1
|
Liao Z, Das A, Robb CG, Beveridge R, Wynne K. Amorphous aggregates with a very wide size distribution play a central role in crystal nucleation. Chem Sci 2024; 15:12420-12430. [PMID: 39118639 PMCID: PMC11304771 DOI: 10.1039/d4sc00452c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
There is mounting evidence that crystal nucleation from supersaturated solution involves the formation and reorganization of prenucleation clusters, contradicting classical nucleation theory. One of the key unresolved issues pertains to the origin, composition, and structure of these clusters. Here, a range of amino acids and peptides is investigated using light scattering, mass spectrometry, and in situ terahertz Raman spectroscopy, showing that the presence of amorphous aggregates is a general phenomenon in supersaturated solutions. Significantly, these aggregates are found on a vast range of length scales from dimers to 30-mers to the nanometre and even micrometre scale, implying a continuous distribution throughout this range. Larger amorphous aggregates are sites of spontaneous crystal nucleation and act as intermediates for laser-induced crystal nucleation. These results are shown to be consistent with a nonclassical nucleation model in which barrierless (homogeneous) nucleation of amorphous aggregates is followed by the nucleation of crystals from solute-enriched aggregates. This provides a novel perspective on crystal nucleation and the role of nonclassical pathways.
Collapse
Affiliation(s)
- Zhiyu Liao
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Ankita Das
- School of Chemistry, University of Glasgow G12 8QQ UK
| | - Christina Glen Robb
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Rebecca Beveridge
- Dept. of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL UK
| | - Klaas Wynne
- School of Chemistry, University of Glasgow G12 8QQ UK
| |
Collapse
|
2
|
González-Jiménez M, Liao Z, Williams EL, Wynne K. Lifting Hofmeister's Curse: Impact of Cations on Diffusion, Hydrogen Bonding, and Clustering of Water. J Am Chem Soc 2024; 146:368-376. [PMID: 38124370 PMCID: PMC10786029 DOI: 10.1021/jacs.3c09421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Water plays a role in the stability, reactivity, and dynamics of the solutes that it contains. The presence of ions alters this capacity by changing the dynamics and structure of water. However, our understanding of how and to what extent this occurs is still incomplete. Here, a study of the low-frequency Raman spectra of aqueous solutions of various cations by using optical Kerr-effect spectroscopy is presented. This technique allows for the measurement of the changes that ions cause in both the diffusive dynamics and the vibrations of the hydrogen-bond structure of water. It is found that when salts are added, some of the water molecules become part of the ion solvation layers, while the rest retain the same diffusional properties as those of pure water. The slowing of the dynamics of the water molecules in the solvation shell of each ion was found to depend on its charge density at infinite dilution conditions and on its position in the Hofmeister series at higher concentrations. It is also observed that all cations weaken the hydrogen-bond structure of the solution and that this weakening depends only on the size of the cation. Finally, evidence is found that ions tend to form amorphous aggregates, even at very dilute concentrations. This work provides a novel approach to water dynamics that can be used to better study the mechanisms of solute nucleation and crystallization, the structural stability of biomolecules, and the dynamic properties of complex solutions, such as water-in-salt electrolytes.
Collapse
Affiliation(s)
| | - Zhiyu Liao
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
3
|
Sironi L, Macetti G, Lo Presti L. Molecular dynamics investigation of benzoic acid in confined spaces. Phys Chem Chem Phys 2023; 25:28006-28019. [PMID: 37819704 DOI: 10.1039/d3cp02886k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Classical molecular dynamics simulations are carried out to investigate the aggregation of supercooled benzoic acid in confined spaces. Nanocavities, nanotubes and nanolayers are defined by restricting the periodicity of the simulation to zero, one or two dimensions, with boundaries set by adjustable, general, and computationally cheap van der Waals barriers. The effect of different confinement geometries is explored. It is found that the confinement impacts the liquid collective dynamics, strengthening the correlations that affect the motion of distant molecules. Overall, confinement determines up to a tenfold increase of the viscosity of the liquid and strongly slows down the rotational correlation times. Aggregation mediated by interactions with the walls and partial polarization of the liquid are observed. Additionally, transitions to high-density liquid states occur when stiffer barriers are used. In general, a reduced accessible amount of phase space fosters the struggle for a closer packing to relieve unfavorable atom-atom contacts, while maximizing the attractive ones. In benzoic acid, this implies that the hydrogen bond network is organized more efficiently in high density states.
Collapse
Affiliation(s)
- Luca Sironi
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
| | - Giovanni Macetti
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
| | - Leonardo Lo Presti
- Università degli Studi di Milano, Department of Chemistry, Via Golgi 19, 20133 Milano, Italy.
- Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Frascati, Italy
| |
Collapse
|
4
|
Darmawan YA, Goto T, Yanagishima T, Fuji T, Kudo T. Mid-Infrared Optical Force Chromatography of Microspheres Containing Siloxane Bonds. J Phys Chem Lett 2023; 14:7306-7312. [PMID: 37561048 DOI: 10.1021/acs.jpclett.3c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 μm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si-O-Si bonds, can be separated in accordance with their absorbance values at 9.3 μm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere's displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.
Collapse
Affiliation(s)
- Yoshua Albert Darmawan
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Takuma Goto
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Taiki Yanagishima
- Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takao Fuji
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Tetsuhiro Kudo
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| |
Collapse
|
5
|
Korede V, Nagalingam N, Penha FM, van der Linden N, Padding JT, Hartkamp R, Eral HB. A Review of Laser-Induced Crystallization from Solution. CRYSTAL GROWTH & DESIGN 2023; 23:3873-3916. [PMID: 37159656 PMCID: PMC10161235 DOI: 10.1021/acs.cgd.2c01526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/11/2023]
Abstract
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114-28 Stockholm, Sweden
| | - Noah van der Linden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
6
|
Tanaka M, Tsuboi Y, Yuyama KI. Formation of a core-shell droplet in a thermo-responsive ionic liquid/water mixture by using optical tweezers. Chem Commun (Camb) 2022; 58:11787-11790. [PMID: 36168832 DOI: 10.1039/d2cc02699f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many chemical and biological processes involve phase separation; however, controlling this is challenging. Here, we demonstrate local phase separation using optical tweezers in a thermo-responsive ionic liquid/water solution. Upon near-infrared laser irradiation, a single droplet is formed at the focal spot. The droplet has a core consisting of highly concentrated ionic liquid. The mechanism of the core-shell droplet formation is discussed in view of the spatial distribution of optical and thermal potentials.
Collapse
Affiliation(s)
- Maho Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| |
Collapse
|
7
|
Reply to Liao and Wynne: The size of crystal nucleus remains an open question. Proc Natl Acad Sci U S A 2022; 119:e2207713119. [PMID: 35878054 PMCID: PMC9388127 DOI: 10.1073/pnas.2207713119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Mesoscopic amorphous particles rather than oligomeric molecular aggregates are the cause of laser-induced crystal nucleation. Proc Natl Acad Sci U S A 2022; 119:e2207173119. [PMID: 35878058 PMCID: PMC9388069 DOI: 10.1073/pnas.2207173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Ahn B, Chen M, Mazzotti M. Online Monitoring of the Concentrations of Amorphous and Crystalline Mesoscopic Species Present in Solution. CRYSTAL GROWTH & DESIGN 2022; 22:5071-5080. [PMID: 35942122 PMCID: PMC9354028 DOI: 10.1021/acs.cgd.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/30/2022] [Indexed: 06/01/2023]
Abstract
Despite the growing evidence for the existence of amorphous mesoscopic species in a solution and their crucial roles in crystallization, there has been the lack of a suitable method to measure the time-resolved concentrations of amorphous and crystalline mesospecies in a lab-scale stirred reactor. This has limited experimental investigations to understand the kinetics of amorphous and crystalline mesospecies formation in stirred solutions and made it challenging to measure the crystal nucleation rate directly. Here, we used depolarized light sheet microscopy to achieve time-resolved measurements of amorphous and crystalline mesospecies concentrations in solutions at varying temperatures. After demonstrating that the concentration measurement method is reasonably accurate, precise, and sensitive, we utilized this method to examine mesospecies formation both in a mixture of two miscible liquids and in an undersaturated solution of dl-valine, thus revealing the importance of a temperature change in the formation of metastable and amorphous mesospecies as well as the reproducibility of the measurements. Moreover, we used the presented method to monitor both mesospecies formation and crystal nucleation in dl-valine solutions at four different levels of supersaturation, while achieving the direct measurement of the crystal nucleation rates in stirred solutions. Our results show that, as expected, the inherent variability in nucleation originating from its stochastic nature reduces with increasing supersaturation, and the dependence of the measured nucleation rate on supersaturation is in reasonable agreement with that predicted by the classical nucleation theory.
Collapse
|