1
|
Huang X, Feng J, Hu S, Xu B, Hao M, Liu X, Wen Y, Su D, Ji Y, Li Y, Li Y, Huang Y, Chan TS, Hu Z, Tian N, Shao Q, Huang X. Regioselective epitaxial growth of metallic heterostructures. NATURE NANOTECHNOLOGY 2024; 19:1306-1315. [PMID: 38918614 DOI: 10.1038/s41565-024-01696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Constructing regioselective architectures in heterostructures is important for many applications; however, the targeted design of regioselective architectures is challenging due to the sophisticated processes, impurity pollution and an unclear growth mechanism. Here we successfully realized a one-pot kinetically controlled synthetic framework for constructing regioselective architectures in metallic heterostructures. The key objective was to simultaneously consider the reduction rates of metal precursors and the lattice matching relationship at heterogeneous interfaces. More importantly, this synthetic method also provided phase- and morphology-independent behaviours as foundations for choosing substrate materials, including phase regulation from Pd20Sb7 hexagonal nanoplates (HPs) to Pd8Sb3 HPs, and morphology regulation from Pd20Sb7 HPs to Pd20Sb7 rhombohedra and Pd20Sb7 nanoparticles. Consequently, the activity of regioselective epitaxially grown Pt on Pd20Sb7 HPs was greatly enhanced towards the ethanol oxidation reaction; its activity was 57 times greater than that of commercial Pt/C, and the catalyst showed increased stability (decreasing by 16.3% after 2,000 cycles) and selectivity (72.4%) compared with those of commercial Pt/C (56.0%, 18.2%). This work paves the way for the design of unconventional well-defined heterostructures for use in various applications.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Shengnan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingsheng Hao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
2
|
Liu Y, Ji Y, Li Q, Zhu Y, Peng J, Jia R, Lai Z, Shi L, Fan F, Zheng G, Huang L, Li C. A Surfactant-Free and General Strategy for the Synthesis of Bimetallic Core-Shell Nanocrystals on Reduced Graphene Oxide through Targeted Photodeposition. ACS NANO 2023. [PMID: 37497875 DOI: 10.1021/acsnano.3c04281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Tunable physicochemical properties of bimetallic core-shell heterostructured nanocrystals (HNCs) have shown enormous potential in electrocatalytic reactions. In many cases, HNCs are required to load on supports to inhibit catalyst aggregation. However, the introduction of supports during the process of growing core-shell HNCs makes the synthesis much more complicated and difficult to control precisely. Herein, we reported a universal photochemical synthetic strategy for the controlled synthesis of well-defined surfactant-free core-shell metal HNCs on a reduced graphene oxide (rGO) support, which was assisted by the fine control of photogenerated electrons directly transferring to the targeted metal seeds via rGO and the precisely tuned adsorption capacity of the added second metal precursors. The surface photovoltage microscopy (SPVM) platform proved that photogenerated electrons flowed through rGO to Pd particles under illumination. We have successfully synthesized 24 different core-shell metal HNCs, i.,e., MA@MB (MA = Pd, Au, and Pt; MB = Au, Ag, Pt, Pd, Ir, Ru, Rh, Ni and Cu), on the rGO supports. The as-prepared Pd@Cu core-shell HNCs showed outstanding performance in the electrocatalytic reduction of CO2 to CH4. This work could shed light on the controlled synthesis of more functional bimetallic nanostructured materials on diverse supports for various applications.
Collapse
Affiliation(s)
- Yidan Liu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yali Ji
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, People's Republic of China
| | - Qian Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yi Zhu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jianchao Peng
- Laboratory for Microstructures, Shanghai University, Shanghai 200444, People's Republic of China
| | - Rongrong Jia
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Liyi Shi
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, People's Republic of China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
3
|
Xing X, Zhou Y, Wei Y, Zhang Y, Man Z, Zhang W, Lu Z. Patterning of Molecules/Ions via Reverse Micelle Vessels by Nanoxerography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37296516 DOI: 10.1021/acsami.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.
Collapse
Affiliation(s)
- Xing Xing
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yao Zhou
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Yelu Wei
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yu X, Chen S, Bian Z, Li W, Bo Z. Formation of Core-Shell AuCu@Ag Nanocrystals through the Nanoscale Kirkendall Effect. Inorg Chem 2023; 62:6851-6855. [PMID: 37067958 DOI: 10.1021/acs.inorgchem.3c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Polymetallic nanocrystals (NCs) consist of multiple metal elements. A powerful platform to achieve the flexible construction of polymetallic NCs is highly desired but challenging. Herein, we devise a model system that realizes metal atom diffusion between different NCs, resulting in the formation of polymetallic NCs. The differential bond strength between different metal atoms is proposed to initiate such metal atom diffusion, and the specific high surface-to-volume ratio of the NCs can expedite the diffusion process. Taking the Au-Cu-Ag trimetallic system as an example, core-shell AuCu@Ag NCs were successfully formed by combining AgCu NCs with Au NCs. The evolution process was explored, and the gradual fusion of simple NCs into AuCu@Ag NCs was unambiguously observed, which could be attributed to the larger bond strength of Au-Cu than that of Ag-Cu. This work offers an opportunity/platform in theory and experiment to expand the synthesis framework as well as the polymetallic NC list.
Collapse
Affiliation(s)
- Xiaodi Yu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shenhua Chen
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ziqing Bian
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenhua Li
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Sen R, Gordon TM, Millheim SL, Smith JH, Gan XY, Millstone JE. Multimetallic post-synthetic modifications of copper selenide nanoparticles. NANOSCALE 2023; 15:6655-6663. [PMID: 36892483 DOI: 10.1039/d3nr00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this report, we investigate the addition of two metal cations, simultaneously and sequentially to Cu2-xSe nanoparticles. The metal combinations (Ag-Au, Ag-Pt, Hg-Au and Hg-Pt) are chosen such that one metal adds to the structure via cation exchange and the other adds to the structure via metal deposition when added individually to Cu2-xSe nanoparticles. Surprisingly, we find that for each metal combination, across all three synthesis routes, cation exchange and metal deposition products are obtained without deviation from the outcomes seen in the binary metal systems. However, within those outcomes the data show several types of heterogeneities in the morphologies formed including extent and composition of cation exchange products as well as the extent and composition of the metal deposited products. Taken together, these results suggest a hierarchical control for nanoheterostructure morphologies where the pathways of cation exchange or metal deposition in post-synthetic modification of Cu2-xSe exhibit relatively general outcomes as a function of metal, regardless of synthetic approach or metal combination. However, the detailed composition and interface populations of the resulting materials are more sensitive to both metal identities and synthetic procedure (e.g. order of reagent addition), suggesting that certain principles of metal chalcogenide post-synthetic modification are excitingly robust, while also revealing new avenues for both mechanistic discovery and structural control.
Collapse
Affiliation(s)
- Riti Sen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Tyler Masato Gordon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Shelby Liz Millheim
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Jacob Harrison Smith
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Xing Yee Gan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Jill Erin Millstone
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
6
|
Yadav R, Kumar K, Kumar S, Mor S, Venkatesu P. Smart Anisotropic Colloidal Composites: A Suitable Platform for Modifying the Phase Transition of Diblock Copolymers by Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4809-4818. [PMID: 36944025 DOI: 10.1021/acs.langmuir.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface modification of metallic nanoparticles (NPs) by stimuli-responsive polymers is a benign method to prepare smart colloidal composites which tune the characteristic properties of individual systems. The temperature-dependent transition of diblock copolymer poly(N-isopropylacrylamide)-block-poly(N-vinylcaprolactam) (PNIPMA-b-PVCL) synthesized using reversible addition-fragmentation chain transfer polymerization was studied by incorporating anisotropic gold NPs (AGPs) such as spheres (AuNSs), rods (AuNRs), cubes (AuNCs), and rhombic dodecahedrals (AuRDs). Shape-dependent physiochemical properties of nanostructures alter the lower critical solution temperature (LCST) of the chemical inhomogeneous diblock copolymer. Heterogeneous nucleation of AuNPs was facilitated by seed-mediated synthesis for incorporating uniformity. In the mixed system, the presence of PNIPAM-b-PVCL modifies the surface of AGPs through physisorption which is supported by transmission electron microscopy and field emission scanning electron microscopy showing the NPs embedding in the polymeric matrix. Furthermore, steady state fluorescence spectroscopy and Fourier transform infrared spectroscopy were performed to examine the phase transition behavior of PNIPAM-b-PVCL in AGPs. The formation of a smart polymer nanocomposite alters the physiochemical properties of the diblock copolymer as demonstrated from the variation of LCST in the dynamic light scattering measurement. Henceforth, functionalizing the surfaces of AGPs with a thermoresponsive diblock copolymer provides combinatorial benefits in the properties of smart polymeric colloidal systems with potential applications in bioimaging and drug delivery.
Collapse
Affiliation(s)
- Ritu Yadav
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | - Sumit Kumar
- Department of Chemistry, University of Delhi, Delhi-110 007, India
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi-110 007, India
| | | |
Collapse
|
7
|
Shen B, Huang L, Shen J, Hu X, Zhong P, Zheng CY, Wolverton C, Mirkin CA. Morphology Engineering in Multicomponent Hollow Metal Chalcogenide Nanoparticles. ACS NANO 2023; 17:4642-4649. [PMID: 36800560 DOI: 10.1021/acsnano.2c10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hollow metal chalcogenide nanoparticles are widely applicable in environmental and energy-related processes. Herein, we synthesized such particles with large compositional and morphological diversity by combining scanning probe block copolymer lithography with a Kirkendall effect-based sulfidation process. We explored the influence of temperature-dependent diffusion kinetics, elemental composition and miscibility, and phase boundaries on the resulting particle morphologies. Specifically, CoNi alloys form single-shell sulfides for the synthetic conditions explored because Co and Ni exhibit similar diffusion rates, while CuNi alloys form sulfides with various types of morphologies (yolk-shell, double-shell, and single-shell) because Cu and Ni have different diffusion rates. In contrast, Co-Cu heterodimers form hollow heterostructured sulfides with varying void numbers and locations depending on synthesis temperature and phase boundary. At higher temperatures, the increased miscibility of CoS2 and CuS makes it energetically favorable for the heterostructure to adopt a single alloy shell morphology, which is rationalized using density functional theory-based calculations.
Collapse
Affiliation(s)
| | | | | | | | - Peichen Zhong
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
8
|
Tuff WJ, Hughes RA, Golze SD, Neretina S. Ion Beam Milling as a Symmetry-Breaking Control in the Synthesis of Periodic Arrays of Identically Aligned Bimetallic Janus Nanocrystals. ACS NANO 2023; 17:4050-4061. [PMID: 36799807 DOI: 10.1021/acsnano.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Yang F, Chen Q, Wang J, Chang JJ, Dong W, Cao W, Ye S, Shi L, Nie Z. Fabrication of Centimeter-Scale Plasmonic Nanoparticle Arrays with Ultranarrow Surface Lattice Resonances. ACS NANO 2023; 17:725-734. [PMID: 36575649 DOI: 10.1021/acsnano.2c10205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plasmonic surface lattice resonances (SLRs) supported by metallic nanoparticle (NP) arrays show diverse applications including nanolasers, sensors, photocatalysis, and nonlinear optics. However, to rationally fabricate high-quality plasmonic NP arrays with ultranarrow SLR line widths over large areas remains challenging. This article describes a general approach for the efficient fabrication of centimeter-scale inorganic NP arrays with precisely controlled NP size, composition, position, and lattice geometry. This method combines the processes of solvent-assisted soft lithography and in situ site-specific NP growth to reproducibly create many replicates of NP arrays without utilizing cleanroom and specialized equipment. For demonstration, we show that Au NP arrays exhibit ultranarrow SLRs with a line width of 4 nm and a quality factor of 218 toward the theoretical limit.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Qianyun Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Jiajun Wang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Department of Physics, Fudan University, 200433Shanghai, China
| | - Julia J Chang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Wei Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
| | - Lei Shi
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Department of Physics, Fudan University, 200433Shanghai, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433Shanghai, China
- Yiwu Research Institute of Fudan University, 322000Yiwu, China
| |
Collapse
|