1
|
Álvarez-Núñez A, Sarkar R, Dantignana V, Xiong J, Guo Y, Luis JM, Costas M, Company A. Intramolecular C-H Oxidation in Iron(V)-oxo-carboxylato Species Relevant in the γ-Lactonization of Alkyl Carboxylic Acids. ACS Catal 2024; 14:14183-14194. [PMID: 39324053 PMCID: PMC11420956 DOI: 10.1021/acscatal.4c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
High-valent oxoiron species have been invoked as oxidizing agents in a variety of iron-dependent oxygenases. Taking inspiration from nature, selected nonheme iron complexes have been developed as catalysts to elicit C-H oxidation through the mediation of putative oxoiron(V) species, akin to those proposed for Rieske oxygenases. The addition of carboxylic acids in these iron-catalyzed C-H oxidations has proved highly beneficial in terms of product yields and selectivities, suggesting the direct involvement of iron(V)-oxo-carboxylato species. When the carboxylic acid functionality is present in the alkane substrate, it acts as a directing group, enabling the selective intramolecular γ-C-H hydroxylation that eventually affords γ-lactones. While this mechanistic frame is solidly supported by previous mechanistic studies, direct spectroscopic detection of the key iron(V)-oxo-carboxylato intermediate and its competence for engaging in the selective γ-C-H oxidation leading to lactonization have not been accomplished. In this work, we generate a series of well-defined iron(V)-oxo-carboxylato species (2c-2f) differing in the nature of the bound carboxylate ligand. Species 2c-2f are characterized by a set of spectroscopic techniques, including UV-vis spectroscopy, cold-spray ionization mass spectrometry (CSI-MS), and, in selected cases, EPR and Mössbauer spectroscopies. We demonstrate that 2c-2f undergo site-selective γ-lactonization of the carboxylate ligand in a stereoretentive manner, thus unequivocally identifying metal-oxo-carboxylato species as the powerful yet selective C-H cleaving species in catalytic γ-lactonization reactions of carboxylic acids. Reactivity experiments confirm that the intramolecular formation of γ-lactones is in competition with the intermolecular oxidation of external alkanes and olefins. Finally, mechanistic studies, together with DFT calculations, support a mechanism involving a site-selective C-H cleavage in the γ-position of the carboxylate ligand by the oxo moiety, followed by a fast carboxylate rebound, eventually leading to the selective formation of γ-lactones.
Collapse
Affiliation(s)
- Andrea Álvarez-Núñez
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Rudraditya Sarkar
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Department
of Chemistry, School of Science, Gandhi
Institute of Technology and Management (GITAM), Hyderabad502329, India
| | - Valeria Dantignana
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Jin Xiong
- Chemistry
Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Chemistry
Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Josep M. Luis
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Anna Company
- Institut
de Química Computacional i Catàlisi (IQCC), Departament
de Química, Universitat de Girona, C/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| |
Collapse
|
2
|
Galeotti M, Bietti M, Costas M. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C-H Bond Oxidation. J Am Chem Soc 2024; 146:8904-8914. [PMID: 38506665 PMCID: PMC10996012 DOI: 10.1021/jacs.3c11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The C(sp3)-H bond oxygenation of a variety of cyclopropane containing hydrocarbons with hydrogen peroxide catalyzed by manganese complexes containing aminopyridine tetradentate ligands was carried out. Oxidations were performed in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 2,2,2-trifluoroethanol (TFE) using different manganese catalysts and carboxylic acid co-ligands, where steric and electronic properties were systematically modified. Functionalization selectively occurs at the most activated C-H bonds that are α- to cyclopropane, providing access to carboxylate or 2,2,2-trifluoroethanolate transfer products, with no competition, in favorable cases, from the generally dominant hydroxylation reaction. The formation of mixtures of unrearranged and rearranged esters (oxidation in HFIP in the presence of a carboxylic acid) and ethers (oxidation in TFE) with full control over diastereoselectivity was observed, confirming the involvement of delocalized cationic intermediates in these transformations. Despite such a complex mechanistic scenario, by fine-tuning of catalyst and carboxylic acid sterics and electronics and leveraging on the relative contribution of cationic pathways to the reaction mechanism, control over product chemoselectivity could be systematically achieved. Taken together, the results reported herein provide powerful catalytic tools to rationally manipulate ligand transfer pathways in C-H oxidations of cyclopropane containing hydrocarbons, delivering novel products in good yields and, in some cases, outstanding selectivities, expanding the available toolbox for the development of synthetically useful C-H functionalization procedures.
Collapse
Affiliation(s)
- Marco Galeotti
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
3
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
4
|
Ottenbacher RV, Bryliakova AA, Kurganskii VI, Prikhodchenko PV, Medvedev AG, Bryliakov KP. Bioinspired Non-Heme Mn Catalysts for Regio- and Stereoselective Oxyfunctionalizations with H 2 O 2. Chemistry 2023; 29:e202302772. [PMID: 37642264 DOI: 10.1002/chem.202302772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
In recent years, metalloenzymes-mediated highly selective oxidations of organic substrates under mild conditions have been inspiration for developing synthetic bioinspired catalyst systems, capable of conducting such processes in the laboratory (and, in the future, in industry), relying on easy-to-handle and environmentally benign oxidants such as H2 O2 . To date, non-heme manganese complexes with chiral bis-amino-bis-pyridylmethyl and structurally related ligands are considered as possessing the highest synthetic potential, having demonstrated the ability to mediate a variety of chemo- and stereoselective oxidative transformations, such as epoxidations, C(sp3 )-H hydroxylations and ketonizations, oxidative desymmetrizations, kinetic resolutions, etc. Furthermore, in the past few years non-heme Mn based catalysts have become the major platform for studies focused on getting insight into the molecular mechanisms of oxidant activation and (stereo)selective oxygen transfer, testing non-traditional hydroperoxide oxidants, engineering catalytic sites with enzyme-like substrate recognition-based selectivity, exploration of catalytic regioselectivity trends in the oxidation of biologically active substrates of natural origin. This contribution summarizes the progress in manganese catalyzed C-H oxygenative transformations of organic substrates, achieved essentially in the past 5 years (late 2018-2023).
Collapse
Affiliation(s)
- Roman V Ottenbacher
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russian Federation
| | - Anna A Bryliakova
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russian Federation
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Pr. 47, Moscow, 119991, Russian Federation
| | - Vladimir I Kurganskii
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Pr. 47, Moscow, 119991, Russian Federation
| | - Petr V Prikhodchenko
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander G Medvedev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Konstantin P Bryliakov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Pr. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
5
|
Galeotti M, Lee W, Sisti S, Casciotti M, Salamone M, Houk KN, Bietti M. Radical and Cationic Pathways in C( sp3)-H Bond Oxygenation by Dioxiranes of Bicyclic and Spirocyclic Hydrocarbons Bearing Cyclopropane Moieties. J Am Chem Soc 2023; 145:24021-24034. [PMID: 37874906 PMCID: PMC10636757 DOI: 10.1021/jacs.3c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
A product and DFT computational study on the reactions of 3-ethyl-3-(trifluoromethyl)dioxirane (ETFDO) with bicyclic and spirocyclic hydrocarbons bearing cyclopropyl groups was carried out. With bicyclo[n.1.0]alkanes (n = 3-6), diastereoselective formation of the alcohol product derived from C2-H bond hydroxylation was observed, accompanied by smaller amounts of products derived from oxygenation at other sites. With 1-methylbicyclo[4.1.0]heptane, rearranged products were also observed in addition to the unrearranged products deriving from oxygenation at the most activated C2-H and C5-H bonds. With spiro[2.5]octane and 6-tert-butylspiro[2.5]octane, reaction with ETFDO occurred predominantly or exclusively at the axial C4-H to give unrearranged oxygenation products, accompanied by smaller amounts of rearranged bicyclo[4.2.0]octan-1-ols. The good to outstanding site-selectivities and diastereoselectivities are paralleled by the calculated activation free energies for the corresponding reaction pathways. Computations show that the σ* orbitals of the bicyclo[n.1.0]alkane cis or trans C2-H bonds and spiro[2.5]octanes axial C4-H bond hyperconjugatively interact with the Walsh orbitals of the cyclopropane ring, activating these bonds toward HAT to ETFDO. The detection of rearranged oxygenation products in the oxidation of 1-methylbicyclo[4.1.0]heptane, spiro[2.5]octane, and 6-tert-butylspiro[2.5]octane provides unambiguous evidence for the involvement of cationic intermediates in these reactions, representing the first examples on the operation of ET pathways in dioxirane-mediated C(sp3)-H bond oxygenations. Computations support these findings, showing that formation of cationic intermediates is associated with specific stabilizing hyperconjugative interactions between the incipient carbon radical and the cyclopropane C-C bonding orbitals that trigger ET to the incipient dioxirane derived 1,1,1-trifluoro-2-hydroxy-2-butoxyl radical.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Woojin Lee
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Sergio Sisti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
| | - Martina Casciotti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
| | - Michela Salamone
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
| |
Collapse
|
6
|
Uchida T. Development of Catalytic Site-Selective C-H Oxidation. CHEM REC 2023; 23:e202300156. [PMID: 37350373 DOI: 10.1002/tcr.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Direct C-H bond oxygenation is a strong and useful tool for the construction of oxygen functional groups. After Chen and White's pioneering works, various non-heme-type iron and manganese complexes were introduced, leading to strong development in this area. However, for this method to become a truly useful tool for synthetic organic chemistry, it is necessary to make further efforts to improve site-selectivity, and catalyst durability. Recently, we found that non-heme-type ruthenium complex cis-1 presents efficient catalysis in C(sp3 )-H oxygenation under acidic conditions. cis-1-catalysed C-H oxygenation can oxidize various substrates including highly complex natural compounds using hypervalent iodine reagents as a terminal oxidant. Moreover, the catalyst system can use almost stoichiometric water molecules as the oxygen source through reversible hydrolysis of PhI(OCOR)2 . It is a strong tool for producing isotopic-oxygen-labelled compounds. Moreover, the environmentally friendly hydrogen peroxide can be used as a terminal oxidant under acidic conditions.
Collapse
Affiliation(s)
- Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
7
|
Call A, Capocasa G, Palone A, Vicens L, Aparicio E, Choukairi Afailal N, Siakavaras N, López Saló ME, Bietti M, Costas M. Highly Enantioselective Catalytic Lactonization at Nonactivated Primary and Secondary γ-C-H Bonds. J Am Chem Soc 2023; 145:18094-18103. [PMID: 37540636 PMCID: PMC10507665 DOI: 10.1021/jacs.3c06231] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/06/2023]
Abstract
Chiral oxygenated aliphatic moieties are recurrent in biological and pharmaceutically relevant molecules and constitute one of the most versatile types of functionalities for further elaboration. Herein we report a protocol for straightforward and general access to chiral γ-lactones via enantioselective oxidation of strong nonactivated primary and secondary C(sp3)-H bonds in readily available carboxylic acids. The key enabling aspect is the use of robust sterically encumbered manganese catalysts that provide outstanding enantioselectivities (up to >99.9%) and yields (up to 96%) employing hydrogen peroxide as the oxidant. The resulting γ-lactones are of immediate interest for the preparation of inter alia natural products and recyclable polymeric materials.
Collapse
Affiliation(s)
- Arnau Call
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Giorgio Capocasa
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Andrea Palone
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Laia Vicens
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Eric Aparicio
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Najoua Choukairi Afailal
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Nikos Siakavaras
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Maria Eugènia López Saló
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1 I-00133 Rome, Italy
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
8
|
Vicens A, Vicens L, Olivo G, Lanzalunga O, Di Stefano S, Costas M. Site-selective methylene C-H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discuss 2023; 244:51-61. [PMID: 37185809 DOI: 10.1039/d2fd00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Site-selective oxidation of aliphatic C-H bonds is a powerful synthetic tool because it enables rapid build-up of product complexity and diversity from simple precursors. Besides the poor reactivity of alkyl C-H bonds, the main challenge in this reaction consists in differentiating between the multiple similar sites present in most organic molecules. Herein, a manganese oxidation catalyst equipped with two 18-benzo-6-crown ether receptors has been employed in the oxidation of the long chain tetradecane-1,14-diamine. 1H-NMR studies evidence simultaneous binding of the two protonated amine moieties to the crown ether receptors. This recognition has been used to pursue site-selective oxidation of a methylenic site, using hydrogen peroxide as oxidant in the presence of carboxylic acids as co-ligands. Excellent site-selectivity towards the central methylenic sites (C6 and C7) is observed, overcoming selectivity parameters derived from polar deactivation by simple amine protonation and selectivity observed in the oxidation of related monoprotonated amines.
Collapse
Affiliation(s)
- Arnau Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche (IMC-CNR), Sezione Meccanismi di Reazione, Sapienza Università di Roma, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| |
Collapse
|
9
|
Chen J, Song W, Yao J, Wu Z, Lee YM, Wang Y, Nam W, Wang B. Hydrogen Bonding-Assisted and Nonheme Manganese-Catalyzed Remote Hydroxylation of C-H Bonds in Nitrogen-Containing Molecules. J Am Chem Soc 2023; 145:5456-5466. [PMID: 36811463 DOI: 10.1021/jacs.2c13832] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The development of catalytic systems capable of oxygenating unactivated C-H bonds with excellent site-selectivity and functional group tolerance under mild conditions remains a challenge. Inspired by the secondary coordination sphere (SCS) hydrogen bonding in metallooxygenases, reported herein is an SCS solvent hydrogen bonding strategy that employs 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a strong hydrogen bond donor solvent to enable remote C-H hydroxylation in the presence of basic aza-heteroaromatic rings with a low loading of a readily available and inexpensive manganese complex as a catalyst and hydrogen peroxide as a terminal oxidant. We demonstrate that this strategy represents a promising compliment to the current state-of-the-art protection approaches that rely on precomplexation with strong Lewis and/or Brønsted acids. Mechanistic studies with experimental and theoretical approaches reveal the existence of a strong hydrogen bonding between the nitrogen-containing substrate and HFIP, which prevents the catalyst deactivation by nitrogen binding and deactivates the basic nitrogen atom toward oxygen atom transfer and the α-C-H bonds adjacent to the nitrogen center toward H-atom abstraction. Moreover, the hydrogen bonding exerted by HFIP has also been demonstrated not only to facilitate the O-O bond heterolytic cleavage of a putative MnIII-OOH precursor to generate MnV(O)(OC(O)CH2Br) as an active oxidant but also to affect the stability and the activity of MnV(O)(OC(O)CH2Br).
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenxun Song
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinping Yao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|