1
|
Zheng SZ, Fayad E, Alshaye NA, Qin HL. Stereo- and Regioselective Installation of Vinyl Sulfonyl Fluoride onto Indoles without Transition-Metal Catalyst. J Org Chem 2024; 89:14564-14570. [PMID: 39315771 DOI: 10.1021/acs.joc.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Herein, we developed a practical method for synthesizing a class of novel and highly valuable indolyl vinyl sulfonyl fluorides. This protocol has carved out a path for constructing a broad range of vinyl sulfonyl fluorinated indoles with exclusive stereo- and regioselectivity through the Friedel-Crafts/elimination reaction without any transition-metal catalyst. This transformation features mild conditions, high efficiency, excellent selectivity, and rich substrate compatibility, highlighting its significant value in medicinal chemistry and many related disciplines.
Collapse
Affiliation(s)
- Shu-Zhen Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
2
|
Sau S, Kanikarapu S, Gandon V, Sahoo AK. Chiral Sulfoximine Mediated Cobalt-Catalyzed Atropselective C-H Annulation of Ynamides. Chemistry 2024; 30:e202401639. [PMID: 38829278 DOI: 10.1002/chem.202401639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
An achiral Cp*Co(III)-catalyzed enantioselective C-H activation/annulation of chiral sulfoximine-enabled thioamides with ynamides is presented herein. This method successfully synthesizes axially chiral five-membered 2-amidoindenones with good enantiocontrol. Interestingly, the annulation with chiral oxazolidone-containing ynamides could provide a separable mixture of diastereomers (up to ~10 : 1 dr). Moreover, enantiopure sulfoximines could be recovered with ~99 % purity, making this method practical. DFT studies show valuable insight into the mechanism and origin of asymmetric induction.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | | | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, 17 avenue des Sciences, 91400, Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Li T, Zhang Y, Du C, Yang D, Song MP, Niu JL. Simultaneous construction of inherent and axial chirality by cobalt-catalyzed enantioselective C-H activation of calix[4]arenes. Nat Commun 2024; 15:7673. [PMID: 39242562 PMCID: PMC11379863 DOI: 10.1038/s41467-024-52133-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
The simultaneous construction of multiple stereogenic elements in a single step is highly appealing and desirable in the field of asymmetric synthesis. Furthermore, the catalytic enantioselective synthesis of inherently chiral calix[n]arenes with high enantiopurity has long been a challenging endeavor. Herein, we report an enantioselective cobalt-catalyzed C-H activation/annulation for the efficient construction of inherently chiral calix[4]arenes bearing multiple C-N axially chiral element. By employing the benzamide tethered calix[4]arene as the substrate, the C-H annulation with alkynes can be successfully accomplished, leading to the generation of multiple stereogenic elements. A wide range of calix[4]arenes and alkynes are found to be well compatible, and exhibit good yields, high enantioselectivity and excellent diastereoselectivity. Notably, the gram-scale reaction, catalytic application, synthetic transformations, and chiral recognition further showcase the potential applications of this protocol.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Cong Du
- School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, China
| | - Dandan Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Wittmann L, Gordiy I, Friede M, Helmich-Paris B, Grimme S, Hansen A, Bursch M. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys Chem Chem Phys 2024; 26:21379-21394. [PMID: 39092890 DOI: 10.1039/d4cp01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Efficient dispersion corrections are an indispensable component of modern density functional theory, semi-empirical quantum mechanical, and even force field methods. In this work, we extend the well established D3 and D4 London dispersion corrections to the full actinides series, francium, and radium. To keep consistency with the existing versions, the original parameterization strategy of the D4 model was only slightly modified. This includes improved reference Hirshfeld atomic partial charges at the ωB97M-V/ma-def-TZVP level to fit the required electronegativity equilibration charge (EEQ) model. In this context, we developed a new actinide data set called AcQM, which covers the most common molecular actinide compound space. Furthermore, the efficient calculation of dynamic polarizabilities that are needed to construct CAB6 dispersion coefficients was implemented into the ORCA program package. The extended models are assessed for the computation of dissociation curves of actinide atoms and ions, geometry optimizations of crystal structure cutouts, gas-phase structures of small uranium compounds, and an example extracted from a small actinide complex protein assembly. We found that the novel parameterizations perform on par with the computationally more demanding density-dependent VV10 dispersion correction. With the presented extension, the excellent cost-accuracy ratio of the D3 and D4 models can now be utilized in various fields of computational actinide chemistry and, e.g., in efficient composite DFT methods such as r2SCAN-3c. They are implemented in our freely available standalone codes (dftd4, s-dftd3) and the D4 version will be also available in the upcoming ORCA 6.0 program package.
Collapse
Affiliation(s)
- Lukas Wittmann
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Igor Gordiy
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- FACCTs GmbH, 50677, Köln, Germany
| |
Collapse
|
5
|
Adhikari B, Raju S, Awoyemi RF, Donnadieu B, Wipf DO, Stokes SL, Emerson JP. Synthesis and Characterization of Symmetrical N-Heterocyclic Carbene Copper(II) Complexes-An Investigation of the Influence of Pyridinyl Substituents. Molecules 2024; 29:3542. [PMID: 39124947 PMCID: PMC11314359 DOI: 10.3390/molecules29153542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify the impact of pyridinyl basicity on NCN pincer complexes. Both ligand precursors and copper(II) complexes are characterized using a range of techniques, including nuclear magnetic resonance (NMR) spectroscopy for 1H, 13C, 31P, and 19F nuclei, electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, cyclic voltammetry, and UV-Vis spectroscopy. The pyridine substitutions lead to minimal changes to bond lengths and angles in the X-ray crystal structures of these related complexes; there is a pronounced impact on the electrochemical behavior of both the ligand precursors and copper complexes in the solution. The substitution in the pyridinyl units of these complexes show an impact on the catalytic reactivity of these complexes as applied to a model C-N bond-forming reaction (CEL cross-coupling) under well-established conditions; however, this observation does not correlate to the expected change in basicity in these ligands.
Collapse
Affiliation(s)
| | | | | | | | | | - Sean L. Stokes
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA
| | - Joseph P. Emerson
- Department of Chemistry, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
6
|
Huang FR, Yao QJ, Zhang P, Teng MY, Chen JH, Jiang LC, Shi BF. Cobalt-Catalyzed Domino Transformations via Enantioselective C-H Activation/Nucleophilic [3 + 2] Annulation toward Chiral Bridged Bicycles. J Am Chem Soc 2024; 146:15576-15586. [PMID: 38753821 DOI: 10.1021/jacs.4c04623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.
Collapse
Affiliation(s)
- Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lu-Chen Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
7
|
Wu C, Lv J, Fan H, Su W, Cai X, Yu J. Mechanochemical C-H Arylation and Alkylation of Indoles Using 3 d Transition Metal and Zero-Valent Magnesium. Chemistry 2024; 30:e202304231. [PMID: 38294073 DOI: 10.1002/chem.202304231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/01/2024]
Abstract
Although the 3 d transition-metal catalyzed C-H functionalization have been extensively employed to promote the formation of valuable carbon-carbon bonds, the persistent problems, including the use of sensitive Grignard reagents and the rigorous operations (solvent-drying, inert gas protection, metal pre-activation and RMgX addition rate control), still leave great room for further development of sustainable methodologies. Herein, we report a mechanochemical technology toward in-situ preparation of highly sensitive organomagnesium reagents, and thus building two general 3 d transition-metal catalytic platforms that enables regioselective arylation and alkylation of indoles with a wide variety of halides (including those containing post transformable functionalities and heteroaromatic rings). This mechanochemical strategy also brings unique reactivity and high step-economy in producing functionalized N-free indole products.
Collapse
Affiliation(s)
- Chongyang Wu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jin Lv
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Weike Su
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xinjun Cai
- Hangzhou Red Cross Hospital, Hangzhou, 310014, P. R. China
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Zhang ZJ, Jacob N, Bhatia S, Boos P, Chen X, DeMuth JC, Messinis AM, Jei BB, Oliveira JCA, Radović A, Neidig ML, Wencel-Delord J, Ackermann L. Iron-catalyzed stereoselective C-H alkylation for simultaneous construction of C-N axial and C-central chirality. Nat Commun 2024; 15:3503. [PMID: 38664372 PMCID: PMC11045758 DOI: 10.1038/s41467-024-47589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C-H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C-N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Nicolas Jacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France
| | - Shilpa Bhatia
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Philipp Boos
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France.
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
9
|
Thönnißen V, Westphäling J, Atodiresei IL, Patureau FW. Atroposelective Chan-Evans-Lam Amination. Chemistry 2024; 30:e202304378. [PMID: 38179829 DOI: 10.1002/chem.202304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
The synthetic control of atropoisomerism along C-N bonds is a major challenge, and methods that allow C-N atroposelective bond formation are rare. This is a problem because each atropoisomer can feature starkly differentiated biological properties. Yet, among the three most practical and applicable classical amination methods available: 1) the Cu-catalyzed Ullmann-Goldberg reaction, 2) the Pd-catalyzed Buchwald-Hartwig reaction, and 3) the Cu-catalyzed Chan-Evans-Lam reaction, none has truly been rendered atroposelective at the newly formed C-N bond. The first ever Chan-Evans-Lam atroposelective amination is herein described with a simple copper catalyst and newly designed PyrOx chiral ligand. This method should find important applications in asymmetric synthesis, in particular for medicinal chemistry.
Collapse
Affiliation(s)
- Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Johannes Westphäling
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
10
|
Hore S, Singh A, Singh RP. Asymmetric 1,2-diaxial synthesis of bi-(hetero)aryl benzofulvene atropisomers via transient directing group-assisted dehydrogenative coupling. Chem Commun (Camb) 2024; 60:2524-2527. [PMID: 38328816 DOI: 10.1039/d3cc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The efficient cross-dehydrogenative coupling of electronically rich and sterically congested benzofulvene with bi-(hetero)aryl moieties to construct an axially chiral benzofulvene core remains a formidable task. In this study, we describe a highly efficient and practical palladium-catalyzed approach for atroposelective bi-(hetero)aryl benzofulvene synthesis, achieving excellent enantioselectivity with moderate yields. This protocol offers a remarkable opportunity for the direct regio- and enantioselective conversion of C-H bonds of benzofulvene to C-C bonds. Furthermore, the protocol permits the incorporation of benzofulvene with a 4-phenyl coumarin core, enabling access to a novel class of axially chiral coumarins.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Banerjee S, Punniyamurthy T. Palladium-Catalyzed Weak-Chelation-Assisted C4-Nitration of Indoles with tert-Butyl Nitrite: Formal Access to Aminated Indoles. Org Lett 2024; 26:988-993. [PMID: 38277494 DOI: 10.1021/acs.orglett.3c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Palladium-catalyzed weak-chelation-assisted C4-selective nitration of indoles has been accomplished employing tert-butyl nitrite in the presence of oxone under molecular oxygen at a moderate temperature. Aerobic conditions, C4-selectivity, substrate scope, conversion to valuable aminated indoles, and late-stage natural product modifications are the important practical features.
Collapse
Affiliation(s)
- Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
12
|
Lee C, Lee S, Kim A, Kwon Y. Nitro-Enabled Atroposelective Dynamic Kinetic Resolution of 2-Arylindoles by Phase-Transfer Catalysis. Org Lett 2024; 26:681-686. [PMID: 38232328 DOI: 10.1021/acs.orglett.3c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
This study presents the atroposelective alkylation of 2-arylindoles catalyzed by a substituted cinchonium salt as a phase-transfer catalyst. Under the optimized reaction conditions, various substrates are employed to yield products with high enantioselectivity. The presence of an ortho-nitro group at the aromatic ring is essential for high atroposelectivity, because it facilitates favorable interactions between the catalyst and substrate. The origin of the enantioselectivity reveals favorable π-π interactions for both enantiomers and unfavorable steric strains for undesired enantiomers.
Collapse
Affiliation(s)
- Chanhee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sujin Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ahreum Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Liao W, Du H, Chen M, Xiong Y, Zhou H, Qin T, Liu B. Sequential regioselective arylation of pyrazolones with diaryliodonium salts. Org Biomol Chem 2024; 22:708-713. [PMID: 38165289 DOI: 10.1039/d3ob01854g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The introduction of aromatic substituents into organic compounds significantly alters their physical and chemical characteristics. Yet, achieving precise control over the site-selectivity of arylation continues to pose a considerable challenge. We present here a controllable method for the site-selective mono-, di-, and triarylation of pyrazolone with diaryliodonium salts. The method showcases robustness, flexibility, and excellent compatibility with a broad range of functional groups. It enables control over both the site of arylation and the number of aryl additions. Specifically, three of the four substitutable positions in pyrazolone can be selectively arylated, effectively producing four products under controlled conditions. Additionally, the method supports one-pot sequential arylation, leading to an array of products with diverse aromatic substituents. Control experiments revealed the specific conditions of each reaction step.
Collapse
Affiliation(s)
- Wenbo Liao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Hairui Du
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Mingxiu Chen
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Yan Xiong
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Heye Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Tao Qin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Bin Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
14
|
Hu P, Hu L, Li XX, Pan M, Lu G, Li X. Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes. Angew Chem Int Ed Engl 2024; 63:e202312923. [PMID: 37971168 DOI: 10.1002/anie.202312923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.
Collapse
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Mengxiao Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
15
|
Kuang X, Li JJ, Liu T, Ding CH, Wu K, Wang P, Yu JQ. Cu-mediated enantioselective C-H alkynylation of ferrocenes with chiral BINOL ligands. Nat Commun 2023; 14:7698. [PMID: 38001060 PMCID: PMC10673954 DOI: 10.1038/s41467-023-43278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A wide range of Cu(II)-catalyzed C-H activation reactions have been realized since 2006, however, whether a C-H metalation mechanism similar to Pd(II)-catalyzed C-H activation reaction is operating remains an open question. To address this question and ultimately develop ligand accelerated Cu(II)-catalyzed C-H activation reactions, realizing the enantioselective version and investigating the mechanism is critically important. With a modified chiral BINOL ligand, we report the first example of Cu-mediated enantioselective C-H activation reaction for the construction of planar chiral ferrocenes with high yields and stereoinduction. The key to the success of this reaction is the discovery of a ligand acceleration effect with the BINOL-based diol ligand in the directed Cu-catalyzed C-H alkynylation of ferrocene derivatives bearing an oxazoline-aniline directing group. This transformation is compatible with terminal aryl and alkyl alkynes, which are incompatible with Pd-catalyzed C-H activation reactions. This finding provides an invaluable mechanistic information in determining whether Cu(II) cleaves C-H bonds via CMD pathway in analogous manner to Pd(II) catalysts.
Collapse
Affiliation(s)
- Xin Kuang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Chang-Hua Ding
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Kevin Wu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P.R. China.
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Wu YJ, Chen JH, Teng MY, Li X, Jiang TY, Huang FR, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Annulation of Benzylamines with Alkynes: Application to the Modular and Asymmetric Syntheses of Bioactive Molecules. J Am Chem Soc 2023; 145:24499-24505. [PMID: 38104268 DOI: 10.1021/jacs.3c10714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The transition metal-catalyzed enantioselective C-H functionalization strategy has revolutionized the logic of natural product synthesis. However, previous applications have heavily relied on the use of noble metal catalysts such as rhodium and palladium. Herein, we report the efficient synthesis of C1-chiral 1,2-dihydroisoquinolines (DHIQs) via enantioselective C-H/N-H annulation of picolinamides with alkynes catalyzed by a more sustainable and cheaper 3d metal catalyst, cobalt(II) acetate tetrahydrate. A wide range of enantiomerically enriched DHIQs were obtained in good yields with excellent enantioselectivities (up to 98% yield and >99% ee). The robustness and synthetic potential of this method were demonstrated by the modular and asymmetric syntheses of several tetrahydroisoquinoline alkaloids, including (S)-norlaudanosine, (S)-laudanosine, (S)-xylopinine, (S)-sebiferine, and (S)-cryptostyline II, and the asymmetric syntheses of key intermediates of (+)-solifenacin, FR115427, and (+)-NPS R-568.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tian-Yu Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Kee Cheng J, Tan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Compounds Involving Indole Derivatives. CHEM REC 2023; 23:e202300147. [PMID: 37358342 DOI: 10.1002/tcr.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N-H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C-C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
18
|
Wu YJ, Wang ZK, Jia ZS, Chen JH, Huang FR, Zhan BB, Yao QJ, Shi BF. Synthesis of Axially Chiral Biaryls through Cobalt(II)-Catalyzed Atroposelective C-H Arylation. Angew Chem Int Ed Engl 2023; 62:e202310004. [PMID: 37585308 DOI: 10.1002/anie.202310004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C-H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Kai Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Sheng Jia
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bei-Bei Zhan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
19
|
Liu Z, Gao B, Chernichenko K, Yang H, Lemaire S, Tang W. Enantioselective C-H Arylation for Axially Chiral Heterobiaryls. Org Lett 2023; 25:7004-7008. [PMID: 37708038 DOI: 10.1021/acs.orglett.3c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An enantioselective palladium-catalyzed C-H arylation of functionalized pyrazoles/triazoles/imidazoles is developed, affording a variety of axially chiral ortho-nitro/formyl-substituted heterobiaryls with excellent enantioselectivities and good yields. The method features a deuterated P-chiral phosphorus ligand CD3-AntPhos, a broad substrate scope of functionalized heterobiaryls, mild reaction conditions, and low palladium loadings.
Collapse
Affiliation(s)
- Ziyue Liu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ben Gao
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Konstantin Chernichenko
- Small Molecule Pharmaceutical Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, Beerse, Antwerp 2340, Belgium
| | - He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Sébastien Lemaire
- Small Molecule Pharmaceutical Development, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, Beerse, Antwerp 2340, Belgium
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
20
|
Basak S, Paul T, Punniyamurthy T. A redox-neutral weak carbonyl chelation assisted C4-H allylation of indoles with vinylcyclopropanes. Chem Commun (Camb) 2023; 59:11568-11571. [PMID: 37682283 DOI: 10.1039/d3cc03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A weak acyl chelation-assisted distal C4-H allylation of indoles has been accomplished using vinylcyclopropanes as an allylating agent under redox-neutral ruthenium(II) catalysis. The regioselectivity, removable directing group, substrate scope and diastereoselectivity are the important practical features.
Collapse
Affiliation(s)
- Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
21
|
Wang X, Si XJ, Sun Y, Wei Z, Xu M, Yang D, Shi L, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Isoquinolinone Skeletons Construction via Cobalt-Catalyzed Atroposelective C-H Activation/Annulation. Org Lett 2023; 25:6240-6245. [PMID: 37595028 DOI: 10.1021/acs.orglett.3c01685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Herein, the atroposelective construction of isoquinolinones bearing a C-N chiral axis has been successfully developed via a Co-catalyzed C-H bond activation and annulation process. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere to generate the target C-N axially chiral frameworks with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives. Additionally, the current protocol has proved to be an alternative approach for the C-N axial architectures fabrication under electrochemical conditions for cobalt/Salox catalysis, and this strategy allowed the efficient and atom-economical synthesis of various axially chiral isoquinolinones under mild reaction conditions.
Collapse
Affiliation(s)
- Xinhai Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yingjie Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhisen Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miao Xu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
22
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
23
|
Li T, Shi L, Zhao X, Wang J, Si XJ, Yang D, Song MP, Niu JL. C-N Axially Chiral Heterobiaryl Skeletons Construction via Cobalt-Catalyzed Atroposelective Annulation. Org Lett 2023. [PMID: 37428108 DOI: 10.1021/acs.orglett.3c01617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Herein, the atroposelective construction of five-six heterobiaryl skeleton-based C-N chiral axis has been successfully accomplished via a Co-catalyzed C-H bond activation and annulation process, in which the isonitrile was employed as the C1 source and the 8-aminoquinoline moiety served as both directing group and integral part of C-N atropisomers, respectively. This conversion can be effectively carried out in an environmentally friendly oxygen atmosphere, generating the target axial heterobiaryls with excellent reactivities and enantioselectivities (up to >99% ee) in the absence of any additives, and the obtained 3-iminoisoindolinone products with a five membered N-heterocycle exhibit high atropostability. Additionally, the C-N axially chiral monophosphine backbones derived from this protocol possess the potential to become an alternative ligand platform.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
24
|
Si XJ, Zhao X, Wang J, Wang X, Zhang Y, Yang D, Song MP, Niu JL. Cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes or alkynes: facile access to C-N axially chiral sultams. Chem Sci 2023; 14:7291-7303. [PMID: 37416705 PMCID: PMC10321536 DOI: 10.1039/d3sc01787g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Herein we report a cobalt-catalyzed enantioselective C-H/N-H annulation of aryl sulfonamides with allenes and alkynes, using either chemical or electrochemical oxidation. By using O2 as the oxidant, the annulation with allenes proceeds efficiently with a low catalyst/ligand loading of 5 mol% and tolerates a wide range of allenes, including 2,3-butadienoate, allenylphosphonate, and phenylallene, resulting in C-N axially chiral sultams with high enantio-, regio-, and position selectivities. The annulation with alkynes also exhibits excellent enantiocontrol (up to >99% ee) with a variety of functional aryl sulfonamides, and internal and terminal alkynes. Furthermore, electrochemical oxidative C-H/N-H annulation with alkynes is achieved in a simple undivided cell, demonstrating the versatility and robustness of the cobalt/Salox system. The gram-scale synthesis and asymmetric catalysis further highlight the practical utility of this method.
Collapse
Affiliation(s)
- Xiao-Ju Si
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xiaofang Zhao
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jianli Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Xinhai Wang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Yuanshuo Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Dandan Yang
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 P. R. China
| |
Collapse
|
25
|
Zhang ZJ, Li SW, Oliveira JCA, Li Y, Chen X, Zhang SQ, Xu LC, Rogge T, Hong X, Ackermann L. Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C-N axial chirality via cobalt catalysis. Nat Commun 2023; 14:3149. [PMID: 37258542 DOI: 10.1038/s41467-023-38872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Challenging enantio- and diastereoselective cobalt-catalyzed C-H alkylation has been realized by an innovative data-driven knowledge transfer strategy. Harnessing the statistics of a related transformation as the knowledge source, the designed machine learning (ML) model took advantage of delta learning and enabled accurate and extrapolative enantioselectivity predictions. Powered by the knowledge transfer model, the virtual screening of a broad scope of 360 chiral carboxylic acids led to the discovery of a new catalyst featuring an intriguing furyl moiety. Further experiments verified that the predicted chiral carboxylic acid can achieve excellent stereochemical control for the target C-H alkylation, which supported the expedient synthesis for a large library of substituted indoles with C-central and C-N axial chirality. The reported machine learning approach provides a powerful data engine to accelerate the discovery of molecular catalysis by harnessing the hidden value of the available structure-performance statistics.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, PR China.
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing, 100190, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, PR China.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.
| |
Collapse
|
26
|
Yan SB, Wang R, Li ZG, Li AN, Wang C, Duan WL. Copper-catalyzed asymmetric C(sp 2)-H arylation for the synthesis of P- and axially chiral phosphorus compounds. Nat Commun 2023; 14:2264. [PMID: 37081007 PMCID: PMC10119316 DOI: 10.1038/s41467-023-37987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Transition metal-catalyzed C-H bond functionalization is an important method in organic synthesis, but the development of methods that are lower cost and have a less environmental impact is desirable. Here, a Cu-catalyzed asymmetric C(sp2)-H arylation is reported. With diaryliodonium salts as arylating reagents, a range of ortho-arylated P-chiral phosphonic diamides were obtained in moderate to excellent yields with high enantioselectivities (up to 92% ee). Meanwhile, enantioselective C-3 arylation of diarylphosphine oxide indoles was also realized under similar conditions to construct axial chirality.
Collapse
Affiliation(s)
- Shao-Bai Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Zha-Gen Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - An-Na Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, 710119, Xi'an, China.
| |
Collapse
|
27
|
Yang D, Zhang X, Wang X, Si XJ, Wang J, Wei D, Song MP, Niu JL. Cobalt-Catalyzed Enantioselective C–H Annulation with Alkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Dandan Yang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinghua Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Ju Si
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Yao QJ, Huang FR, Chen JH, Zhong MY, Shi BF. Enantio- and Regioselective Electrooxidative Cobalt-Catalyzed C-H/N-H Annulation with Alkenes. Angew Chem Int Ed Engl 2023; 62:e202218533. [PMID: 36658097 DOI: 10.1002/anie.202218533] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
In recent years, the merging of electrosynthesis with 3d metal catalyzed C-H activation has emerged as a sustainable and powerful technique in organic synthesis. Despite the impressive advantages, the development of an enantioselective version remains elusive and poses a daunting challenge. Herein, we report the first electrooxidative cobalt-catalyzed enantio- and regioselective C-H/N-H annulation with olefins using an undivided cell at room temperature (up to 99 % ee). t Bu-Salox, a rationally designed Salox ligand bearing a bulky tert-butyl group at the ortho-position of phenol, was found to be crucial for this asymmetric annulation reaction. A strong cooperative effect between t Bu-Salox and 3,4,5-trichloropyridine enabled the highly enantio- and regioselective C-H annulation with the more challenging α-olefins without secondary bond interactions (up to 96 % ee and 97 : 3 rr). Cyclovoltametric studies, and the preparation, characterization, and transformation of cobaltacycle intermediates shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Zhong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
29
|
Messara A, Panossian A, Mikami K, Hanquet G, Leroux FR. Direct Deprotonative Functionalization of α,α-Difluoromethyl Ketones using a Catalytic Organosuperbase. Angew Chem Int Ed Engl 2023; 62:e202215899. [PMID: 36602033 DOI: 10.1002/anie.202215899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
The deprotonative functionalization of α,α-difluoromethyl ketones is described herein. Using a catalytic organosuperbase and a silane additive, the corresponding difluoroenolate could be generated and trapped with aldehydes to deliver various α,α-difluoro-β-hydroxy ketones in high yields. This new strategy tolerates numerous functional groups and represents the access to the difluoroenolate by direct deprotonation of the difluoromethyl unit. The diastereoselective version of the reaction was also investigated with d.r. up to 93 : 7. Several transformations were performed to demonstrate the synthetic potential of these α,α-difluoro-β-hydroxy ketones. In addition, this method has been extended to the use of other electrophiles such as imines and chalcogen derivatives, and a difluoromethyl sulfoxide as nucleophile, thus leading to a diversity of difluoromethylene compounds.
Collapse
Affiliation(s)
- Amélia Messara
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Armen Panossian
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Koichi Mikami
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, 152-8552, Tokyo, Japan
| | - Gilles Hanquet
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
30
|
Atroposelective desymmetrization of 2-arylresorcinols via Tsuji-Trost allylation. Commun Chem 2023; 6:42. [PMID: 36841918 PMCID: PMC9968306 DOI: 10.1038/s42004-023-00839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Palladium-catalyzed asymmetric allylic alkylation has proven to be a powerful method for the preparation of a wide variety of chiral molecules. However, the catalytic and atroposelective allylic alkylation is still rare and challenging, especially for biaryl substrates. Herein, we report the palladium-catalyzed desymmetric and atroposelective allylation, in which the palladium complex with a chiral phosphoramidite ligand enables desymmetrization of nucleophilic 2-arylresorcinols in a highly enantioselective manner. With the aid of the secondary kinetic resolution effect, a wide variety of substrates containing a hydroxymethyl group at the bottom aromatic ring are able to provide O-allylated products up to 98:2 er. Computational studies show an accessible quadrant of the allylpalladium complex and provide three plausible transition states with intra- or intermolecular hydrogen bonding. The energetically favorable transition state is in good agreement with the observed enantioselectivity and suggests that the catalytic reaction would proceed with an intramolecular hydrogen bond.
Collapse
|
31
|
Wu W, Fan S, Wu X, Fang L, Zhu J. Cobalt Homeostatic Catalysis for Coupling of Enaminones and Oxadiazolones to Quinazolinones. J Org Chem 2023; 88:1945-1962. [PMID: 36705660 DOI: 10.1021/acs.joc.2c01934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition metal catalysis has revolutionized modern synthetic chemistry for its diverse modes of coordination reactivity. However, this versatility in reactivity is also the predominant cause of catalyst deactivation, a persisting issue that can significantly compromise its synthetic value. Homeostatic catalysis, a catalytic process that can sustain its productive catalytic cycle even when chemically disturbed, is proposed herein as an effective tactic to address the challenge. In particular, a cobalt homeostatic catalysis process has been developed for the water-tolerant coupling of enaminones and oxadiazolones to quinazolinones. Dynamic covalent bonding serves as a mechanistic handle for the preferred buffering of water onto enaminone and reverse exchange by a released secondary amine, thus securing reversible entry into cobalt's dormant and active states for productive catalysis. Through this homeostatic catalysis mode, a broad structural scope has been achieved for quinazolinones, enabling further elaboration into distinct pharmaceutically active agents.
Collapse
Affiliation(s)
- Weiping Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Lili Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
32
|
Choppin S, Wencel-Delord J. Sulfoxide-Directed or 3d-Metal Catalyzed C-H Activation and Hypervalent Iodines as Tools for Atroposelective Synthesis. Acc Chem Res 2023; 56:189-202. [PMID: 36705934 DOI: 10.1021/acs.accounts.2c00573] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusThe expanding applications of atropisomeric compounds combined with the growing diversity of such chiral molecules translate into an urgent need for innovative synthetic strategies allowing their rapid, efficient, and sustainable synthesis. Recently, the C-H activation approach has provided new opportunities for synthesizing axially chiral compounds. The two complementary approaches allowing implementation of the C-H activation methodology toward the synthesis of the chiral molecules imply either ortho-functionalization of the preexisting prochiral or atropo-unstable biaryl substrates or direct C-H arylation of sterically encumbered aromatics. The first approach required the preinstallation of a directing group on a biaryl precursor, which drastically limits the diversity of thus generated products. To tackle this important synthetic limitation, we have envisioned using a chiral sulfoxide as both directing group and chiral auxiliary. Indeed, in addition to efficiently coordinating the Pd-catalyst thus allowing chiral induction, the sulfoxide moiety can be easily removed, via the sulfoxide/lithium exchange, after the C-H activation step, thus guaranteeing an almost unlimited postdiversification of the atropisomeric products. The efficiency and generality of this concept could be illustrated by developing atropo-diastereoselective oxidative Heck reaction, direct acetoxylation, and iodination, as well as direct arylation. Besides, the synthetic utility of this methodology was demonstrated by designing an expedient synthesis of a direct steganone precursor. This unique transformation also allowed us to build up unprecedented triaryl scaffolds with two perfectly controlled chiral axes, original chiral skeletons for new ligand design. While considering the atroposelective direct arylations, the clear antagonism between the harsh reaction conditions frequently required for the coupling of two sterically hindered compounds and the atropo-stability of the new product, resulted in the scarcity of such transformations. To solve this fundamental challenge, we have focused on the application of a low-valent cobalt catalyst, prompted to catalyze C-H activation of indoles at the C2 position under extremely mild reaction conditions (room temperature). Accordingly, atroposelective C2-arylation of indoles could be achieved using an original carbene ligand and delivering the uncommon atropoisomerically pure indoles in excellent yields and enantioselectivities. Detailed combined experimental and theoretical mechanistic studies shed light on the mechanism of this transformation, providing strong evidence regarding the origin of the enantioselectivity. Finally, the antagonism between steric hindrance required to guarantee the atropo-stability of a molecule and harsh reaction conditions required to couple two partners is a strong limitation not only for the development of atroposelective C-H arylation reaction but also for the development of direct synthesis of the C-N axially chiral compounds. Despite the long history and incredible advances achieved in Ullmann-Goldberg and Buchwald-Hartwig couplings, atroposelective versions of such transformations have remained unprecedented until recently. Our idea to tackle this challenging issue consisted in using hypervalent iodines as highly reactive coupling partners, thus allowing the desired N-arylations to occur at room temperature. This hypothesis could be validated by reporting first atropo-diastereoselective Cu-catalyzed N-arylation, using sulfoxide λ3-iodanes as the coupling partners. Subsequently, the enantioselective version of this atroposelective N-arylation was successfully established by using a chiral Cu-complex bearing a BOX ligand. In conclusion, we report herein designing tailored-made solutions to provide new synthetic strategies to construct the atropisomeric molecules, including biaryls and C-N axially chiral molecules.
Collapse
Affiliation(s)
- Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
33
|
Yu L, Liu J, Xiang S, Lu T, Ma P, Zhao Q. Silver-Catalyzed Direct Nucleophilic Cyclization: Enantioselective De Novo Synthesis of C-C Axially Chiral 2-Arylindoles. Org Lett 2023; 25:522-527. [PMID: 36652713 DOI: 10.1021/acs.orglett.2c04234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atropisomeric indoles widely exist in natural products, pharmaceuticals, functional materials, and catalysts for their featured biological activities, photoelectric properties, and catalytic activities, while facile and de novo construction of this motif remains underexplored. Herein, we report a chiral silver phosphate-catalyzed direct 5-endo-dig nucleophilic cyclization of 2-alkynylanilins under mild conditions, affording various C-C axially chiral 2-arylindoles in high to excellent yields and enantioselectivities. Control experiments implied the cooperative catalysis of AgOAc and chiral phosphoric acid, wherein the former accelerated the desired transformation while the latter improved the enantioselectivity. In addition, as the first example of silver-catalyzed enantioselective de novo synthesis of C-C axially chiral indole skeletons, synthetic applications and products' thermal stability have been investigated.
Collapse
Affiliation(s)
- Liangbin Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shiyu Xiang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Taotao Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ping Ma
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qingyang Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
34
|
Huang F, Tao LF, Liu J, Qian L, Liao JY. Diastereo- and enantioselective synthesis of biaryl aldehydes bearing both axial and central chirality. Chem Commun (Camb) 2023; 59:4487-4490. [PMID: 36971075 DOI: 10.1039/d3cc00708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
An unprecedented method for the synthesis of biaryl aldehydes bearing both axial and central chirality is presented.
Collapse
Affiliation(s)
- Fen Huang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Ling-Fei Tao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
35
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Yan‐Cheng Liou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
36
|
Lai XL, Chen M, Wang Y, Song J, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. J Am Chem Soc 2022; 144:20201-20206. [DOI: 10.1021/jacs.2c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yuqi Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jinshuai Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
37
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
38
|
Wang H, Li H, Chen X, Zhou C, Li S, Yang YF, Li G. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
39
|
Zhang J, Fan J, Guo Z, Wu Y, Wu J, Xie M. Palladium‐catalyzed Atroposelective Interannular C‐H Arylation of Biaryl Aldehydes with Aryl Iodides Enabled by a Transient Directing Group Strategy. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Yehe Wu
- Anhui Normal University CHINA
| | | | | |
Collapse
|
40
|
Paul T, Basak S, Punniyamurthy T. Weak Chelation-Assisted C4-Selective Alkylation of Indoles with Cyclopropanols via Sequential C-H/C-C Bond Activation. Org Lett 2022; 24:6000-6005. [PMID: 35947032 DOI: 10.1021/acs.orglett.2c02265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Rh-catalyzed weak chelation-guided C4-alkylation of indoles has been accomplished using cyclopropanols as an alkylating agent via the cascade C-H and C-C bond activation. The substrate scope, functional group tolerance, and late-stage mutation of drug molecules are the important practical features.
Collapse
Affiliation(s)
- Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
41
|
Liu J, Li Q, Shao Y, Sun J. Atroposelective Synthesis of Axially Chiral C2-Arylindoles via Rhodium-Catalyzed Asymmetric C-H Bond Insertion. Org Lett 2022; 24:4670-4674. [PMID: 35730740 DOI: 10.1021/acs.orglett.2c01818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly efficient rhodium-catalyzed formal C-H insertion reaction between indoles and 1-diazonaphthoquinones has been established, providing a novel protocol for the atroposelective synthesis of axially chiral C2-arylindoles (up to 99:1 er) under mild reaction conditions. Typically, only 1 mol % of Rh2(S-PTTL)4 is used and the chelation group is not needed for this conversion.
Collapse
Affiliation(s)
- Junheng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
42
|
Cobalt(I) Pincer Complexes: Four‐ versus Five‐coordination. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Wang Y, Zhou X, Shan W, Liao R, Deng Y, Peng F, Shao Z. Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Xue Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ruisong Liao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - YuHua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
44
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
45
|
Yin SY, Pan C, Zhang WW, Liu CX, Zhao F, Gu Q, You SL. SCpRh(III)-Catalyzed Enantioselective Synthesis of Atropisomers by C2-Arylation of Indoles with 1-Diazonaphthoquinones. Org Lett 2022; 24:3620-3625. [DOI: 10.1021/acs.orglett.2c01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Fangnuo Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
46
|
Wang ZS, Zhu LJ, Li CT, Liu BY, Hong X, Ye LW. Synthesis of Axially Chiral N-Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Brønsted Acids. Angew Chem Int Ed Engl 2022; 61:e202201436. [PMID: 35246909 DOI: 10.1002/anie.202201436] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 01/25/2023]
Abstract
In recent years, asymmetric catalysis of ynamides has attracted much attention, but these reactions mostly constructed central chirality, except for a few examples on the synthesis of axially chiral compounds which exclusively relied on noble-metal catalysis. Herein, a facile access to axially chiral N-heterocycles enabled by chiral Brønsted acid-catalyzed 5-endo-dig cyclization of ynamides is disclosed, which represents the first metal-free protocol for the construction of axially chiral compounds from ynamides. This method allows the practical and atom-economical synthesis of valuable N-arylindoles in excellent yields with generally excellent enantioselectivities. Moreover, organocatalysts and ligands based on such axially chiral N-arylindole skeletons are demonstrated to be applicable to asymmetric catalysis.
Collapse
Affiliation(s)
- Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Cui-Ting Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
47
|
Li Y, Liou YC, Chen X, Ackermann L. Thioether-enabled palladium-catalyzed atroposelective C-H olefination for N-C and C-C axial chirality. Chem Sci 2022; 13:4088-4094. [PMID: 35440980 PMCID: PMC8985512 DOI: 10.1039/d2sc00748g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022] Open
Abstract
Thioethers allowed for highly atroposelective C-H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air. Both N-C and C-C axial chiral (hetero)biaryls were successfully constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel the walking mode for the atroposelective C-H olefination. A plausible chiral induction model for the enantioselectivity-determining step was established by detailed DFT calculations.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Yan-Cheng Liou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
48
|
Xu YX, Liang YQ, Cai ZJ, Ji SJ. Ruthenium(II)-Catalyzed Chelation-Assisted Desulfitative Arylation of Benzo[h]quinolines with Arylsulfonyl Chlorides. Org Lett 2022; 24:2601-2606. [PMID: 35357174 DOI: 10.1021/acs.orglett.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel chelation-assisted C-H arylation reaction of benzo[h]quinoline is described. This transformation, using [RuCl2(p-cymene)]2 as the catalyst and cheap and easily accessible arylsulfonyl chlorides as the arylation source, featured simple reaction conditions, a broad substrate scope, and functional group tolerance. The successful application of some bioactive-molecule-based sulfonyl chlorides further highlighted the potential utility and importance of this desulfitative C-H arylation protocol.
Collapse
Affiliation(s)
- Yi-Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yu-Qing Liang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, China
| |
Collapse
|
49
|
Ye M, Xu W. Enantioselective Cobalt-Catalyzed C–H Functionalization. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1801-2595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCo-catalyzed C–H functionalization has received great attention due to the high earth abundance, low biotoxicity, and unique reactivity of cobalt; enantioselective control of these reactions has been a formidable challenge. Various efficient strategies have recently been developed for enantioselective Co-catalyzed C–H functionalization, but there is no topical review of this field. Herein, we give a detailed summary of this rapidly growing field, highlighting critical progress, current challenges, and future trends.1 Introduction2 Enantioselective C–H Functionalization via Low-Valent Co Catalysis2.1 Chiral Diphosphines for Enantioselective Control2.2 Chiral Monophosphines or N-Heterocyclic Carbenes for Enantioselective Control3 Enantioselective C–H Functionalization via High-Valent Co Catalysis3.1 Chiral Acids for Enantioselective Control3.2 Chiral Cp Ligands for Enantioselective Control4 Conclusions and Outlook
Collapse
Affiliation(s)
- Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
- Haihe Laboratory of Sustainable Chemical Transformations
| | - Weiwei Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University
| |
Collapse
|
50
|
Synthesis of Axially Chiral N‐Arylindoles via Atroposelective Cyclization of Ynamides Catalyzed by Chiral Brønsted Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|