1
|
Ahirwar MB, Gadre SR, Deshmukh MM. Molecular Tailoring Approach for the Direct Estimation of Individual Noncovalent Interaction Energies in Molecular Systems. J Phys Chem A 2024; 128:6099-6115. [PMID: 39037864 DOI: 10.1021/acs.jpca.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The noncovalent interactions (NCIs) are omnipresent in chemistry, physics, and biology. The study of such interactions offers insights into various physicochemical phenomena. Some indirect approaches proposed in the literature for exploring the NCIs are briefly reviewed in Section 1 of this Perspective. These include: (i) Shift in the stretching frequency of an X-Y bond involved in X-Y···Z interaction. (ii) Topological analysis of molecular electron density. (iii) Empirical equations derived employing experimental and theoretical quantities. However, a direct method for estimating individual intramolecular/intermolecular interaction energies has been conspicuous by its absence from the literature. We have developed a molecular tailoring approach (MTA)-based method enabling a direct and reliable estimation of the energy of intra- as well as intermolecular interactions. This method offers a direct and reliable estimation of these interactions, in particular of the hydrogen bonds (HB) in molecules/weakly bound clusters along with the respective cooperativity contribution. In Section 2, the basis of our method is discussed, along with some illustrative examples. The application of this method to a variety of molecules and clusters, with a special emphasis on estimating the HB energy along with the energy of other NCIs is presented in Section 3. Section 4 discusses some computational strategies for applying our method to large molecular clusters. The last Section provides a summary and a discussion on future developments.
Collapse
Affiliation(s)
- Mini Bharati Ahirwar
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| | - Shridhar R Gadre
- Department of Scientific Computing, Modelling, & Simulation, Savitribai Phule Pune University, Pune 411007, India
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Milind M Deshmukh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India
| |
Collapse
|
2
|
Nieuwland C, Almacellas D, Veldhuizen MM, de Azevedo Santos L, Poater J, Fonseca Guerra C. Multiple hydrogen-bonded dimers: are only the frontier atoms relevant? Phys Chem Chem Phys 2024; 26:11306-11310. [PMID: 38054332 PMCID: PMC11022277 DOI: 10.1039/d3cp05244c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Non-frontier atom exchanges in hydrogen-bonded aromatic dimers can induce significant interaction energy changes (up to 6.5 kcal mol-1). Our quantum-chemical analyses reveal that the relative hydrogen-bond strengths of N-edited guanine-cytosine base pair isosteres, which cannot be explained from the frontier atoms, follow from the charge accumulation in the monomers.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - David Almacellas
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Catalonia, Spain
| | - Mac M Veldhuizen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - Lucas de Azevedo Santos
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands.
| |
Collapse
|
3
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Nieuwland C, Verdijk R, Fonseca Guerra C, Bickelhaupt FM. More Electropositive is More Electronegative: Atom Size Determines C=X Group Electronegativity. Chemistry 2023:e202304161. [PMID: 38117278 DOI: 10.1002/chem.202304161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Opposite to what one might expect, we find that the C=X group can become effectively more, not less, electronegative when the Pauling electronegativity of atom X decreases down Groups 16, 15, and 14 of the Periodic Table. Our quantum-chemical analyses, show that, and why, this phenomenon is a direct consequence of the increasing size of atom X down a group. These findings can be applied to tuning and improving the hydrogen-bond donor strength of amides H2 NC(=X)R by increasingly withdrawing density from the NH2 group. A striking example is that H2 NC(=SiR2 )R is a stronger hydrogen-bond donor than H2 NC(=CR2 )R.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ron Verdijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
5
|
Tilly DP, Morris DTJ, Clayden J. Anion-Dependent Hydrogen-Bond Polarity Switching in Ethylene-bridged Urea Oligomers. Chemistry 2023; 29:e202302210. [PMID: 37589333 PMCID: PMC10946793 DOI: 10.1002/chem.202302210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The reversible coordination of anions to an N,N'-disubstituted 3,5-bis(trifluoromethyl)phenylurea located at a terminus of a linear chain of ethylene-bridged hydrogen-bonded ureas triggers a cascade of conformational changes. A series of hydrogen-bond polarity reversals propagates along the oligomer, leading to a global switch of its hydrogen-bond directionality. The induced polarity switch, transmitted through four reversible urea groups, results in a change in emission and excitation wavelengths of a fluorophore located at the opposite terminus of the oligomer. The molecule thus behaves as a chemical sensor with a relayed remote spectroscopic response to variations in anion concentration. The polarity switch induced by anion concentration constitutes an artificial communication mechanism for conveying information through oligomeric structures.
Collapse
Affiliation(s)
- David P. Tilly
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David T. J. Morris
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan Clayden
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
| |
Collapse
|
6
|
Martínez‐Crespo L, Vitórica‐Yrezábal IJ, Whitehead GFS, Webb SJ. Chemically Fueled Communication Along a Scaffolded Nanoscale Array of Squaramides. Angew Chem Int Ed Engl 2023; 62:e202307841. [PMID: 37429824 PMCID: PMC10952809 DOI: 10.1002/anie.202307841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Relaying conformational change over several nanometers is central to the function of allosterically regulated proteins. Replicating this mechanism artificially would provide important communication tools, but requires nanometer-sized molecules that reversibly switch between defined shapes in response to signaling molecules. In this work, 1.8 nm long rigid rod oligo(phenylene-ethynylene)s are scaffolds for switchable multi-squaramide hydrogen-bond relays. Each relay can adopt either a parallel or an antiparallel orientation relative to the scaffold; the preferred orientation is dictated by a director group at one end. An amine director responded to proton signals, with acid-base cycles producing multiple reversible changes in relay orientation that were reported by a terminal NH, which is 1.8 nm distant. Moreover, a chemical fuel acted as a dissipative signal. As the fuel was consumed, the relay reverted to its original orientation, illustrating how information from out-of-equilibrium molecular signals can be communicated to a distant site.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Department of ChemistryUniversity of Manchester Oxford RoadManchesterM13 9PLUK
- Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | | | - Simon J. Webb
- Department of ChemistryUniversity of Manchester Oxford RoadManchesterM13 9PLUK
| |
Collapse
|
7
|
Morris DJ, Wales SM, Echavarren J, Žabka M, Marsico G, Ward JW, Pridmore NE, Clayden J. Dynamic and Persistent Cyclochirality in Hydrogen-Bonded Derivatives of Medium-Ring Triamines. J Am Chem Soc 2023; 145:19030-19041. [PMID: 37594473 PMCID: PMC10472504 DOI: 10.1021/jacs.3c06570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/19/2023]
Abstract
Cyclic triureas derived from 1,4,7-triazacyclononane (TACN) were synthesized; X-ray crystallography showed a chiral bowl-like conformation with each urea hydrogen-bonded to its neighbor with uniform directionality, forming a "cyclochiral" closed loop of hydrogen bonds. Variable-temperature 1H NMR, 1H-1H exchange spectroscopy, Eyring analysis, computational modeling, and studies in various solvents revealed that cyclochirality is dynamic (ΔG‡25°C = 63-71 kJ mol-1 in noncoordinating solvents), exchanging between enantiomers by two mechanisms: bowl inversion and directionality reversal, with the former subject to a slightly smaller enantiomerization barrier. The enantiomerization rate substantially increased in the presence of hydrogen-bonding solvents. Population of only one of the two cyclochiral hydrogen-bond directionalities could be induced by annulating one ethylene bridge with a trans-cyclohexane. Alternatively, enantiomerization could be inhibited by annulating one ethylene bridge with a cis-cyclohexane (preventing bowl inversion) and replacing one urea function with a formamide (preventing directionality reversal). Combining these structural modifications resulted in an enantiomerization barrier of ΔG‡25°C = 93 kJ mol-1, furnishing a planar-chiral, atropisomeric bowl-shaped structure whose stereochemical stability arises solely from its hydrogen-bonding network.
Collapse
Affiliation(s)
| | | | - Javier Echavarren
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Matej Žabka
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Giulia Marsico
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - John W. Ward
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Natalie E. Pridmore
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
8
|
Tilly DP, Heeb JP, Webb SJ, Clayden J. Switching imidazole reactivity by dynamic control of tautomer state in an allosteric foldamer. Nat Commun 2023; 14:2647. [PMID: 37156760 PMCID: PMC10167260 DOI: 10.1038/s41467-023-38339-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jean-Paul Heeb
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
9
|
Morris DTJ, Clayden J. Screw sense and screw sensibility: communicating information by conformational switching in helical oligomers. Chem Soc Rev 2023; 52:2480-2496. [PMID: 36928473 PMCID: PMC10068589 DOI: 10.1039/d2cs00982j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 03/18/2023]
Abstract
Biological systems have evolved a number of different strategies to communicate information on the molecular scale. Among these, the propagation of conformational change is among the most important, being the means by which G-protein coupled receptors (GPCRs) use extracellular signals to modulate intracellular processes, and the way that opsin proteins translate light signals into nerve impulses. The developing field of foldamer chemistry has allowed chemists to employ conformationally well-defined synthetic structures likewise to mediate information transfer, making use of mechanisms that are not found in biological contexts. In this review, we discuss the use of switchable screw-sense preference as a communication mechanism. We discuss the requirements for functional communication devices, and show how dynamic helical foldamers derived from the achiral monomers such as α-aminoisobutyric acid (Aib) and meso-cyclohexane-1,2-diamine fulfil them by communicating information in the form of switchable screw-sense preference. We describe the various stimuli that can be used to switch screw sense, and explore the way that propagation of the resulting conformational preference in a well-defined helical molecule allows screw sense to control chemical events remote from a source of information. We describe the operation of these conformational switches in the membrane phase, and outline the progress that has been made towards using conformational switching to communicate between the exterior and interior of a phospholipid vesicle.
Collapse
Affiliation(s)
- David T J Morris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
10
|
Kundu S, Valiyev I, Mondal D, Rajasekaran VV, Goswami A, Schmittel M. Proton transfer network with luminescence display controls OFF/ON catalysis that generates a high-speed slider-on-deck. RSC Adv 2023; 13:5168-5171. [PMID: 36777932 PMCID: PMC9909384 DOI: 10.1039/d3ra00062a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
A three-component network for OFF/ON catalysis was built from a protonated nanoswitch and a luminophore. Its activation by addition of silver(i) triggered the proton-catalyzed formation of a biped and the assembly of a fast slider-on-deck (k 298 = 540 kHz).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Abir Goswami
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen Adolf-Reichwein-Str. 2 D-57068 Siegen Germany +49 2717404356
| |
Collapse
|
11
|
Wang S, della Sala F, Cliff MJ, Whitehead GFS, Vitórica-Yrezábal IJ, Webb SJ. A Chiral 19F NMR Reporter of Foldamer Conformation in Bilayers. J Am Chem Soc 2022; 144:21648-21657. [PMID: 36379007 PMCID: PMC9716558 DOI: 10.1021/jacs.2c09103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Understanding and controlling peptide foldamer conformation in phospholipid bilayers is a key step toward their use as molecular information relays in membranes. To this end, a new 19F "reporter" tag has been developed and attached to dynamic peptide foldamers. The (R)-1-(trifluoromethyl)ethylamido ((R)-TFEA) reporter was attached to the C-terminus of α-amino-iso-butyric acid (Aib) foldamers. Crystallography confirmed that the foldamers adopted 310 helical conformations. Variable temperature (VT) NMR spectroscopy in organic solvents showed that the (R)-TFEA reporter had an intrinsic preference for P helicity, but the overall screw-sense was dominated by a chiral "controller" at the N-terminus. The 19F NMR chemical shift of the CF3 resonance was correlated with the ability of different N-terminal groups to induce either an M or a P helix in solution. In bilayers, a similar correlation was found. Solution 19F NMR spectroscopy on small unilamellar vesicle (SUV) suspensions containing the same family of (R)-TFEA-labeled foldamers showed broadened but resolvable 19F resonances, with each chemical shift mirroring their relative positions in organic solvents. These studies showed that foldamer conformational preferences are the same in phospholipid bilayers as in organic solvents and also revealed that phospholipid chirality has little influence on conformation.
Collapse
Affiliation(s)
- Siyuan Wang
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | - Matthew J. Cliff
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| | | | | | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, ManchesterM1 7DN, U.K.
| |
Collapse
|
12
|
Tilly DP, Žabka M, Vitorica-Yrezabal I, Sparkes HA, Pridmore N, Clayden J. Supramolecular interactions between ethylene-bridged oligoureas: nanorings and chains formed by cooperative positive allostery. Chem Sci 2022; 13:13153-13159. [PMID: 36425488 PMCID: PMC9667931 DOI: 10.1039/d2sc04716k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ethylene-bridged oligoureas are dynamic foldamers in which the polarity of a coherent chain of intramolecular hydrogen bonds may be controlled by intra- or intermolecular interactions with hydrogen-bond donors or acceptors. In this paper, we describe the way that supramolecular interactions between ethylene-bridged oligoureas bearing a 3,5-bis(trifluoromethyl)phenylurea (BTMP) terminus leads to higher-order structures both in the crystalline state and in solution. The oligoureas self-assemble by head-to-tail hydrogen bonding interactions to form either supramolecular 'nanorings' with cyclic hydrogen bond chain directionality, or supramolecular helical chains of hydrogen bonds. The self-assembly process features a cascade of cooperative positive allostery, in which each intermolecular hydrogen bond formation at the BTMP terminus switches the native hydrogen bond chain directionality of monomers, favouring further assembly. Monomers with a benzyl urea terminus self-assemble into nanorings, whereas monomers with a N-ethyl urea terminus form helical chains. In the crystal state, parallel helices have identical handedness and polarity, whereas antiparallel helices have opposite handedness. The overall dipole moment of crystals is zero due to the antiparallel arrangements of local dipoles in the crystal packing. Supramolecular interactions in solution were also examined by VT and DOSY NMR spectroscopy, up to the point of crystal formation. The size of higher aggregates in dichloromethane was estimated by their hydrodynamic radius. The relative orientation of the monomers within the aggregates, determined by 2D ROESY NMR, was the same as in the crystals, where syn-orientations lead to the formation of rings and anti-orientations result in chains. Overall, the switch of hydrogen bond polarity propagates intermolecularly in crystal and solution states, constituting an example of intermolecular communication within supramolecular polymers.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matej Žabka
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Hazel A Sparkes
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Natalie Pridmore
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|