1
|
Cai Y, Zhang Y, Fang L, Ren Y, Zhang J, Yuan Y, Zhang J, Wang P. Conjugated polymers of an oxa[5]helicene-derived polycyclic heteroaromatic: tailoring energy levels and compatibility for high-performance perovskite solar cells. Chem Sci 2024:d4sc04244a. [PMID: 39246348 PMCID: PMC11378023 DOI: 10.1039/d4sc04244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
In the quest to enhance the efficiency and durability of n-i-p perovskite solar cells (PSCs), engineering hole-transporting conjugated polymers with well-matched energy levels, exceptional film-forming properties, rapid hole transport, and superior moduli is paramount. Here, we present a novel approach involving the customization of a conjugated polymer, designated as p-DTPF4-EBEH, comprising alternating units of an oxa[5]helicene-based polycyclic heteroaromatic (DTPF4) and 5,5'-(2,5-di(hexyloxy)-1,4-phenylene)bis(3,4-ethylenedioxythiophene) (EBEH), synthesized through palladium-catalyzed direct arylation. Relative to homopolymers p-DTPF4 and p-EBEH, p-DTPF4-EBEH demonstrates a proper HOMO energy level, hole density, and hole mobility, alongside superior film-forming capabilities. Remarkably, compared to the commonly used hole transport material spiro-OMeTAD, p-DTPF4-EBEH not only exhibits superior film-forming property and hole mobility but also offers increased modulus and improved waterproofing. Incorporating p-DTPF4-EBEH as the hole transport material in PSCs results in an average power conversion efficiency of 25.8%, surpassing the 24.3% achieved with spiro-OMeTAD. Importantly, devices utilizing p-DTPF4-EBEH demonstrate enhanced thermal storage stability at 85 °C, along with operational robustness.
Collapse
Affiliation(s)
- Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Lingyi Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Yutong Ren
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yi Yuan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
2
|
Michiyuki T, Maksso I, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Arylation Polymerization at Ambient Temperature. Angew Chem Int Ed Engl 2024; 63:e202400845. [PMID: 38634987 DOI: 10.1002/anie.202400845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Transition metal-catalyzed C-H arylation polymerization (CHAP) is an attractive tool for constructing π-conjugated polymers in a sustainable manner. However, the existing methods primarily rely on palladium catalysis, which usually entails harsh reaction conditions and branching/cross-linking. Here we report the first example of an ambient-temperature ruthenium-catalyzed C-H arylation polymerization induced by visible light irradiation. The present polymerization can produce various meta- and para-linked polymers in excellent yields with high molecular weights. The remarkable feature of our mild reaction platform is represented by high chemoselectivity, leading to polymers that are otherwise inaccessible under conventional reaction conditions at high temperatures.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Isaac Maksso
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Kimpel J, Kim Y, Asatryan J, Martín J, Kroon R, Müller C. High-mobility organic mixed conductors with a low synthetic complexity index via direct arylation polymerization. Chem Sci 2024; 15:7679-7688. [PMID: 38784738 PMCID: PMC11110131 DOI: 10.1039/d4sc01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Through direct arylation polymerization, a series of mixed ion-electron conducting polymers with a low synthetic complexity index is synthesized. A thieno[3,2-b]thiophene monomer with oligoether side chains is used in direct arylation polymerization together with a wide range of aryl bromides with varying electronic character from electron-donating thiophene to electron-accepting benzothiadiazole. The obtained polymers are less synthetically complex than other mixed ion-electron conducting polymers due to higher yield, fewer synthetic steps and less toxic reagents. Organic electrochemical transistors (OECTs) based on a newly synthesized copolymer comprising thieno[3,2-b]thiophene with oligoether side chains and bithiophene exhibit excellent device performance. A high charge-carrier mobility of up to μ = 1.8 cm2 V-1 s-1 was observed, obtained by dividing the figure of merit [μC*] from OECT measurements by the volumetric capacitance C* from electrochemical impedance spectroscopy, which reached a value of more than 215 F cm-3.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University Norrköping Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University Norrköping Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| |
Collapse
|
4
|
Zhang Y, He L, Cai Y, Zhang J, Wang P. Aza[5]helicene-Derived Semiconducting Polymers for Improved Performance in Perovskite Solar Cells: Exploring Energetic and Morphological Influences. Angew Chem Int Ed Engl 2024; 63:e202401605. [PMID: 38363082 DOI: 10.1002/anie.202401605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
The strategic design of solution-processable semiconducting polymers possessing both matched energy levels and elevated glass transition temperatures is of urgent importance in the progression of thermally robust n-i-p perovskite solar cells with efficiencies exceeding 25 %. In this work, we employed direct arylation polymerization to achieve the high-yield synthesis of three aza[5]helicene-derived copolymers with distinct HOMO energy levels and exceptional glass transition temperatures. Upon integration of these semiconducting polymers into formamidinium lead triiodide-based perovskite solar cells, marked disparities in photovoltaic parameters manifest, primarily stemming from variations in the electrical conductivity and film morphology of the hole transport layers. The p-A5HP-E-POZOD-E copolymer, featuring a main chain comprising alternating repeats of aza[5]helicene, ethylenedioxythiophene, phenoxazine, and ethylenedioxythiophene, attains an initial average efficiency of 25.5 %, markedly surpassing reference materials such as spiro-OMeTAD (23.0 %), PTAA (17.0 %), and P3HT (11.6 %). Notably, p-A5HP-E-POZOD-E exhibits a high cohesive energy density, resulting in enhanced Young's modulus and diminished external species diffusion coefficients, thereby conferring perovskite solar cells with exceptional 85 °C tolerance and operational stability.
Collapse
Affiliation(s)
- Yuyan Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Lifei He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yaohang Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Peng Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Şarkaya K, Özçelik H, Yaşar E, Güner T, Dokuzparmak E, Hooshmand S, Akgöl S. Selective Extraction and Quantification of Hemoglobin Based on a Novel Molecularly Imprinted Nanopolymeric Structure of Poly(acrylamide-vinyl imidazole). ACS OMEGA 2024; 9:18458-18468. [PMID: 38680349 PMCID: PMC11044176 DOI: 10.1021/acsomega.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
Imbalances in hemoglobin (Hb) levels can lead to conditions such as anemia or polycythemia, emphasizing the importance of precise Hb extraction from blood. To address this, a novel synthetic imprinted polymer was meticulously developed for capturing and separating Hb. Poly(acrylamide-vinylimidazole) nanopolymer (poly(AAm-VIM)) was synthesized using acrylamide and vinyl imidazole as functional monomers through surfactant-free emulsion polymerization. Characterization using FTIR, particle size, zeta potential, and SEM ensured the polymer's structure. The Hb-imprinted nanopolymer (Hb-poly(AAm-VIM)) demonstrated notable specificity, with a calculated Hb-specific adsorption value (Qmax) of 3.7377 mg/g in a medium containing 2.5 mg/mL Hb. The molecularly imprinted polymer (MIP) exhibited approximately 5 times higher Hb adsorption than the nonimprinted polymer (NIP). Under the same conditions, the imprinted nanopolymer displayed 2.39 and 2.17 times greater selectivity for Hb over competing proteins such as bovine serum albumin (BSA) and lysozyme (Lys), respectively. Also, SDS-PAGE analysis results confirmed the purification of Hb by the molecularly imprinted nanopolymer. These results underscore the heightened specificity and efficacy of the molecularly imprinted nanopolymer in selectively targeting Hb atoms among other proteins. Incorporating such polymers is justified by their notable affinity, cost-effectiveness, and facile production. This research contributes valuable insights into optimizing synthetic imprinted polymers for efficient Hb extraction, with potential in medical diagnostics and treatment applications.
Collapse
Affiliation(s)
- Koray Şarkaya
- Department
of Chemistry, Faculty of Science, Pamukkale
University, Denizli 20160, Turkey
| | - Hilal Özçelik
- Department
of Biochemistry, Faculty of Science, Ege
University, Izmir 35100, Turkey
| | - Esra Yaşar
- Department
of Biochemistry, Faculty of Science, Ege
University, Izmir 35100, Turkey
| | - Timuçin Güner
- Department
of Biochemistry, Faculty of Science, Ege
University, Izmir 35100, Turkey
| | - Emre Dokuzparmak
- Department
of Bioengineering, Ege University, Izmir 35100, Turkey
| | - Sara Hooshmand
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Sinan Akgöl
- Department
of Biochemistry, Faculty of Science, Ege
University, Izmir 35100, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Yang Y, Wu Y, Bin Z, Zhang C, Tan G, You J. Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar-H/Ar-H Coupling. J Am Chem Soc 2024; 146:1224-1243. [PMID: 38173272 DOI: 10.1021/jacs.3c12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
7
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
8
|
Zhang M, Zhang BB, Lin Q, Jiang Z, Zhang J, Li Y, Pei S, Han X, Xiong H, Liang X, Lin Y, Wei Z, Zhang F, Zhang X, Wang ZX, Shi Q, Huang H. An Efficient Direct Arylation Polycondensation via C-S Bond Cleavage. Angew Chem Int Ed Engl 2023; 62:e202306307. [PMID: 37340517 DOI: 10.1002/anie.202306307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
The direct arylation polycondensation (DArP) has become one of the most important methods to construct conjugated polymers (CPs). However, the homocoupling side-reactions of aryl halides and the low regioseletive reactivities of unfunctionalized aryls hinder the development of DArP. Here, an efficient Pd and Cu co-catalyzed DArP was developed via inert C-S bond cleavage of aryl thioethers, of which robustness was exemplified by over twenty conjugated polymers (CPs), including copolymers, homopolymers, and random polymers. The capture of oxidative addition intermediate together with experimental and theoretic results suggested the important role of palladium (Pd) and copper (Cu) co-catalysis with a bicyclic mechanism. The studies of NMR, molecular weights, trap densities, two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), and the charge transport mobilities revealed that the homocoupling reactions were significantly suppressed with high regioselectivity of unfunctionalized aryls, suggesting this method is an excellent choice for synthesizing high performance CPs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shurui Pei
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haigen Xiong
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Liang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
He T, He S, Muslim A. The capacitance characteristics of polybenzidine-based donor-acceptor conductive conjugated polymer electrodes enhanced by structural modification and carbon cloth loading. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
10
|
Chakraborty B, Luscombe CK. Cross-Dehydrogenative Coupling Polymerization via C-H Activation for the Synthesis of Conjugated Polymers. Angew Chem Int Ed Engl 2023; 62:e202301247. [PMID: 36849707 DOI: 10.1002/anie.202301247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023]
Abstract
Owing to their versatile (opto)electronic properties, conjugated polymers have found application in several organic electronic devices. Cross-coupling reactions such as Stille, Suzuki, Kumada couplings, and direct arylation reactions have proved to be effective for their synthesis. More atom-efficient oxidative direct arylation polymerization has also been reported for making homopolymers. However, growing interest toward donor-acceptor polymers has led to the recent emergence of cross-dehydrogenative coupling (CDC) polymerization to synthesize alternating copolymers without any prefunctionalization of monomers. Metal-catalyzed cross-coupling of two simple arenes via double C-H activation, or of an arene with an alkene via oxidative Heck-type reaction have been used so far for CDC polymerization. In this article, we discuss the development of CDC polymerization protocols along with the relevant small molecule CDC reactions for an improved understanding of these reactions.
Collapse
Affiliation(s)
- Baitan Chakraborty
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| |
Collapse
|
11
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Mohr Y, Ranscht A, Alves-Favaro M, Alessandra Quadrelli E, M Wisser F, Canivet J. Nickel-Catalyzed Direct Arylation Polymerization for the Synthesis of Thiophene-Based Cross-linked Polymers. Chemistry 2023; 29:e202202667. [PMID: 36205632 DOI: 10.1002/chem.202202667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 11/18/2022]
Abstract
An earth-abundant nickel(II) bipyridine catalyst, combined with lithium hexamethyldisilazide as base, demonstrates its wide applicability in the direct arylation polymerization of di- and tri-thiophene heteroaryls with poly(hetero)aryl halides. With a nickel catalyst loading of 2.5 mol%, a series of twenty highly cross-linked organic polymers is obtained in 34 to 99 % yields. Using mixed polytopic coupling partners allows obtaining alternating and optically active thiophene-based solids with intrinsic porosity.
Collapse
Affiliation(s)
- Yorck Mohr
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Alisa Ranscht
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Marcelo Alves-Favaro
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| | - Florian M Wisser
- Institute of Inorganic Chemistr, University of Regensburg, 93040, Regensburg, Germany
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626, Villeurbanne, France
| |
Collapse
|
13
|
The marriage of dual-acceptor strategy and C-H activation polymerization: naphthalene diimide-based n-type polymers with adjustable molar mass and decent performance. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Synergistic catalysis for the synthesis of semiconducting polymers. Polym J 2022. [DOI: 10.1038/s41428-022-00719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractOrganic semiconductors have received much interest over the past few decades. As the field has progressed, so has the complexity of the molecular structures of organic semiconductors. Often, the highest-performing organic semiconductors (i.e., those with the highest charge mobility or those that provide the highest power conversion efficiencies in organic photovoltaics) involve complex syntheses, making them very challenging to synthesize, even by experienced synthetic chemists. In this focused review, we report on recent efforts in developing more efficient synthetic pathways. Specifically, the concept of synergistic catalysis, which involves the use of two or more catalysts with orthogonal reactivity to enable reactions that are not possible with the use of a single catalyst, is introduced. Synergistic catalysis allows for controlled polymerizations, room-temperature reactions, and/or polymerizations with greater regioselectivity, opening the door to more time-, labor-, cost-, and energy-saving methods for synthesizing semiconducting polymers.
Collapse
|
15
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|