commun (Camb) 2023; 59:13348-13351. [PMID: 37872783 DOI: 10.1039/d3cc03043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A TTPP probe was developed to distinguish G-quadruplexes (G4s) from other nucleic acid topologies through longer fluorescence lifetimes and higher quantum yields. In fluorescence lifetime imaging microscopy, TTPP enabled the visualization of cytoplasmic G4s in live cells, and showed the potential to detect cell apoptosis and ferroptosis by tracking cytoplasmic G4s.
Collapse
Affiliation(s)
- Lu-Si Rao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liang Hao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liu-Yi Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - You-Liang Zeng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bing-Bing Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wenting Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zong-Wan Mao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Baser A, Basar B, Dogan HB, Sener G, Ozsamur NG, Celik FS, Altves S, Erbas-Cakmak S. Reprograming cancer cells by a BODIPY G-quadruplex stabiliser. Chem Commun (Camb) 2023; 59:12447-12450. [PMID: 37779498 DOI: 10.1039/d3cc03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A cationic BODIPY-based G-quadruplex-selective stabiliser is developed and shown to decrease cancer cell migration-invasion up to 90%. The expression of critical genes (HIF1α, VIM, CDH1) related to metastasis is modulated. The stabiliser reprograms hypoxia-adaptive metabolism and an 1.82-fold increase in O2 consumption, enabling back-to-normal switching of energy metabolism, is observed. Stabilisers with a strong G-quadruplex affinity (0.38 μM Kd) significantly contribute to small molecule anti-cancer approaches.
Collapse
Affiliation(s)
- Aminesena Baser
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Beyza Basar
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| | - Hanim Beyza Dogan
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Gulnur Sener
- Konya Food and Agriculture University, Beysehir Cd. No: 9 Meram, Konya, Turkey
| | - Nezahat Gokce Ozsamur
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| | - Fatma Secer Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
| | - Safaa Altves
- Department of Medicinal Biology, Institute of Health Sciences, Necmettin Erbakan University, Meram, 42080, Konya, Turkey
| | - Sundus Erbas-Cakmak
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Ahmet Kelesoglu Yerleskesi, Meram, 42090, Konya, Turkey.
- Science and Research Application Center (BİTAM), Necmettin Erbakan University, Koycegiz Yerleskesi, Meram, 42140, Konya, Turkey
| |
Collapse
|
20
|
Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y, Song Z. MSCs Deliver Hypoxia-Treated Mitochondria Reprogramming Acinar Metabolism to Alleviate Severe Acute Pancreatitis Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207691. [PMID: 37409821 PMCID: PMC10477874 DOI: 10.1002/advs.202207691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Indexed: 07/07/2023]
Abstract
Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.
Collapse
Affiliation(s)
- Zhengyu Hu
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui Province230032China
| | - Dongyan Wang
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Jian Gong
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yan Li
- Department of GastroenterologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Zhilong Ma
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Tingyi Luo
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Xuyang Jia
- Department of General SurgeryShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Yihai Shi
- Department of GastroenterologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Zhenshun Song
- Department of Hepatopancreatobiliary SurgeryShanghai Fourth People's HospitalSchool of MedicineTongji UniversityShanghai200434China
| |
Collapse
|
21
|
Doimo M, Chaudhari N, Abrahamsson S, L’Hôte V, Nguyen TH, Berner A, Ndi M, Abrahamsson A, Das R, Aasumets K, Goffart S, Pohjoismäki JLO, López MD, Chorell E, Wanrooij S. Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. Nucleic Acids Res 2023; 51:7392-7408. [PMID: 37351621 PMCID: PMC10415151 DOI: 10.1093/nar/gkad535] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.
Collapse
Affiliation(s)
- Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
- Department of Women and Children Health, University of Padova, 35128 Padova, Italy
| | - Namrata Chaudhari
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Sanna Abrahamsson
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Valentin L’Hôte
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Tran V H Nguyen
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Andreas Berner
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Mama Ndi
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | | | - Koit Aasumets
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Marcela Dávila López
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Erik Chorell
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
22
|
Deiana M, Andrés Castán J, Josse P, Kahsay A, Sánchez D, Morice K, Gillet N, Ravindranath R, Patel A, Sengupta P, Obi I, Rodriguez-Marquez E, Khrouz L, Dumont E, Abad Galán L, Allain M, Walker B, Ahn HS, Maury O, Blanchard P, Le Bahers T, Öhlund D, von Hofsten J, Monnereau C, Cabanetos C, Sabouri N. A new G-quadruplex-specific photosensitizer inducing genome instability in cancer cells by triggering oxidative DNA damage and impeding replication fork progression. Nucleic Acids Res 2023; 51:6264-6285. [PMID: 37191066 PMCID: PMC10325911 DOI: 10.1093/nar/gkad365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.
Collapse
Affiliation(s)
- Marco Deiana
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Pierre Josse
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Abraha Kahsay
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Korentin Morice
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Ranjitha Ravindranath
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Indian Institute for Science Education and Research (IISER), Tirupati-517507, India
| | - Ankit Kumar Patel
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Ikenna Obi
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Elise Dumont
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Laura Abad Galán
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
| | - Bright Walker
- Department of Chemistry, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Seo Ahn
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Olivier Maury
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | | | - Tangui Le Bahers
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
- Institut Universitaire de France, 5 rue Descartes, 75005 Paris, France
| | - Daniel Öhlund
- Department of Radiation Sciences/Oncology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-901 87, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Cyrille Monnereau
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Clément Cabanetos
- Univ Angers, CNRS, MOLTECH-ANJOU, SFR MATRIX, F-49000 Angers, France
- Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, South Korea
- Building Blocks for FUture Electronics Laboratory (2BFUEL), IRL CNRS 2002, Yonsei University, Seoul, South Korea
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
23
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
24
|
Guan L, Zhou Y, Li X, Mao Y, Li A, Fu Y, Liu W, Dong S, Liang Z, Zhang Y, Zhao Q, Zhang L. ON-OFF Fluorescent Cyanine Dye Based on a Benzothiophenyl Rotor Enables Selective Illumination of G-Quadruplexes in Mitochondria. Anal Chem 2023. [PMID: 37290004 DOI: 10.1021/acs.analchem.3c01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional cyanine dyes exist as "always-on" fluorescent probes leading to inevitable background signals which often limit their performance and scope of applications. To develop specific fluorescent probes with high sensitivity and robust OFF/ON switching for targeting G4s, we introduced aromatic heterocycles through conjugation with polymethine chains to construct a rotor-π system. Here, a universal strategy is presented to synthesize pentamethine cyanines with different aromatic heterocycle substituents on the meso-polymethine chain. In these probes, SN-Cy5-S is self-quenched in aqueous solution due to H-aggregation. The structure indicates that SN-Cy5-S with a flexible meso-benzothiophenyl rotor conjugated to the cyanine backbone matches adaptively with G-tetrad planes, enhancing π-π stacking and resulting in triggered fluorescence. This allows recognition of G-quadruplexes due to the synergy of disaggregation-induced emission (DIE) and inhibited twisted intramolecular charge-transfer effects. This combination leads to a robust lighting-up fluorescence response for c-myc G4 with superior fluorescence enhancement (98-fold), allowing for a low detection limit of 1.51 nM, which is much more sensitive than the previously reported DIE-based G4 probes (22-83.5 nM). In addition, the superior imaging properties and rapid internalization time (5 min) in mitochondria allow SN-Cy5-S to also have a high potential for mitochondrially targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Li Guan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yanyan Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongbao Mao
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yile Fu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sheying Dong
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
25
|
Wang Z, Liu J, Chen H, Qiu X, Xie L, Kaniskan HÜ, Chen X, Jin J, Wei W. Telomere Targeting Chimera Enables Targeted Destruction of Telomeric Repeat-Binding Factor Proteins. J Am Chem Soc 2023; 145:10872-10879. [PMID: 37141574 PMCID: PMC10976431 DOI: 10.1021/jacs.3c02783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Telomeres are naturally shortened after each round of cell division in noncancerous normal cells, while the activation of telomerase activity to extend telomere in the cancer cell is essential for cell transformation. Therefore, telomeres are regarded as a potential anticancer target. In this study, we report the development of a nucleotide-based proteolysis-targeting chimera (PROTAC) designed to degrade TRF1/2 (telomeric repeat-binding factor 1/2), which are the key components of the shelterin complex (telosome) that regulates the telomere length by directly interacting with telomere DNA repeats. The prototype telomere-targeting chimeras (TeloTACs) efficiently degrade TRF1/2 in a VHL- and proteosome-dependent manner, resulting in the shortening of telomeres and suppressed cancer cell proliferation. Compared to the traditional receptor-based off-target therapy, TeloTACs have potential application in a broad spectrum of cancer cell lines due to their ability to selectively kill cancer cells that overexpress TRF1/2. In summary, TeloTACs provide a nucleotide-based degradation approach for shortening the telomere and inhibiting tumor cell growth, representing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - He Chen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xing Qiu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry & Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
26
|
Wu TY, Chen XC, Tang GX, Shao W, Li ZC, Chen SB, Huang ZS, Tan JH. Development and Characterization of Benzoselenazole Derivatives as Potent and Selective c-MYC Transcription Inhibitors. J Med Chem 2023; 66:5484-5499. [PMID: 37036951 DOI: 10.1021/acs.jmedchem.2c01808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Developing c-MYC transcription inhibitors that target the G-quadruplex has generated significant interest; however, few compounds have demonstrated specificity for c-MYC G-quadruplex and cancer cells. In this study, we designed and synthesized a series of benzoazole derivatives as potential G-quadruplex ligand-based c-MYC transcription inhibitors. Surprisingly, benzoselenazole derivatives, which are rarely reported as G-quadruplex ligands, demonstrated greater c-MYC G-quadruplex selectivity and cancer cell specificity compared to their benzothiazole and benzoxazole analogues. The most promising compound, benzoselenazole m-Se3, selectively inhibited c-MYC transcription by specifically stabilizing the c-MYC G-quadruplex. This led to selective inhibition of hepatoma cell growth and proliferation by affecting the MYC target gene network, as well as effective tumor growth inhibition in hepatoma xenografts. Collectively, our study demonstrates that m-Se3 holds significant promise as a potent and selective inhibitor of c-MYC transcription for cancer treatment. Furthermore, our findings inspire the development of novel selenium-containing heterocyclic compounds as c-MYC G-quadruplex-specific ligands and transcription inhibitors.
Collapse
Affiliation(s)
- Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Shao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhang-Chi Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Lu S, Dai Z, Cui Y, Kong DM. Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Cell Imaging. BIOSENSORS 2023; 13:360. [PMID: 36979572 PMCID: PMC10046058 DOI: 10.3390/bios13030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent molecular probes are very powerful tools that have been generally applied in cell imaging in the research fields of biology, pathology, pharmacology, biochemistry, and medical science. In the last couple of decades, numerous molecular probes endowed with high specificity to particular organelles have been designed to illustrate intracellular images in more detail at the subcellular level. Nowadays, the development of cell biology has enabled the investigation process to go deeply into cells, even at the molecular level. Therefore, probes that can sketch a particular organelle's location while responding to certain parameters to evaluate intracellular bioprocesses are under urgent demand. It is significant to understand the basic ideas of organelle properties, as well as the vital substances related to each unique organelle, for the design of probes with high specificity and efficiency. In this review, we summarize representative multifunctional fluorescent molecular probes developed in the last decade. We focus on probes that can specially target nuclei, mitochondria, endoplasmic reticulums, and lysosomes. In each section, we first briefly introduce the significance and properties of different organelles. We then discuss how probes are designed to make them highly organelle-specific. Finally, we also consider how probes are constructed to endow them with additional functions to recognize particular physical/chemical signals of targeted organelles. Moreover, a perspective on the challenges in future applications of highly specific molecular probes in cell imaging is also proposed. We hope that this review can provide researchers with additional conceptual information about developing probes for cell imaging, assisting scientists interested in molecular biology, cell biology, and biochemistry to accelerate their scientific studies.
Collapse
Affiliation(s)
- Sha Lu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiqi Dai
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunxi Cui
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
RNA G-quadruplex in live cells lighted-up by a thiazole orange analogue for SCA36 identification. Int J Biol Macromol 2023; 229:724-731. [PMID: 36572080 DOI: 10.1016/j.ijbiomac.2022.12.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
SCA36 is a neurodegenerative disease mainly caused by the abnormal expansion of the GGGCCT repeat sequence in intron 1 of NOP56. The RNA sequences of this gene are expected to form large amounts of G-quadruplexes in the cytoplasm, which may be a potential intervention and detection target for SCA36. Here, we have developed a small-molecular compound named TCB-1, which shows good selectivity to the G-quadruplex structure, and its fluorescence can be enhanced by hundreds of folds. Interestingly, TCB-1 can avoid lysosome capture, evenly disperse in the cytoplasm, and selectively light up the cytoplasmic RNA G-quadruplexes. This property allows TCB-1 to sensitively detect the increased formation of cytoplasmic RNA G-quadruplexes in SCA36 model cells. This work not only provides new ideas for the design of small-molecule compounds targeting RNA G-quadruplexes in living cells, but also intuitively demonstrates the increased formation of RNA G-quadruplexes caused by NOP56 gene mutation, providing a possible tool for the detection of SCA36.
Collapse
|
29
|
Deiana M, Chand K, Chorell E, Sabouri N. Parallel G-Quadruplex DNA Structures from Nuclear and Mitochondrial Genomes Trigger Emission Enhancement in a Nonfluorescent Nano-aggregated Fluorine-Boron-Based Dye. J Phys Chem Lett 2023; 14:1862-1869. [PMID: 36779779 PMCID: PMC9940295 DOI: 10.1021/acs.jpclett.2c03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.
Collapse
Affiliation(s)
- Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Karam Chand
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Erik Chorell
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nasim Sabouri
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
30
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
32
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
33
|
Pandith A, Luo Y, Jang Y, Bae J, Kim Y. Self-Assembled Peptidyl Aggregates for the Fluorogenic Recognition of Mitochondrial DNA G-Quadruplexes. Angew Chem Int Ed Engl 2023; 62:e202215049. [PMID: 36396597 DOI: 10.1002/anie.202215049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The selective monitoring of G-quadruplex (G4) structures in living cells is important to elucidate their functions and reveal their value as diagnostic or therapeutic targets. Here we report a fluorogenic probe (CV2) able to selectively light-up parallel G4 DNA over antiparallel topologies. CV2 was constructed by conjugating the excimer-forming CV dye with a peptide sequence (l-Arg-l-Gly-glutaric acid) that specifically recognizes G4s. CV2 forms self-assembled, red excimer-emitting nanoaggregates in aqueous media, but specific binding to G4s triggers its disassembly into rigidified monomeric dyes, leading to a dramatic fluorescence enhancement. Moreover, selective permeation of CV2 stains G4s in mitochondria over the nucleus. CV2 was employed for tracking the folding and unfolding of G4s in living cells, and for monitoring mitochondrial DNA (mtDNA) damage. These properties make CV2 appealing to investigate the possible roles of mtDNA G4s in diseases that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.,Current address, International Ph.D. Program in Biomedical Engineering (IPBME), College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan (R.O.C
| | - Yongyang Luo
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yul Jang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
34
|
Sahayasheela VJ, Yu Z, Hidaka T, Pandian GN, Sugiyama H. Mitochondria and G-quadruplex evolution: an intertwined relationship. Trends Genet 2023; 39:15-30. [PMID: 36414480 PMCID: PMC9772288 DOI: 10.1016/j.tig.2022.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures formed in guanine (G)-rich sequences through stacked G tetrads by Hoogsteen hydrogen bonding. Several studies have demonstrated the existence of G4s in the genome of various organisms, including humans, and have proposed that G4s have a regulatory role in various cellular functions. However, little is known regarding the dissemination of G4s in mitochondria. In this review, we report the observation that the number of potential G4-forming sequences in the mitochondrial genome increases with the evolutionary complexity of different species, suggesting that G4s have a beneficial role in higher-order organisms. We also discuss the possible function of G4s in mitochondrial (mt)DNA and long noncoding (lnc)RNA and their role in various biological processes.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
35
|
Fang J, Feng Y, Zhang Y, Wang A, Li J, Cui C, Guo Y, Zhu J, Lv Z, Zhao Z, Xu C, Shi H. Alkaline Phosphatase-Controllable and Red Light-Activated RNA Modification Approach for Precise Tumor Suppression. J Am Chem Soc 2022; 144:23061-23072. [DOI: 10.1021/jacs.2c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chaoxiang Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yirui Guo
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jinfeng Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhengzhong Lv
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhongsheng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Advances in
G
‐quadruplexes‐based fluorescent imaging. Biopolymers 2022; 113:e23528. [DOI: 10.1002/bip.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
37
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
38
|
Li ZC, Wu TY, Zeng ST, Fang L, Mao JX, Chen SB, Huang ZS, Chen XC, Tan JH. Benzoselenazolium-based hemicyanine dye for G-Quadruplex detection. Bioorg Med Chem Lett 2022; 70:128801. [PMID: 35597422 DOI: 10.1016/j.bmcl.2022.128801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
Abstract
Benzothiazolium and benzoxazolium are common groups for the construction of hemicyanine dyes; however, their isosteric analogue benzoselenazolium have rarely been studied. Here, we report the development of the first benzoselenazolium-based hemicyanine dye for the selective detection of G-quadruplexes. This molecule, SEMA-1, was validated as a red-emitting and activatable fluorescent probe whose fluorescence would only be activated in the presence of G-quadruplexes in buffer solution. Consistent with this, SEMA-1 was found to accumulate in nucleoli and could be used to detect the high abundance of nucleolar rDNA and rRNA G-quadruplexes in fixed HeLa cells. On the other hand, due to the retained mitochondrial membrane potential in live HeLa cells, SEMA-1 was captured by mitochondria and had the potential to detect the mitochondrial G-quadruplexes. Collectively, this work demonstrates the value of developing G-quadruplex-specific fluorescent probes from novel benzoselenazolium-based hemicyanine scaffold.
Collapse
Affiliation(s)
- Zhang-Chi Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lan Fang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Xin Mao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
39
|
Liu LY, Ma TZ, Zeng YL, Liu W, Mao ZW. Structural Basis of Pyridostatin and Its Derivatives Specifically Binding to G-Quadruplexes. J Am Chem Soc 2022; 144:11878-11887. [PMID: 35749293 DOI: 10.1021/jacs.2c04775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleic acid G-quadruplex (G4) has emerged as a promising therapeutic target for a variety of diseases such as cancer and neurodegenerative disease. Among small-molecule G4-binders, pyridostatin (PDS) and its derivatives (e.g., PyPDS) exhibit high specificity to G4s, but the structural basis for their specific recognition of G4s remains unknown. Here, we presented two solution structures of PyPDS and PDS with a quadruplex-duplex hybrid. The structures indicate that the rigid aromatic rings of PyPDS/PDS linked by flexible amide bonds match adaptively with G-tetrad planes, enhancing π-π stacking and achieving specific recognition of G4s. The aliphatic amine side chains of PyPDS/PDS adjust conformation to interact with the phosphate backbone via hydrogen bonding and electrostatic interactions, increasing affinity for G4s. Moreover, the N-H of PyPDS/PDS amide bonds interacts with two O6s of G-tetrad guanines via hydrogen bonding, achieving a further increase in affinity for G4s, which is different from most G4 ligands. Our findings reveal from structural perspectives that the rational assembly of rigid and flexible structural units in a ligand can synergistically improve the selectivity and affinity for G4s through spatial selective and adaptive matching.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
40
|
Yuan JH, Tu JL, Liu GC, Chen XC, Huang ZS, Chen SB, Tan JH. Visualization of ligand-induced c-MYC duplex-quadruplex transition and direct exploration of the altered c-MYC DNA-protein interactions in cells. Nucleic Acids Res 2022; 50:4246-4257. [PMID: 35412611 PMCID: PMC9071431 DOI: 10.1093/nar/gkac245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Ligand-Induced duplex-quadruplex transition within the c-MYC promoter region is one of the most studied and advanced ideas for c-MYC regulation. Despite its importance, there is a lack of methods for monitoring such process in cells, hindering a better understanding of the essence of c-MYC G-quadruplex as a drug target. Here we developed a new fluorescent probe ISCH-MYC for specific c-MYC G-quadruplex recognition based on GTFH (G-quadruplex-Triggered Fluorogenic Hybridization) strategy. We validated that ISCH-MYC displayed distinct fluorescence enhancement upon binding to c-MYC G-quadruplex, which allowed the duplex-quadruplex transition detection of c-MYC G-rich DNA in cells. Using ISCH-MYC, we successfully characterized the induction of duplex to G-quadruplex transition in the presence of G-quadruplex stabilizing ligand PDS and further monitored and evaluated the altered interactions of relevant transcription factors Sp1 and CNBP with c-MYC G-rich DNA. Thus, our study provides a visualization strategy to explore the mechanism of G-quadruplex stabilizing ligand action on c-MYC G-rich DNA and relevant proteins, thereby empowering future drug discovery efforts targeting G-quadruplexes.
Collapse
Affiliation(s)
- Jia-Hao Yuan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Li Tu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guo-Cai Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|