1
|
Zimmer B, Havenith RWA, Klein JEMN, Koszinowski K. Reductive Elimination From Tetra-Alkyl Cuprates [Me nCu(CF 3) 4-n] - (n=0-4): Beyond Simple Oxidation States. Angew Chem Int Ed Engl 2024; 63:e202409315. [PMID: 39072869 DOI: 10.1002/anie.202409315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the electronic structures of organocuprates in general and the complex [Cu(CF3)4]- in particular have attracted significant interest. A possible key indicator in this context is the reactivity of these species. Nonetheless, this aspect has received only limited attention. Here, we systematically study the series of tetra-alkyl cuprates [MenCu(CF3)4-n]- and their unimolecular reactivity in the gas phase, which includes concerted formal reductive eliminations as well as radical losses. Through computational studies, we characterize the electronic structures of the complexes and show how these are connected to their reactivity. We find that all [MenCu(CF3)4-n]- ions feature inverted ligand fields and that the distinct reactivity patterns of the individual complexes arise from the interplay of different effects.
Collapse
Affiliation(s)
- Bastian Zimmer
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Remco W A Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), B-9000, Gent, Belgium
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747 AG, Groningen, The Netherlands
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Leach IF, Klein JEMN. Oxidation States: Intrinsically Ambiguous? ACS CENTRAL SCIENCE 2024; 10:1406-1414. [PMID: 39071055 PMCID: PMC11273457 DOI: 10.1021/acscentsci.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024]
Abstract
The oxidation state ( OS ) formalism is a much-appreciated good in chemistry, receiving wide application. However, like all formalisms, limitations are inescapable, some of which have been recently explored. Providing a broader context, we discuss the OS and its interpretation from a computational perspective for transition metal (TM) complexes. We define a broadly applicable and easy-to-use procedure to derive OS s based on quantum chemical calculations, via the use of localized orbitals, dubbed the Intrinsic OS . Applying this approach to a cobalt complex in five OS s, isolated by Hunter and co-workers (Inorg. Chem.2021, 60, 17445), we find that the calculated Intrinsic OS matches the formal OS , consistent with the experimental characterization. Through analysis of the delocalized orbitals, the ligand field of the Co(III) complex is found to be "inverted", despite every cobalt-ligand bond being classically dative from the localized perspective-a bonding scenario very similar to that of [Cu(CF3)4]-. This is not atypical but rather a natural consequence of these metals bonding in the high-valent region, and we propose a more restrictive definition of (locally) inverted bonding. Additionally, two bonding descriptors within the Intrinsic Bonding Orbital (IBO) framework (σ-gain and π-loss) are introduced, which enable facile quantification of electron-sharing covalency across a broad range of TM complexes.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
3, 9747 AG Groningen, The Netherlands
| | - Johannes E. M. N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 3, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
3
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
4
|
Deeth RJ. Ligand field theory, Pauli shields and ultra-covalency in organometallic chemistry. Phys Chem Chem Phys 2024; 26:18138-18148. [PMID: 38896132 DOI: 10.1039/d4cp00764f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
This paper explores the ligand field picture applied to organometallic compounds. Given the dearth of experimental data, the high-level ab initio ligand field theory (aiLFT) method is deployed as a surrogate for experiment and the necessary d orbital sequences and relative energies are obtained computationally. These are fitted to local cellular ligand field (CLF) σ, π and δ bonding parameters. Results are reported for planar [Cu(CR3)4]-, (R = F, H), octahedral M(CO)6n (M = Fe, Mn, Cr, V, Ti; n = +2, +1, 0, -1, -2), and the sandwich compounds M(Cp)2 (Cp = cyclopentadienyl, M = Fe, Ni, V), [Ni(Cp)2]2+ and Cr(C6H6)2. With respect to the aiLFT framework, these organometallic systems behave just like coordination complexes and most maintain the integrity of their formal dn configurations. Both [Cu(CR3)4]- compounds are formulated as low-spin d8 CuIII species and have normal ligand fields consistent with their planar geometries. The metal carbonyls reveal a new way of counting valence electrons which only requires the CLF d orbital energy level diagram to rationalise the 18-electron rule as well as its many exceptions. The bonding in sandwich compounds shows a remarkable variation. In ferrocene, Cp- behaves as a strong field ligand, comparable to [CN]- in [Fe(CN)6]4-. Fe(Cp)2 is low spin as is Cr(C6H6)2. Cp- in Fe(Cp)2 is a weak σ donor, strong π donor and weak δ acceptor while benzene in Cr(C6H6)2 is also a weak σ and strong π donor but is a much better δ acceptor. In contrast, Cp- is weak field in high spin, 20-electron Ni(Cp)2 but 'ultra-covalent' in [Ni(Cp)2]2+. The formal IV oxidation state is too high for the ligand set and the integrity of the d6 configuration is lost. Similarly, [V(CO)6]- and [Ti(CO)6]2- are ultra-covalent except now the formal metal oxidation states are too negative. Both mechanisms relate to the breaching of the metal's 3s23p6 'Pauli shield' and these ultra-covalent systems lie outside the ab initio ligand field regime. However, within the ligand field regime, the bonding in 'coordination complexes' and 'organometallic compounds' has the same conceptual footing and the nature of the local σ, π and δ interactions can be extracted from analysing the ligand field d orbitals.
Collapse
Affiliation(s)
- Robert J Deeth
- Department of Chemistry, University of Warwick, CV4 7AL, UK.
| |
Collapse
|
5
|
Fritsch L, Rehsies P, Barakat W, Estes DP, Bauer M. Detection and Characterization of Hydride Ligands in Copper Complexes by Hard X-Ray Spectroscopy. Chemistry 2024; 30:e202400357. [PMID: 38651986 DOI: 10.1002/chem.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Transition metal complexes, particularly copper hydrides, play an important role in various catalytic processes and molecular inorganic chemistry. This study employs synchrotron hard X-ray spectroscopy to gain insights into the geometric and electronic properties of copper hydrides as potential catalysts for CO2 hydrogenation. The potential of high energy resolution X-ray absorption near-edge structure (HERFD-XANES) and valence-to-core X-ray emission (VtC-XES) is demonstrated with measurement on Stryker's reagent (Cu6H6) and [Cu3(μ3-H)(dpmppe)2](PF6)2 (Cu3H), alongside a non-hydride copper compound ICu(dtbppOH) (Cuy-I). The XANES analysis reveals that coordination geometries strongly influence the spectra, providing only indirect details about hydride coordination. The VtC-XES analysis exhibits a distinct signal around 8975 eV, offering a diagnostic tool to identify hydride ligands. Theoretical calculations support and extend these findings by comparing hydride-containing complexes with their hydride-free counterparts.
Collapse
Affiliation(s)
- Lorena Fritsch
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Pia Rehsies
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| | - Wael Barakat
- Instritute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Deven P Estes
- Instritute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Matthias Bauer
- Institute of Inorganic Chemistry and Center for Sustainable Systems Design (CSSD), Paderborn University, Warburger Straße 100, 33098, Paderborn, Germany
| |
Collapse
|
6
|
Fransson T, Pettersson LGM. TDDFT and the x-ray absorption spectrum of liquid water: Finding the "best" functional. J Chem Phys 2024; 160:234105. [PMID: 38884399 DOI: 10.1063/5.0209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
We investigate the performance of time-dependent density functional theory (TDDFT) for reproducing high-level reference x-ray absorption spectra of liquid water and water clusters. For this, we apply the integrated absolute difference (IAD) metric, previously used for x-ray emission spectra of liquid water [T. Fransson and L. G. M. Pettersson, J. Chem. Theory Comput. 19, 7333-7342 (2023)], in order to investigate which exchange-correlation (xc) functionals yield TDDFT spectra in best agreement to reference, as well as to investigate the suitability of IAD for x-ray absorption spectroscopy spectrum calculations. Considering highly asymmetric and symmetric six-molecule clusters, it is seen that long-range corrected xc-functionals are required to yield good agreement with the reference coupled cluster (CC) and algebraic-diagrammatic construction spectra, with 100% asymptotic Hartree-Fock exchange resulting in the lowest IADs. The xc-functionals with best agreement to reference have been adopted for larger water clusters, yielding results in line with recently published CC theory, but which still show some discrepancies in the relative intensity of the features compared to experiment.
Collapse
Affiliation(s)
- Thomas Fransson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, 10961 Stockholm, Sweden
| |
Collapse
|
7
|
Yan W, Poore AT, Yin L, Carter S, Ho YS, Wang C, Yachuw SC, Cheng YH, Krause JA, Cheng MJ, Zhang S, Tian S, Liu W. Catalytically Relevant Organocopper(III) Complexes Formed through Aryl-Radical-Enabled Oxidative Addition. J Am Chem Soc 2024; 146:15176-15185. [PMID: 38770641 DOI: 10.1021/jacs.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stepwise oxidative addition of copper(I) complexes to form copper(III) species via single electron transfer (SET) events has been widely proposed in copper catalysis. However, direct observation and detailed investigation of these fundamental steps remain elusive owing largely to the typically slow oxidative addition rate of copper(I) complexes and the instability of the copper(III) species. We report herein a novel aryl-radical-enabled stepwise oxidative addition pathway that allows for the formation of well-defined alkyl-CuIII species from CuI complexes. The process is enabled by the SET from a CuI species to an aryl diazonium salt to form a CuII species and an aryl radical. Subsequent iodine abstraction from an alkyl iodide by the aryl radical affords an alkyl radical, which then reacts with the CuII species to form the alkyl-CuIII complex. The structure of resultant [(bpy)CuIII(CF3)2(alkyl)] complexes has been characterized by NMR spectroscopy and X-ray crystallography. Competition experiments have revealed that the rate at which different alkyl iodides undergo oxidative addition is consistent with the rate of iodine abstraction by carbon-centered radicals. The CuII intermediate formed during the SET process has been identified as a four-coordinate complex, [CuII(CH3CN)2(CF3)2], through electronic paramagnetic resonance (EPR) studies. The catalytic relevance of the high-valent organo-CuIII has been demonstrated by the C-C bond-forming reductive elimination reactivity. Finally, localized orbital bonding analysis of these formal CuIII complexes indicates inverted ligand fields in σ(Cu-CH2) bonds. These results demonstrate the stepwise oxidative addition in copper catalysis and provide a general strategy to investigate the elusive formal CuIII complexes.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andrew T Poore
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yeu-Shiuan Ho
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Stephen C Yachuw
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yu-Ho Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Shiliang Tian
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
8
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
9
|
Geoghegan BL, Bilyj JK, Bernhardt PV, DeBeer S, Cutsail GE. X-ray absorption and emission spectroscopy of N 2S 2 Cu(II)/(III) complexes. Dalton Trans 2024; 53:7828-7838. [PMID: 38624161 DOI: 10.1039/d4dt00085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study investigates the influence of ligand charge on transition energies in a series of CuN2S2 complexes based on dithiocarbazate Schiff base ligands using Cu K-edge X-ray absorption spectroscopy (XAS) and Kβ valence-to-core (VtC) X-ray emission spectroscopy (XES). By comparing the formally Cu(II) complexes [CuII(HL1)] (HL12- = dimethyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and [CuII(HL2)] (HL22- = dibenzyl pentane-2,4-diylidenebis[carbonodithiohydrazonate]) and the formally Cu(III) complex [CuIII(L2)], distinct changes in transition energies are observed, primarily attributed to the metal oxidation state. Density functional theory (DFT) calculations demonstrate how an increased negative charge on the deprotonated L23- ligand stabilizes the Cu(III) center through enhanced charge donation, modulating the core transition energies. Overall, significant shifts to higher energies are noted upon metal oxidation, emphasizing the importance of scrutinizing ligand structure in XAS/VtC XES analysis. The data further support the redox-innocent role of the Schiff base ligands and underscore the criticality of ligand protonation levels in future spectroscopic studies, particularly for catalytic intermediates. The combined XAS-VtC XES methodology validates the Cu(III) oxidation state assignment while offering insights into ligand protonation effects on core-level spectroscopic transitions.
Collapse
Affiliation(s)
- Blaise L Geoghegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, W12 0BZ, London, UK
| | - Jessica K Bilyj
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
10
|
Peredkov S, Pereira N, Grötzsch D, Hendel S, Wallacher D, DeBeer S. PINK: a tender X-ray beamline for X-ray emission spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:622-634. [PMID: 38662410 DOI: 10.1107/s1600577524002200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
A high-flux beamline optimized for non-resonant X-ray emission spectroscopy (XES) in the tender X-ray energy range has been constructed at the BESSY II synchrotron source. The beamline utilizes a cryogenically cooled undulator that provides X-rays over the energy range 2.1 keV to 9.5 keV. This energy range provides access to XES [and in the future X-ray absorption spectroscopy (XAS)] studies of transition metals ranging from Ti to Cu (Kα, Kβ lines) and Zr to Ag (Lα, Lβ), as well as light elements including P, S, Cl, K and Ca (Kα, Kβ). The beamline can be operated in two modes. In PINK mode, a multilayer monochromator (E/ΔE ≃ 30-80) provides a high photon flux (1014 photons s-1 at 6 keV and 300 mA ring current), allowing non-resonant XES measurements of dilute substances. This mode is currently available for general user operation. X-ray absorption near-edge structure and resonant XAS techniques will be available after the second stage of the PINK commissioning, when a high monochromatic mode (E/ΔE ≃ 10000-40000) will be facilitated by a double-crystal monochromator. At present, the beamline incorporates two von Hamos spectrometers, enabling time-resolved XES experiments with time scales down to 0.1 s and the possibility of two-color XES experiments. This paper describes the optical scheme of the PINK beamline and the endstation. The design of the two von Hamos dispersive spectrometers and sample environment are discussed here in detail. To illustrate, XES spectra of phosphorus complexes, KCl, TiO2 and Co3O4 measured using the PINK setup are presented.
Collapse
Affiliation(s)
- Sergey Peredkov
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | - Nilson Pereira
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), Institute of Optics and Atomic Physics, Technical University of Berlin, Hardenbergstrasse 36, Berlin, Germany
| | - Stefan Hendel
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, Berlin, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Wee S, Lian X, Vorobyeva E, Tayal A, Roddatis V, La Mattina F, Gomez Vazquez D, Shpigel N, Salanne M, Lukatskaya MR. Tuning MXene Properties through Cu Intercalation: Coupled Guest/Host Redox and Pseudocapacitance. ACS NANO 2024; 18:10124-10132. [PMID: 38511608 PMCID: PMC11008361 DOI: 10.1021/acsnano.3c12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
MXenes are 2D transition metal carbides, nitrides, and/or carbonitrides that can be intercalated with cations through chemical or electrochemical pathways. While the insertion of alkali and alkaline earth cations into Ti3C2Tx MXenes is well studied, understanding of the intercalation of redox-active transition metal ions into MXenes and its impact on their electronic and electrochemical properties is lacking. In this work, we investigate the intercalation of Cu ions into Ti3C2Tx MXene and its effect on its electronic and electrochemical properties. Using X-ray absorption spectroscopy (XAS) and ab initio molecular dynamics (AIMD), we observe an unusual phenomenon whereby Cu2+ ions undergo partial reduction upon intercalation from the solution into the MXene. Furthermore, using in situ XAS, we reveal changes in the oxidation states of intercalated Cu ions and Ti atoms during charging. We show that the pseudocapacitive response of Cu-MXene originates from the redox of both the Cu intercalant and Ti3C2Tx host. Despite highly reducing potentials, Cu ions inside the MXene show an excellent stability against full reduction upon charging. Our findings demonstrate how electronic coupling between Cu ions and Ti3C2Tx modifies electrochemical and electronic properties of the latter, providing the framework for the rational design and utilization of transition metal intercalants for tuning the properties of MXenes for various electrochemical systems.
Collapse
Affiliation(s)
- Shianlin Wee
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Xiliang Lian
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Evgeniya Vorobyeva
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Akhil Tayal
- Deutsches
Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg D-22607, Germany
| | - Vladimir Roddatis
- Helmholtz
Centre Potsdam, GFZ German Research Centre
for Geosciences, 14473 Potsdam, Germany
| | - Fabio La Mattina
- Empa
- Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dario Gomez Vazquez
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Netanel Shpigel
- Department
of Chemical Science, Ariel University, Ariel 40700, Israel
| | - Mathieu Salanne
- Physicochimie
des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, Sorbonne Université, CNRS, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| | - Maria R. Lukatskaya
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
12
|
Wollweber T, Ayyer K. Nanoscale x-ray imaging with high spectral sensitivity using fluorescence intensity correlations. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024307. [PMID: 38638700 PMCID: PMC11026111 DOI: 10.1063/4.0000245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
This paper introduces spectral incoherent diffractive imaging (SIDI) as a novel method for achieving dark-field imaging of nanostructures with heterogeneous oxidation states. With SIDI, shifts in photoemission profiles can be spatially resolved, enabling the independent imaging of the underlying emitter distributions contributing to each spectral line. In the x-ray domain, this approach offers unique insights beyond the conventional combination of diffraction and x-ray emission spectroscopy. When applied at x-ray free-electron lasers, SIDI promises to be a versatile tool for investigating a broad range of systems, offering unprecedented opportunities for detailed characterization of heterogeneous nanostructures for catalysis and energy storage, including of their ultrafast dynamics.
Collapse
Affiliation(s)
| | - Kartik Ayyer
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Pueyo J, Joven-Sancho D, Martín A, Menjón B, Baya M. The Fluoride Method: Access to Silver(III) NHC Complexes. Chemistry 2024; 30:e202303937. [PMID: 38157456 DOI: 10.1002/chem.202303937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
We have synthesized the first silver(III) carbene complexes, (CF3 )3 Ag(NHC), by direct reaction of the silver(III) fluoride precursor complex [PPh4 ][(CF3 )3 AgF] with different imidazolium salts. This novel methodology circumvents the use of free NHC molecules. The silver(III) carbene complexes thus prepared are unprecedented and show remarkable thermal stabilities. They display square-planar or square-pyramidal geometry. Following our calculations, the electronic structure of a model representative complex exhibits Inverse Ligand Field (ILF). The compounds reported herein are synthetic analogues of the elusive difluorocarbene and carbonyl species proposed as intermediates in the acidic decomposition of [Ag(CF3 )4 ]- . The synthetic procedure reported is envisaged to enable access to carbene complexes of other late transition-metals in high oxidation states.
Collapse
Affiliation(s)
- Juan Pueyo
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Daniel Joven-Sancho
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| |
Collapse
|
14
|
Barman PD, Maurya AK, Madaan M, Kumar B, Roy A, Ghosh S. Determination and speciation of arsenic in drinking water samples by X-ray spectrometry technique. ANAL SCI 2024; 40:309-317. [PMID: 37980326 DOI: 10.1007/s44211-023-00461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Abstract
Arsenic is ranked as the first compound in the Substance Priority List 2023 by the Agency for Toxic Substances and Disease Registry (ATSDR). The most prominent entrance to the human body is through drinking water wherein the predominant species are arsenite and arsenate. The more toxic As(III) has rigorously threatened human health worldwide; hence, speciation and separation are the need of the hour. In this article, we have reported a simple method of arsenic speciation by wavelength dispersive X-ray fluorescence (WD-XRF) spectrometer. Valence to core (VtC) electronic transitions, i.e., AsKβ2,5 fluorescence lines were used for arsenic speciation. This speciation study by WD-XRF entails direct measurement of activated alumina pellets containing arsenate and arsenite species adsorbed from water sample without separation of the trivalent and pentavalent species. This is the first report wherein the X-ray technique has been explored for speciation analysis of arsenic and the biggest advantage of the method lies in its applicability to direct analysis of synthesized nanotubes or other solid-phase extraction sorbents entrapping both the arsenic species. For determination of total arsenic using activated alumina as adsorbent, the most intense AsKα1,2 analytical lines were used and the instrumental limit of detection and the lower limit of quantification were 0.23 μg/L and 0.89 μg/L, respectively. For speciation, these limits were calculated to be 50 μg/L and 200 μg/L, respectively.
Collapse
Affiliation(s)
- Piyali Deb Barman
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ashok Kumar Maurya
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India.
- Geological Survey of India, Northern Region, Aliganj Sector-E, Lucknow, 226024, India.
| | - Mukul Madaan
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Brijendra Kumar
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Ankit Roy
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| | - Subhendu Ghosh
- Geological Survey of India, Eastern Region, Salt Lake Sector-2, Kolkata, 700091, India
| |
Collapse
|
15
|
Alayoglu P, Chang T, Yan C, Chen YS, Mankad NP. Uncovering a CF 3 Effect on X-ray Absorption Energies of [Cu(CF 3 ) 4 ] - and Related Copper Compounds by Using Resonant Diffraction Anomalous Fine Structure (DAFS) Measurements. Angew Chem Int Ed Engl 2023; 62:e202313744. [PMID: 37938103 PMCID: PMC10842927 DOI: 10.1002/anie.202313744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Understanding the electronic structures of high-valent metal complexes aids the advancement of metal-catalyzed cross coupling methodologies. A prototypical complex with formally high valency is [Cu(CF3 )4 ]- (1), which has a formal Cu(III) oxidation state but whose physical analysis has led some to a Cu(I) assignment in an inverted ligand field model. Recent examinations of 1 by X-ray spectroscopies have led previous authors to contradictory conclusions, motivating the re-examination of its X-ray absorption profile here by a complementary method, resonant diffraction anomalous fine structure (DAFS). From analysis of DAFS measurements for a series of seven mononuclear Cu complexes including 1, here it is shown that there is a systematic trifluoromethyl effect on X-ray absorption that blue shifts the resonant Cu K-edge energy by 2-3 eV per CF3 , completely accounting for observed changes in DAFS profiles between formally Cu(III) complexes like 1 and formally Cu(I) complexes like (Ph3 P)3 CuCF3 (3). Thus, in agreement with the inverted ligand field model, the data presented herein imply that 1 is best described as containing a Cu(I) ion with dn count approaching 10.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tieyan Chang
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Connly Yan
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yu-Sheng Chen
- NSF's ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
16
|
Asundi AS, Noonikara-Poyil A, Phan VQH, Dias HVR, Sarangi R. Understanding Copper(I)-Ethylene Bonding Using Cu K-Edge X-ray Absorption Spectroscopy. Inorg Chem 2023; 62:19298-19311. [PMID: 37963391 DOI: 10.1021/acs.inorgchem.3c02904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Copper plays many important roles in ethylene chemistry, thus generating significant interest in understanding the structures, bonding, and properties of copper(I)-ethylene complexes. In this work, the ethylene binding characteristics of a series of isolable Cu(I)-ethylene compounds supported by a systematic set of fluorinated and nonfluorinated bis- and tris(pyrazolyl)borate and the related bis(pyrazolyl)methane ligands have been investigated. Through a combination of X-ray absorption spectroscopy and quantum chemical calculations, we characterize their geometric and electronic structures and the role that fluorinated ligands play in lowering the electron density at Cu sites. Such ligands increase the ethylene-to-Cu σ-donor interaction and, correspondingly, decrease the Cu-to-ethylene π back-bonding. This latter interaction leads to a partial vacancy in the Cu 3d level, which manifests experimentally as a low-energy feature in the Cu K pre-edge, allowing for its direct observation and comparison within a series of Cu(I) compounds. The pre-edge feature is reproduced by TD-DFT calculations, and its energy position and total intensity are used to quantitatively probe Cu-ethylene bonding. The variations in the Cu electronic structure influence the stability and overall ethylene bonding strength of these compounds, ultimately showing how substituents on the supporting ligands have a notable effect on their physical and chemical properties.
Collapse
Affiliation(s)
- Arun S Asundi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Vo Quang Huy Phan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Ritimukta Sarangi
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
17
|
Wang SY, Zhang JR, Guo M, Hua W. Interpreting the Cu-O 2 Antibonding Nature in Two Cu-O 2 Complexes from Cu L-Edge X-ray Absorption Spectra. Inorg Chem 2023; 62:17115-17125. [PMID: 37828769 DOI: 10.1021/acs.inorgchem.3c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Cu-O2 structures play important roles in bioinorganic chemistry and enzyme catalysis, where the bonding between the Cu and O2 parts serves as a fundamental research concern. Here, we performed a multiconfigurational study on the copper L2,3-edge X-ray absorption spectra (XAS) of two copper enzyme model complexes to gain a better understanding of the antibonding nature from the clearly interpreted structure-spectroscopy relation. We obtained spectra in good agreement with the experiments by using the restricted active space second-order perturbation theory (RASPT2) method, which facilitated reliable chemical analysis. Spectral feature interpretations were supported by computing the spin-orbit natural transition orbitals. All major features were assigned to be mainly from Cu 2p to antibonding orbitals between Cu 3d and O2 π*, Cu 3d-πO-O* (type A), and a few also to mixed antibonding/bonding orbitals between Cu 3d and O2 π, Cu 3d ± πO-O (type M). Our calculations provided a clear illustration of the interactions between Cu 3d and O2 π*/π orbitals that are carried in the metal L-edge XAS.
Collapse
Affiliation(s)
- Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Meiyuan Guo
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala 75105, Sweden
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
18
|
Ienco A, Ruffo F, Manca G. The Role of Inverted Ligand Field in the Electronic Structure and Reactivity of Octahedral Formal Platinum (IV) Complexes. Chemistry 2023; 29:e202301669. [PMID: 37522387 DOI: 10.1002/chem.202301669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Platinum complexes are ubiquitous in chemistry and largely used as catalysts or as precursors in drug chemistry, thus a deep knowledge of their electronic properties may help in planning new synthetic strategies or exploring new potential applications. Herein, the electronic structure of many octahedral platinum complexes is drastically revised especially when they feature electronegative elements such as halogens and chalcogens. The investigation revealed that in most cases the five d platinum orbitals are invariably full, thus the empty antibonding orbitals, usually localized on the metal, are mainly centered on the ligands, suggesting a questionable assignment of formal oxidation state IV. The analysis supports the occurrence of the inverted ligand field theory in all cases with the only exceptions of the Pt-F and Pt-O bonding. The trends for the molecular complexes are mirrored also by the density of states plots of extended structures featuring octahedral platinum moieties in association with chalcogens atoms. Finally, the oxidative addition of a Se-Cl linkage to a square platinum complex to achieve an octahedral moiety has been revised in the framework of the inverted ligand field.
Collapse
Affiliation(s)
- Andrea Ienco
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ruffo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia 21, Napoli, Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
19
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
20
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
21
|
Liu Y, Chatterjee S, Cutsail GE, Peredkov S, Gupta SK, Dechert S, DeBeer S, Meyer F. Cu 4S Cluster in "0-Hole" and "1-Hole" States: Geometric and Electronic Structure Variations for the Active Cu Z* Site of N 2O Reductase. J Am Chem Soc 2023; 145:18477-18486. [PMID: 37565682 PMCID: PMC10450684 DOI: 10.1021/jacs.3c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/12/2023]
Abstract
The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique μ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(μ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(μ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(μ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(μ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central μ4-S in the fully reduced 0-hole state.
Collapse
Affiliation(s)
- Yang Liu
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sayanti Chatterjee
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Institute
of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Sergey Peredkov
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Sandeep K. Gupta
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
22
|
DiMucci IM, Titus CJ, Nordlund D, Bour JR, Chong E, Grigas DP, Hu CH, Kosobokov MD, Martin CD, Mirica LM, Nebra N, Vicic DA, Yorks LL, Yruegas S, MacMillan SN, Shearer J, Lancaster KM. Scrutinizing formally Ni IV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. Chem Sci 2023; 14:6915-6929. [PMID: 37389249 PMCID: PMC10306094 DOI: 10.1039/d3sc02001k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.
Collapse
Affiliation(s)
- Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford California 94305 USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - James R Bour
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Eugene Chong
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Dylan P Grigas
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | | | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS 118 Route de Narbonne 31062 Toulouse France
| | - David A Vicic
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Lydia L Yorks
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Jason Shearer
- Department of Chemistry, Trinity University San Antonio Texas 78212-7200 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
23
|
Gao Y, Wang J, Yang Y, Wang J, Zhang C, Wang X, Yao J. Engineering Spin States of Isolated Copper Species in a Metal-Organic Framework Improves Urea Electrosynthesis. NANO-MICRO LETTERS 2023; 15:158. [PMID: 37341868 PMCID: PMC10284786 DOI: 10.1007/s40820-023-01127-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/14/2023] [Indexed: 06/22/2023]
Abstract
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal-organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h-1 g-1 and an enhanced Faradaic efficiency of 23.09% at - 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty [Formula: see text] orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C-N coupling process, while CuII with a single-spin state ([Formula: see text]) in CuII-HHTP undergoes a two-electron migration pathway.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingnan Wang
- Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yijun Yang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jian Wang
- Research Center for Magnetic and Spintronic Materials National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
24
|
Sension RJ, McClain TP, Lamb RM, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chollet M, Chung T, Deb A, Dewan PA, Gee LB, Huang Ze En J, Jiang Y, Khakhulin D, Li J, Michocki LB, Miller NA, Otte F, Uemura Y, van Driel TB, Penner-Hahn JE. Watching Excited State Dynamics with Optical and X-ray Probes: The Excited State Dynamics of Aquocobalamin and Hydroxocobalamin. J Am Chem Soc 2023. [PMID: 37327324 DOI: 10.1021/jacs.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kβ and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Paul A Dewan
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jianhao Li
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
25
|
den Boer D, Konovalov AI, Siegler MA, Hetterscheid DGH. Unusual Water Oxidation Mechanism via a Redox-Active Copper Polypyridyl Complex. Inorg Chem 2023; 62:5303-5314. [PMID: 36989161 PMCID: PMC10091478 DOI: 10.1021/acs.inorgchem.3c00477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 03/30/2023]
Abstract
To improve Cu-based water oxidation (WO) catalysts, a proper mechanistic understanding of these systems is required. In contrast to other metals, high-oxidation-state metal-oxo species are unlikely intermediates in Cu-catalyzed WO because π donation from the oxo ligand to the Cu center is difficult due to the high number of d electrons of CuII and CuIII. As a consequence, an alternative WO mechanism must take place instead of the typical water nucleophilic attack and the inter- or intramolecular radical-oxo coupling pathways, which were previously proposed for Ru-based catalysts. [CuII(HL)(OTf)2] [HL = Hbbpya = N,N-bis(2,2'-bipyrid-6-yl)amine)] was investigated as a WO catalyst bearing the redox-active HL ligand. The Cu catalyst was found to be active as a WO catalyst at pH 11.5, at which the deprotonated complex [CuII(L-)(H2O)]+ is the predominant species in solution. The overall WO mechanism was found to be initiated by two proton-coupled electron-transfer steps. Kinetically, a first-order dependence in the catalyst, a zeroth-order dependence in the phosphate buffer, a kinetic isotope effect of 1.0, a ΔH⧧ value of 4.49 kcal·mol-1, a ΔS⧧ value of -42.6 cal·mol-1·K-1, and a ΔG⧧ value of 17.2 kcal·mol-1 were found. A computational study supported the formation of a Cu-oxyl intermediate, [CuII(L•)(O•)(H2O)]+. From this intermediate onward, formation of the O-O bond proceeds via a single-electron transfer from an approaching hydroxide ion to the ligand. Throughout the mechanism, the CuII center is proposed to be redox-inactive.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Andrey I. Konovalov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Maxime A. Siegler
- Department
of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
26
|
Bera M, Kaur S, Keshari K, Santra A, Moonshiram D, Paria S. Structural and Spectroscopic Characterization of Copper(III) Complexes and Subsequent One-Electron Oxidation Reaction and Reactivity Studies. Inorg Chem 2023; 62:5387-5399. [PMID: 36972560 DOI: 10.1021/acs.inorgchem.2c04168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The formation of Cu(III) species are often invoked as the key intermediate in Cu-catalyzed organic transformation reactions. In this study, we synthesized Cu(II) (1) and Cu(III) (3) complexes supported by a bisamidate-bisalkoxide ligand consisting of an ortho-phenylenediamine (o-PDA) scaffold and characterized them through an array of spectroscopic techniques, including UV-visible, electron paramagnetic resonance, X-ray crystallography, and 1H nuclear magnetic resonance (NMR) and X-ray absorption spectroscopy. The Cu-N/O bond distances in 3 are ∼0.1 Å reduced compared to 1, implying a significant increase in 3's overall effective nuclear charge. Further, a Cu(III) complex (4) of a bisamidate-bisalkoxide ligand containing a trans-cyclohexane-1,2-diamine moiety exhibits nearly identical Cu-N/O bond distances to that of 3, inferring that the redox-active o-PDA backbone is not oxidized upon one-electron oxidation of the Cu(II) complex (1). In addition, a considerable difference in the 1s → 4p and 1s → 3d transition energy was observed in the X-ray absorption near-edge structure data of 3 vs 1, which is typical for the metal-centered oxidation process. Electrochemical measurements of the Cu(II) complex (1) in acetonitrile exhibited two consecutive redox couples at -0.9 and 0.4 V vs the Fc+/Fc reference electrode. One-electron oxidation reaction of 3 further resulted in the formation of a ligand-oxidized Cu complex (3a), which was characterized in depth. Reactivity studies of species 3 and 3a were explored toward the activation of the C-H/O-H bonds. A bond dissociation free energy (BDFE) value of ∼69 kcal/mol was estimated for the O-H bond of the Cu(II) complex formed upon transfer of hydrogen atom to 3. The study represents a thorough spectroscopic characterization of high-valent Cu complexes and sheds light on the PCET reactivity studies of Cu(III) complexes.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
27
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Liu Y, Resch SG, Chen H, Dechert S, Demeshko S, Bill E, Ye S, Meyer F. Fully Delocalized Mixed-Valent Cu 1.5 Cu 1.5 Complex: Strong Cu-Cu interaction and Fast Electron Self-Exchange Rate Despite Large Structural Changes. Angew Chem Int Ed Engl 2023; 62:e202215840. [PMID: 36504436 DOI: 10.1002/anie.202215840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A flexible macrocyclic ligand with two tridentate {CNC} compartments can host two Cu ions in reversibly interconvertible states, CuI CuI (1) and mixed-valent Cu1.5 Cu1.5 (2). They were characterized by XRD and multiple spectroscopic methods, including EPR, UV/Vis absorption and MCD, in combination with TD-DFT and CASSCF calculations. 2 features a short Cu⋅⋅⋅Cu distance (≈2.5 Å; compared to ≈4.0 Å in 1) and a very high delocalization energy of 13 000 cm-1 , comparable to the mixed-valent state of the biological CuA site. Electron self-exchange between 1 and 2 is rapid despite large structural reorganization, and is proposed to proceed via a sequential mechanism involving an active conformer of 1, viz. 1'; the latter has been characterized by XRD. Such electron transfer (ET) process is reminiscent of the conformationally gated ET proposed for biological systems. This redox couple is a unique pair of flexible dicopper complexes, achieving fast electron self-exchange closely related to the function of the CuA site.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Stefan G Resch
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Haowei Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Eckhard Bill
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
29
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Trifonova EA, Leach IF, de Haas WB, Havenith RWA, Tromp M, Klein JEMN. Spectroscopic Manifestations and Implications for Catalysis of Quasi-d 10 Configurations in Formal Gold(III) Complexes. Angew Chem Int Ed Engl 2023; 62:e202215523. [PMID: 36508713 PMCID: PMC10107628 DOI: 10.1002/anie.202215523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Several gold +I and +III complexes are investigated computationally and spectroscopically, focusing on the d-configuration and physical oxidation state of the metal center. Density functional theory calculations reveal the non-negligible electron-sharing covalent character of the metal-to-ligand σ-bonding framework. The bonding of gold(III) is shown to be isoelectronic to the formal CuIII complex [Cu(CF3 )4 ]1- , in which the metal center tries to populate its formally unoccupied 3dx2-y2 orbital via σ-bonding, leading to a reduced d10 CuI description. However, Au L3 -edge X-ray absorption spectroscopy reveals excitation into the d-orbital of the AuIII species is still possible, showing that a genuine d10 configuration is not achieved. We also find an increased electron-sharing nature of the σ-bonds in the AuI species, relative to their AgI and CuI analogues, due to the low-lying 6s orbital. We propose that gold +I and +III complexes form similar bonds with substrates, owing primarily to participation of the 5dx2-y2 or 6s orbital, respectively, in bonding, indicating why AuI and AuIII complexes often have similar reactivity.
Collapse
Affiliation(s)
- Evgeniya A. Trifonova
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Winfried B. de Haas
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent University9000GentBelgium
| | - Moniek Tromp
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AG GroningenThe Netherlands
| |
Collapse
|
31
|
Shearer J, Vasiliauskas D, Lancaster KM. Bonding and the role of electrostatics in driving C-C bond formation in high valent organocopper compounds. Chem Commun (Camb) 2022; 59:98-101. [PMID: 36472142 PMCID: PMC10173383 DOI: 10.1039/d2cc05865k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures and contrasting reactivity of [Cu(CF3)4]- and [Cu(CF3)3(CH3)]- were probed using coupled cluster and ab initio valence bond calculations. The Cu-C bonds in these complexes were found to be charge shift bonds. A key finding is that electrostatics likely prevent [Cu(CF3)4]- from accessing a productive transition state for C-C bond formation while promote one for [Cu(CF3)3(CH3)]-. These results therefore highlight essential design criteria for Cu-mediated C-C/C-heteroatom bond formation.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Dovydas Vasiliauskas
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, USA.
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, 162 Sciences Drive, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Luo X, Zhang L, Guo M, Liu Z, Wu D, Zhen D, Liu Y. Engineering the Structural Defects of Spinel Oxide Nanoneedles by Doping of V for a Highly Efficient Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50055-50067. [PMID: 36283003 DOI: 10.1021/acsami.2c15524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rational design of multi-structural defects in the transition-metal oxides is a very alluring and challenging strategy to significantly improve its oxygen evolution reaction (OER) performance. Herein, a simple and promising element doping approach is demonstrated to fabricate a poor-crystalline V-doping CuCo2O4 (V-CuCo2O4) nanoneedle with rich oxygen vacancies (Vo), partially amorphous phase, and Co2+ defects on the carbon fiber (CF) (V-CuCo2O4/CF). The results indicate that the V doping could further weaken the crystallinity of V-CuCo2O4, providing the thoroughfares for the convenience of electrolyte penetration and the exposure of active sites. Meanwhile, [CoO6] octahedron in the V-CuCo2O4 lattice is gravely distorted due to a strong electronic interaction between the doped V and Co atoms, creating more Co2+ active species. With the merits of these multiple structural defects, V-CuCo2O4/CF exhibits rich active sites, and its intrinsically electrocatalytic activity is significantly enhanced. The optimized V-CuCo2O4/CF electrocatalyst has a significantly enhanced OER activity with a required low overpotential of ∼204 and ∼246 mV at a current density of 100 and 300 mA cm-2, respectively, a small Tafel slope of 40.7 mV dec-1, and excellent stability in an alkaline medium. Furthermore, the results from the projected partial density of states calculation not only demonstrate that the 3-fol-coordinated Co near Vo bonded with Cu and V sites (Cu-Co(surf-Vo)-V) exhibits an enhanced electronic transfer activity but also reveal that the doped V could protect the Co sites from the deactivation by intermediates overbinding on the V sites. This work provides new insights into structure engineering of spinel phase copper cobaltite, resulting in significantly boosting electrocatalytic OER activity.
Collapse
Affiliation(s)
- Xiaohu Luo
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun558000, P. R. China
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
- Guizhou General Colleges, Universities of Engineering Research Center of Corrosion and Anticorrosion of Materials, Duyun558000, P. R. China
| | - Lei Zhang
- School of Chemistry and Environment, Jiaying University, Meizhou, Guangdong514015, P. R. China
| | - Meng Guo
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun558000, P. R. China
- Guizhou General Colleges, Universities of Engineering Research Center of Corrosion and Anticorrosion of Materials, Duyun558000, P. R. China
| | - Zhen Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| | - Dawang Wu
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun558000, P. R. China
- Guizhou General Colleges, Universities of Engineering Research Center of Corrosion and Anticorrosion of Materials, Duyun558000, P. R. China
| | - Deshuai Zhen
- School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun558000, P. R. China
- Guizhou General Colleges, Universities of Engineering Research Center of Corrosion and Anticorrosion of Materials, Duyun558000, P. R. China
| | - Yali Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
33
|
Zhang Q, Tong S, Wang MX. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles. Acc Chem Res 2022; 55:2796-2810. [PMID: 35994690 DOI: 10.1021/acs.accounts.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent decades have witnessed a resurgence of the study of copper-catalyzed organic reactions. As the surrogate of noble metal catalysts, copper salts have been shown to exhibit remarkable versatility in activating various C-H bonds enabling the construction of diverse carbon-carbon and carbon-heteroatom bonds. Advantageously, copper salts are also naturally abundant, inexpensive, and less toxic in comparison to precious metals. Despite significant developments in synthesis, the mechanism of copper catalysis remains elusive. Hypothetical pathways such as the two-electron Cu(III)/Cu(I) and Cu(II)/Cu(0) catalytic cycles and the one-electron Cu(II)/Cu(I) catalytic cycle have been invoked to diagram C-H bond transformations because of the formidable challenges to isolate and characterize transient high valent organocopper intermediates. In fact, organocopper chemistry has been dominated for a long time by the acknowledged nucleophilic organocopper(I) compounds. Since the beginning of the new millennium, we have been systematically studying the supramolecular chemistry of heteracalix[n]aromatics. Owing to the ease of their synthesis and selective functionalizations, self-tunable conformation and cavity structures resulting from the interplay of heteroatoms with aromatic subunits, and outstanding properties in molecular recognition and self-assembly, heteracalix[n]aromatics have become a class of privileged synthetic macrocyclic hosts. Our journey to the chemistry of high valent organocopper compounds started with a serendipitous discovery of the facile formation of a stable organocopper compound, which contains astonishingly a Ph-Cu(III) σ-bond under very mild aerobic conditions. When we examined routinely the effect of the macrocyclic structures on noncovalent complexation properties, titration of tetraazacalix[1]arene[3]pyridine with Cu(ClO4)2·6H2O resulted in the precipitation of dark-purple crystals of phenylcopper(III) diperchlorate. Our curiosity about the transformation of an arene C-H bond into an Ar-Cu(III) bond prompted us to conduct an in-depth investigation of the reaction of macrocyclic arenes with copper(II) salts, leading to the isolation of arylcopper(II) compounds which are unprecedented and the missing link in organocopper chemistry. With structurally well-defined organometallics in hand, we have explored extensively the reactivities of both arylcopper(II) and arylcopper(III) compounds, demonstrating their versatility and uniqueness in chemical synthesis. Novel and fascinating arene C-H transformations under copper catalysis have been developed. Using acquired high valent arylcopper compounds as molecular probes, and employing the functionalizations of tetraazacalix[1]arene[3]pyridines as model reactions, we have revealed the diverse mechanisms of copper-promoted arene C-H bond reactions. Elusive reaction pathways of some copper-catalyzed C-X bond activations have also been unraveled. In the meantime, we have also witnessed pleasingly the rapid development of field with the advent of new high valent organocopper compounds. Without any doubt, studies of the synthesis, reactivity, and catalysis of high valent organocopper compounds have been reshaping the field of organocopper chemistry. This Account summarizes our endeavors to explore the chemistry of structurally well-defined arylcopper(II) and arylcopper(III) compounds and the mechanisms of copper-catalyzed arene C-H and C-X bond transformations. We hope this Account will inspire chemists to study thoroughly the fundamentals and the cutting-edge catalysis of high valent organocopper compounds advancing and redefining the discipline of organocopper chemistry.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Qing Hua Yuan, Haidian District, Beijing 100084, China
| |
Collapse
|
34
|
Leach IF, Havenith RWA, Klein JEMN. Revisiting Formal Copper(III) Complexes: Bridging Perspectives with Quasi- d 10 Configurations. Eur J Inorg Chem 2022; 2022:e202200247. [PMID: 36619312 PMCID: PMC9804752 DOI: 10.1002/ejic.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Indexed: 01/11/2023]
Abstract
The formal Cu(III) complex [Cu(CF3)4]1- has often served as a paradigmatic example of challenging oxidation state assignment - with many reports proposing conflicting descriptions. Here we report a computational analysis of this compound, employing Energy Decomposition Analysis and Intrinsic Bond Orbital Analysis. We present a quasi-d 10 perspective of the metal centre, resulting from ambiguities in d-electron counting. The implications for describing reactions which undergo oxidation state changes, such as the formal reductive elimination from the analogous [Cu(CF3)3(CH2Ph)]1- complex (Paeth et al. J. Am. Chem. Soc. 2019, 141, 3153), are probed. Electron flow analysis finds that the changes in electronic structure may be understood as a quasi-d 10 to d 10 transition at the metal centre, rendering this process essentially redox neutral. This is reminiscent of a previously studied formal Ni(IV) complex (Steen et al., Angew. Chem. Int. Ed. 2019, 58, 13133-13139), and indicates that our description of electronic structure has implications for the understanding of elementary organometallic reaction steps.
Collapse
Affiliation(s)
- Isaac F. Leach
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Remco W. A. Havenith
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Ghent Quantum Chemistry GroupDepartment of ChemistryGhent UniversityKrijgslaan 281 (S3)Ghent9000 GentBelgium
| | - Johannes E. M. N. Klein
- Molecular Inorganic ChemistryStratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
35
|
Penfold TJ, Rankine CD. A deep neural network for valence-to-core X-ray emission spectroscopy. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- T. J. Penfold
- Chemistry–School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - C. D. Rankine
- Chemistry–School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
37
|
Romero-Muñiz I, Romero-Muñiz C, del Castillo-Velilla I, Marini C, Calero S, Zamora F, Platero-Prats AE. Revisiting Vibrational Spectroscopy to Tackle the Chemistry of Zr 6O 8 Metal-Organic Framework Nodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27040-27047. [PMID: 35639862 PMCID: PMC9204696 DOI: 10.1021/acsami.2c04712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
The metal-organic framework MOF-808 contains Zr6O8 nodes with a high density of vacancy sites, which can incorporate carboxylate-containing functional groups to tune chemical reactivity. Although the postsynthetic methods to modify the chemistry of the Zr6O8 nodes in MOFs are well known, tackling these alterations from a structural perspective is still a challenge. We have combined infrared spectroscopy experiments and first-principles calculations to identify the presence of node vacancies accessible for chemical modifications within the MOF-808. We demonstrate the potential of our approach to assess the decoration of MOF-808 nodes with different catechol-benzoate ligands. Furthermore, we have applied advanced synchrotron characterization tools, such as pair distribution function analyses and X-ray absorption spectroscopy, to resolve the atomic structure of single metal sites incorporated into the catechol groups postsynthetically. Finally, we demonstrate the catalytic activity of these MOF-808 materials decorated with single copper sites for 1,3-dipolar cycloadditions.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlos Romero-Muñiz
- Departamento
de Física Aplicada I, Universidad
de Sevilla, E-41012 Seville, Spain
| | - Isabel del Castillo-Velilla
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Carlo Marini
- CLAESS
beamline, ALBA Synchrotron, Cerdanyola
del Vallès 08290, Spain
| | - Sofía Calero
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Félix Zamora
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Instituto
de Investigación Avanzada en Ciencias Químicas de la
UAM, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E. Platero-Prats
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Instituto
de Investigación Avanzada en Ciencias Químicas de la
UAM, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
38
|
Toganoh M, Furuta H. Creation from Confusion and Fusion in the Porphyrin World─The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem Rev 2022; 122:8313-8437. [PMID: 35230807 DOI: 10.1021/acs.chemrev.1c00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Confusion is a novel concept of isomerism in porphyrin chemistry, delivering a steady stream of new chemistry since the discovery of N-confused porphyrin, a porphyrin mutant, in 1994. These days, the number of confused porphyrinoids is increasing, and confusion and associated fusion are found in various fields such as supramolecular chemistry, materials chemistry, biological chemistry, and catalysts. In this review, the birth and growth of confused porphyrinoids in the last three decades are described.
Collapse
Affiliation(s)
- Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|