1
|
Cui D, Zhang L, Zhang J, Li W, Chen J, Guo Z, Sun C, Wang Y, Wang W, Li S, Huang W, Zheng C, Chen R. Hybrid Local and Charge-Transfer Material with Ultralong Room Temperature Phosphorescence for Efficient Organic Afterglow Light-Emitting Diodes. Angew Chem Int Ed Engl 2024; 63:e202411588. [PMID: 39054700 DOI: 10.1002/anie.202411588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Organic ultralong room temperature phosphorescence (OURTP) materials capable of combining various emission behaviors for diversified optoelectronic properties and applications have recently gained a vigorous development, but it remains a forbidden challenge in designing OURTP molecules with hybrid local and charge-transfer (HLCT) feature, possibly due to the elevated difficulties in simultaneously meeting the stringent requirements of both HLCT and OURTP emitters. Here, through introducing multiple heteroatoms into one-dimensional fused ring of coumarin with moderate charge transfer perturbation in donor-π-acceptor architecture, we demonstrate a HLCT-featured OURTP molecule showing both promoted fluorescence with a quantum yield of 77 % in solution and long-lived OURTP with a lifetime of 251 ms in conventional host material used in electroluminescent device. Thus, efficient OURTP organic light-emitting diodes (OLEDs) were fabricated, exhibiting bright electroluminescence with an exciton utilization efficiency of 85 % and yellow OURTP lasting over 2 s for afterglow. Impressively, the HLCT OURTP-OLEDs can be further optimized to reach an unprecedented total external quantum efficiency (EQE) of ~12 % and OURTP EQE up to 3.11 %, representing the highest performance among the reported OURTP-OLEDs. These impressive results highlight the significance to fuse HLCT and OURTP together in enriching OURTP materials and improving the afterglow OLED performances.
Collapse
Affiliation(s)
- Dongyue Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Longyan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenjing Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenli Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yike Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wenjun Wang
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Shandong, 252059, China
| | - Shuhong Li
- Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Shandong, 252059, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Chao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
2
|
Gao H, Zhang T, Lei Y, Jiao D, Yu B, Yuan WZ, Ji J, Jin Q, Ding D. An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery. Angew Chem Int Ed Engl 2024; 63:e202406651. [PMID: 38781352 DOI: 10.1002/anie.202406651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Tingting Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Di Jiao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
3
|
Gao Z, Yan X, Jia Q, Zhang J, Guo G, Li H, Li H, Xie G, Tao Y, Chen R. Stimulating Chiral Selective Expression of Room Temperature Phosphorescence for Chirality Recognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410671. [PMID: 39377218 DOI: 10.1002/advs.202410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Chiral recognition is crucial for applications in chiral purity assessment and biomedical fields. However, achieving chiral recognition through visible room temperature phosphorescence remains challenging. Here, two chiral molecules, designated as host and guest are synthesized, which possess similar structural configurations. A viable strategy involving a chiral configuration-dependent energy transfer process to enable selective phosphorescence expression is proposed, thereby enabling chiral recognition in a host-guest doping system. The chiral and structural similarity between host and guest facilitates efficient Dexter energy transfer due to the reduced spatial distance between the molecules. This mechanism significantly enhances the intensity of red phosphorescence from the guest molecule, characterized by an emission peak at 612 nm and a prolonged lifetime of 32.7 ms. This work elucidates the mechanism of chiral-dependent energy transfer, demonstrating its potential for selectively expressing phosphorescence in chiral recognition.
Collapse
Affiliation(s)
- Zhisheng Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xin Yan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Qi Jia
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingru Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Guangyao Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| |
Collapse
|
4
|
Sun H, Yu Z, Li C, Zhang M, Shen S, Li M, Liu M, Li Z, Wu D, Zhu L. Single-Luminophore Molecular Engineering for Rapidly Phototunable Solid-State Luminescence. Angew Chem Int Ed Engl 2024:e202413827. [PMID: 39243223 DOI: 10.1002/anie.202413827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Smart materials enabling emission intensity or wavelength tuning by light stimulus have attracted attention in cutting-edge fields. However, due to the general limitation of the dense molecular stacking (in solid states, especially in crystals) on photoresponsivity, constructing rapidly phototunable solid-state luminescent systems remains challenging. Herein, we present a new luminophore that serves as both a photoresponsive and a luminous group with enhanced conformational freedom to attain this goal, namely, relying on photoexcitation-induced molecular conformational change of an ionized persulfurated arene based on weak intermolecular aliphatic C-H⋅⋅⋅π interaction. Together with the phosphorescence characteristic of the molecule itself, rapidly enhanced phosphorescence upon irradiation can be observed in a series of phase states, like solution state, crystal, and amorphous state, especially with a high photoresponsive rate of 0.033 s-1 in crystal state that is superior to the relevant reported cases. Moreover, a rapidly phototunable afterglow effect is achieved by extending this molecule into some polymer-based doping systems, endowing the system with unique dynamic imaging and fast photopatterning capabilities. This single-luminophore molecular engineering and underlying mechanism have implications for building other condensed functional materials, principally for those with stimuli responses in solid states.
Collapse
Affiliation(s)
- Hao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zidong Yu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Chenzi Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Mingde Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Mouwei Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
5
|
Li H, Li X, Su H, Zhang S, Tan C, Chen C, Zhang X, Huang J, Gu J, Li H, Xie G, Dong H, Chen R, Tao Y. Highly stable color-tunable organic long-persistent luminescence from a single-component exciplex copolymer for in vitro antibacterial. Chem Sci 2024; 15:d4sc02839b. [PMID: 39184302 PMCID: PMC11342159 DOI: 10.1039/d4sc02839b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Developing exciplex-based organic long-persistent luminescence (OLPL) materials with high stability is very important but remains a formidable challenge in a single-component system. Here, we report a facile strategy to achieve highly stable OLPL in an amorphous exciplex copolymer system via through-space charge transfer (TSCT). The copolymer composed of electron donor and acceptor units can not only exhibit effective TSCT for intra/intermolecular exciplex emission but also construct a rigid environment to isolate oxygen and suppress non-radiative decay, thereby enabling stable exciplex-based OLPL emission with color-tunable feature for more than 100 h under ambient conditions. These single-component OLPL copolymers demonstrate robust antibacterial activity against Escherichia coli under visible light irradiation. These results provide a solid example to exploit highly stable exciplex-based OLPL in polymers, shedding light on how the TSCT mechanism may potentially contribute to OLPL in a single-component molecular system and broadening the scope of OLPL applications.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xiaoye Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University 30 Zhongyang Road Nanjing Jiangsu 210008 China
| | - Haoran Su
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Cheng Tan
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Cheng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xin Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiani Huang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jie Gu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University 30 Zhongyang Road Nanjing Jiangsu 210008 China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
6
|
Zhou J, Tian B, Zhai Y, Wang M, Liu S, Li J, Li S, James TD, Chen Z. Photoactivated room temperature phosphorescence from lignin. Nat Commun 2024; 15:7198. [PMID: 39169019 PMCID: PMC11339440 DOI: 10.1038/s41467-024-51545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Sustainable photoactivated room temperature phosphorescent materials exhibit great potential but are difficult to obtain. Here, we develop photoactivated room temperature phosphorescent materials by covalently attaching lignin to polylactic acid, where lignin and polylactic acid are the chromophore and matrix, respectively. Initially the phosphorescence of the lignin is quenched by residual O2. However, the phosphorescence is switched on when the residual oxygen is consumed by the triplet excitons of lignin under continuous UV light irradiation. As such, the lifetime increases from 3.0 ms to 221.1 ms after 20 s of UV activation. Interestingly, the phosphorescence is quenched again after being kept under an atmosphere of air for 2 h in the absence of UV irradiation due to the diffusion of oxygen into the materials. Using these properties, as-developed material is successfully used as a smart anti-counterfeiting logo for a medicine bottle and for information recording.
Collapse
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Min Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China.
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China.
| |
Collapse
|
7
|
Zhao Z, Liu X, Dai W, Liu S, Liu M, Wu H, Huang X, Lei Y. Enhancing the Room-Temperature Phosphorescence Performance by Salinization of Guests. J Phys Chem Lett 2024:8093-8100. [PMID: 39087745 DOI: 10.1021/acs.jpclett.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Although the host-guest doped strategy effectively improves the phosphorescence performance of materials and greatly enriches the variety of materials, most of the guests are organic molecules with weak luminescence ability, which leads to the need for further improvement in the phosphorescence performance of doped materials. Herein, by salinization of organic molecules, the luminescence performance of the guests was effectively improved, thereby significantly enhancing the phosphorescence performance of the doped system. A compound 4-(naphthalen-2-yl)quinoline (QL) containing nitrogen atom was synthesized as initial guest, then QL was salted to obtain six organic salt guests containing anions BF4-, PF6-, CF3SO3-, N(CF3SO2)2-, ClO4-, and C4F9SO3-, respectively. Two doped systems were constructed using benzophenone and poly(methyl methacrylate) as the hosts. The phosphorescence quantum yield and phosphorescence lifetime of doped materials with QL as guest were only 4.1%/5.2% and 131 ms/141 ms, while those of doped materials with salinized molecules as guests were improved to 32-39% and 534-625 ms, respectively. The single-crystal structures and theoretical calculations indicated that anions can not only enhance the intermolecular interaction of guests but also increase the spin-orbit coupling constant. This work provides an effective strategy for improving the phosphorescence performance of doped materials.
Collapse
Affiliation(s)
- Zhenwei Zhao
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenbo Dai
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, P. R. China
| | - Shengdi Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miaochang Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Huayue Wu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaobo Huang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, P. R. China
| |
Collapse
|
8
|
Nie F, Yan D. Zero-dimensional halide hybrid bulk glass exhibiting reversible photochromic ultralong phosphorescence. Nat Commun 2024; 15:5519. [PMID: 38951508 PMCID: PMC11217438 DOI: 10.1038/s41467-024-49886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Dynamically responsive materials, capable of reversible changes in color appearance and/or photoemission upon external stimuli, have attracted substantial attention across various fields. This study presents an effective approach wherein switchable modulation of photochromism and ultralong phosphorescence can be achieved simultaneously in a zero-dimensional organic-inorganic halide hybrid glass doped with 4,4´-bipyridine. The facile fabrication of large-scale glasses is accomplished through a combined grinding-melting-quenching process. The persistent luminescence can be regulated through the photochromic switch induced by photo-generated radicals. Furthermore, the incorporation of the aggregation-induced chirality effect generates intriguing circularly polarized luminescence, with an optical dissymmetry factor (glum) reaching the order of 10-2. Exploiting the dynamic ultralong phosphorescence, this work further achieves promising applications, such as three-dimensional optical storage, rewritable photo-patterning, and multi-mode anti-counterfeiting with ease. Therefore, this study introduces a smart hybrid glass platform as a new photo-responsive switchable system, offering versatility for a wide array of photonic applications.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
9
|
Ma DX, Li ZQ, Tang K, Gong ZL, Shao JY, Zhong YW. Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence. Nat Commun 2024; 15:4402. [PMID: 38782924 PMCID: PMC11116439 DOI: 10.1038/s41467-024-48836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.
Collapse
Affiliation(s)
- Dian-Xue Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Qiu Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Kun Tang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, China.
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Yang B, Yan S, Zhang Y, Ban S, Ma H, Feng F, Huang W. Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids with Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow. J Am Chem Soc 2024; 146:7668-7678. [PMID: 38451846 DOI: 10.1021/jacs.3c14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Organic phosphors integrating circularly polarized persistent luminescence (CPPL) across the visible range are widespread for applications in optical information encryption, bioimaging, and 3D display, but the pursuit of color-tunable CPPL in single-component organics remains a formidable task. Herein, via in situ photoimplanting radical ion pairing into axial chiral crystals, we present and elucidate an unprecedented double-module decay strategy to achieve a colorful CPPL through a combination of stable triplet emission from neutral diphosphine and doublet radiance from photogenic radicals in an exclusive crystalline framework. Owing to the photoactivation-dependent doublet radiance component and an inherent triplet phosphorescence in the asymmetric environment, the CPL vision can be regulated by altering the photoactivation and observation time window, allowing colorful glow tuning from blue and orange to delayed green emission. Mechanism studies clearly reveal that this asymmetric electron migration environment and hybrid n-π* and π-π* instincts are responsible for the afterglow and radical radiance at ambient conditions. Moreover, we demonstrate the applications of colorful CPPL for displays and encryption via manipulation of both excitation and observation times.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shirong Ban
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
11
|
Cao M, Ren Y, Wu Y, Shen J, Li S, Yu ZQ, Liu S, Li J, Rojas OJ, Chen Z. Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence. Nat Commun 2024; 15:2375. [PMID: 38490985 PMCID: PMC10943238 DOI: 10.1038/s41467-024-45844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024] Open
Abstract
There is interest in developing sustainable materials displaying circularly polarized room-temperature phosphorescence, which have been scarcely reported. Here, we introduce biobased thin films exhibiting circularly polarized luminescence with simultaneous room-temperature phosphorescence. For this purpose, phosphorescence-active lignosulfonate biomolecules are co-assembled with cellulose nanocrystals in a chiral construct. The lignosulfonate is shown to capture the chirality generated by cellulose nanocrystals within the films, emitting circularly polarized phosphorescence with a 0.21 dissymmetry factor and 103 ms phosphorescence lifetime. By contrast with most organic phosphorescence materials, this chiral-phosphorescent system possesses phosphorescence stability, with no significant recession under extreme chemical environments. Meanwhile, the luminescent films resist water and humid environments but are fully biodegradable (16 days) in soil conditions. The introduced bio-based, environmentally-friendly circularly polarized phosphorescence system is expected to open many opportunities, as demonstrated here for information processing and anti-counterfeiting.
Collapse
Affiliation(s)
- Mengnan Cao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yiran Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Yue Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China.
| | - Jingjie Shen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
12
|
Nie F, Yan D. Photo-Controllable Ultralong Room-Temperature Phosphorescence: State of the Art. Chemistry 2024; 30:e202303611. [PMID: 38072832 DOI: 10.1002/chem.202303611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 01/05/2024]
Abstract
In this concept, we showcase the upsurge in the studies of dynamic ultralong room-temperature phosphorescence (RTP) materials containing inorganic and/or organic components as versatile photo-responsive platforms. The goal is to provide a comprehensive analysis of photo-controllable RTP, and meanwhile delve into the underlying RTP properties of various classes of photochromic materials including metal-organic complexes, organic-inorganic co-crystals, purely organic small molecules and organic polymers. In particular, the design principles governing the integration of the photochromic and RTP moieties within a single material system, and the tuning of dynamic RTP in response to light are emphasized. As such, this concept sheds light on the challenges and opportunities of using these tunable RTP materials for potential applications in optoelectronics, particularly highlighting their use of reversible information encryption, erasable light printing and rewritable smart paper.
Collapse
Affiliation(s)
- Fei Nie
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
13
|
Liang Y, Hu P, Zhang H, Yang Q, Wei H, Chen R, Yu J, Liu C, Wang Y, Luo S, Shi G, Chi Z, Xu B. Enabling Highly Robust Full-Color Ultralong Room-Temperature Phosphorescence and Stable White Organic Afterglow from Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2024; 63:e202318516. [PMID: 38241198 DOI: 10.1002/anie.202318516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
In this work, full-color and stable white organic afterglow materials with outstanding water, organic solvents, and temperature resistances have been developed for the first time by embedding the selected polycyclic aromatic hydrocarbons into melamine-formaldehyde polymer via solution polymerization. The afterglow quantum yields and lifetimes of the resulting polymer films were up to 22.7 % and 4.83 s, respectively, under ambient conditions. For the coronene-doped sample, its afterglow color could be linearly tuned between yellow and blue by adjusting the temperature, and it could still emit an intense blue afterglow with a lifetime of 0.68 s at 440 K. Moreover, the films showed a bright and stable white afterglow at 370 K with a lifetime of 2.80 s and maintained an excellent afterglow performance after soaking in water and organic solvents for more than 150 days. In addition, the application potential of the polymer films in information encryption and anti-counterfeiting was also demonstrated.
Collapse
Affiliation(s)
- Yaohui Liang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Pengtao Hu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Hengshan Wei
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Ruitai Chen
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jiahai Yu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Yuhai Wang
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Suilian Luo
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhenguo Chi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bingjia Xu
- School of Chemistry; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Yuan J, Wang Y, Zhou B, Xie W, Zheng B, Zhang J, Li P, Yu T, Qi Y, Tao Y, Chen R. Direct Population of Triplet States for Efficient Organic Afterglow through the Intra/Intermolecular Heavy-Atom Effect. Molecules 2024; 29:1014. [PMID: 38474526 DOI: 10.3390/molecules29051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Organic afterglow is a fascinating phenomenon with exceptional applications. However, it encounters challenges such as low intensity and efficiency, and typically requires UV-light excitation and facile intersystem crossing (ISC) due to its spin-forbidden nature. Here, we develop a novel strategy that bypasses the conventional ISC pathway by promoting singlet-triplet transition through the synergistic effects of the intra/intermolecular heavy-atom effect in aromatic crystals, enabling the direct population of triplet excited states from the ground state. The resulting materials exhibit a bright organic afterglow with a remarkably enhanced quantum efficiency of up to 5.81%, and a significantly increased organic afterglow lifetime of up to 157 microseconds under visible light. Moreover, given the high-efficiency visible-light excitable organic afterglow emission, the potential application is demonstrated in lifetime-resolved, color-encoded, and excitation wavelength-dependent pattern encryption. This work demonstrates the importance of the direct population method in enhancing the organic afterglow performance and red-shifting the excitation wavelength, and provides crucial insights for advancing organic optoelectronic technologies that involve triplet states.
Collapse
Affiliation(s)
- Jie Yuan
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yongrong Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Binbin Zhou
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Wenjing Xie
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Botao Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Tian Yu
- Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing 210023, China
| | - Yuanyuan Qi
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
15
|
Chen K, Zhang Y, Lei Y, Dai W, Liu M, Cai Z, Wu H, Huang X, Ma X. Twofold rigidity activates ultralong organic high-temperature phosphorescence. Nat Commun 2024; 15:1269. [PMID: 38341441 DOI: 10.1038/s41467-024-45678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
A strategy is pioneered for achieving high-temperature phosphorescence using planar rigid molecules as guests and rigid polymers as host matrix. The planar rigid configuration can resist the thermal vibration of the guest at high temperatures, and the rigidity of the matrix further enhances the high-temperature resistance of the guest. The doped materials exhibit an afterglow of 40 s at 293 K, 20 s at 373 K, 6 s at 413 K, and a 1 s afterglow at 433 K. The experimental results indicate that as the rotational ability of the groups connected to the guests gradually increases, the high-temperature phosphorescence performance of the doped materials gradually decreases. In addition, utilizing the property of doped materials that can emit phosphorescence at high temperatures and in high smoke, the attempt is made to use organic phosphorescence materials to identify rescue workers and trapped personnel in fires.
Collapse
Affiliation(s)
- Kaijun Chen
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Yongfeng Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, 10081, Beijing, PR China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China.
| | - Wenbo Dai
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Miaochang Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, 10081, Beijing, PR China
| | - Huayue Wu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China
| | - Xiaobo Huang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, PR China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, PR China.
| |
Collapse
|
16
|
Jin X, Zhao H, Bai H, Ding L, Chen W. Facile preparation strategy of novel B 2O 3-modified carbon dots with 1.99 s ultra-long Room-Temperature phosphorescence for multidimensional encryption. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123473. [PMID: 37857077 DOI: 10.1016/j.saa.2023.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
Facile synthesis of Ultralong room-temperature phosphorescence (URTP) with super stability and long-afterglow are of great significance, but hard to achieve. Herein, a brilliant gram-scale and solvent-free pyrolysis treatment strategy has been developed to prepare high-performance URTP carbon dots (CDs) by regulating different temperature (250-500 °C). The optimized CDs (CD-400) showed room-temperature phosphorescence 1.99 s and lasting over 22 s to naked eyes, which is superior to most of the reported URTP CDs. Owing to the stabilization effects of the modified B2O3 layer on the surface, the homogenous distribution of CD-400 with the narrow diameter of 1.44 nm was constructed, displaying a superb stability through hydrogen-bond network. In addition, the doping atoms (N, O) greatly enhanced the n-π* transitions and stabilized triplet excitons radiative transitions, facilitating the effective intersystem crossing (ISC) and the RTP emissions. More importantly, the B2O3-modified CDs were successfully applied in the multi-level information encryption (time-resolved RTP performance) and fingerprint identification (bifurcation, whorl and termination details).
Collapse
Affiliation(s)
- Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China; Yulin Boyi-Jingking Research Institute of Industrial Technology Development Research, Yulin, Shaanxi Province 719054, PR China.
| | - Huaqi Zhao
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Liu Ding
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi Province 710021, PR China.
| |
Collapse
|
17
|
Ju CW, Wang XC, Li B, Ma Q, Shi Y, Zhang J, Xu Y, Peng Q, Zhao D. Evolution of organic phosphor through precision regulation of nonradiative decay. Proc Natl Acad Sci U S A 2023; 120:e2310883120. [PMID: 37934818 PMCID: PMC10655561 DOI: 10.1073/pnas.2310883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Xi-Chao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Qiushi Ma
- Department of Chemistry, Marquette University, Milwaukee, WI53233
| | - Yuhao Shi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Yuzhi Xu
- Department of Chemistry, New York University, New York, NY10003
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| |
Collapse
|
18
|
Xu L, Ji H, Qiu W, Wang X, Liu Y, Li Y, Li J, Zhang X, Zhang D, Wang J, Tao Y, Li M, Chen R. Enhanced Resonance for Facilitated Modulation of Large-Area Perovskite Films with Stable Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301752. [PMID: 37815114 DOI: 10.1002/adma.202301752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Upscaling efficient and stable perovskite films is a challenging task in the industrialization of perovskite solar cells partly due to the lack of high-performance hole transport materials (HTMs), which can simultaneously promote hole transport and regulate the quality of perovskite films especially in inverted solar cells. Here, a novel HTM based on N-C = O resonance structure is designed for facilitating the modulation of the crystallization and bottom-surface defects of perovskite films. Benefiting from the resonance interconversion (N-C = O and N+ = C-O- ) in donor-resonance-donor (D-r-D) architecture and interactions with uncoordinated Pb2+ in perovskite, the resulting D-r-D HTM with two donor units exhibits not only excellent hole extraction and transport capacities, but also efficient crystallization modulation of perovskite for high-quality photovoltaic films in large area. The D-r-D HTM-based large-area (1.02 cm2 ) devices exhibit high power conversion efficiencies (PCEs) up to 21.0%. Moreover, the large-area devices have excellent photo-thermal stability, showing only a 2.6% reduction in PCE under continuous AM 1.5G light illumination at elevated temperature (≈65 °C) for over 1320 h without encapsulation.
Collapse
Affiliation(s)
- Ligang Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Geyu Road, Wuhan, Hubei, 430074, China
| | - Haodong Ji
- School of Environment and Energy, Peking University Shenzhen Graduate School, 1120 Lianhua Road, Shenzhen, 518055, China
| | - Wei Qiu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xin Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuanhao Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, 1120 Lianhua Road, Shenzhen, 518055, China
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun east road, Beijing, 100190, China
| | - Xin Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Daiquan Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiexue Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, 4 Baishou Road, Chengdu, 611130, China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, 2 Beinong Road, Beijing, 102206, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
19
|
Zhang L, Jin Y, Wang Y, Li W, Guo Z, Zhang J, Yuan L, Zheng C, Zheng Y, Chen R. High-Quality Circularly Polarized Organic Afterglow from Nonconjugated Amorphous Chiral Copolymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49623-49632. [PMID: 37816127 DOI: 10.1021/acsami.3c10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Organic materials featuring circularly polarized luminescence (CPL) and/or afterglow emission represent an active research frontier with promising applications in various fields, but the achievement of high-performance CPL organic afterglow (CPOA) remains a huge challenge due to the intrinsic contradictions between the luminescent lifetime/dissymmetry factor (glum) and phosphorescent quantum efficiency (PhQY). Herein, we report a simple and universal approach to design efficient CPOA from amorphous copolymers by incorporating chiral chromophores into a nonconjugated clusterization-triggered emissive polymer with plenty of hydron-bonding interactions, followed by aggregation engineering using water dissolution and evaporation. With this chiral copolymerization and aggregation engineering (CCAE) strategy, high-performance CPOA polymers with PhQYs of up to 6.32%, ultralong lifetimes of over 650 ms, glum values of 3.54 × 10-3, and the highest figure-of-merit were achieved at room temperature. Given the impressive CPOA performance of these polymers, the applications in multilevel data anticounterfeiting and reversible displays with high stability were demonstrated. These findings through the CCAE strategy to overcome the inherent restraints of CPOA materials lay the foundation for the development of amorphous polymers with superior CPOA, significantly expanding the understanding of CPL and the design of organic afterglow materials.
Collapse
Affiliation(s)
- Longyan Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yishan Jin
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yike Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wenjing Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhenli Guo
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingyu Zhang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chao Zheng
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Youxuan Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
20
|
Gao Y, Ye W, Qiu K, Zheng X, Yan S, Wang Z, An Z, Shi H, Huang W. Regulating Isolated-Molecular and Aggregated-State Phosphorescence for Multicolor Afterglow by Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306501. [PMID: 37793797 DOI: 10.1002/adma.202306501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Ultralong organic phosphorescence (UOP) materials have attracted considerable attention in recent years. Herein, a new type of flexible films is fabricated by doping amphipathic pyrene tetrasulfonic acid sodium salts into amorphous poly(vinyl alcohol) matrix, which enables the realization of color-tunable UOP spanning from orange-red to green after excitation light is switched off. Interestingly, precise control of the proportion of isolated-molecular and aggregated-state phosphorescence is demonstrated for colorful afterglow using photo-activation. An increase in the dynamic phosphorescence lifetime of isolated molecules is observed from 894.75 to 1735.71 ms following an 8 min irradiation under ambient conditions. The photo-activation, however, showed little influence on aggreated-state phosphorescence. This flexible and processable film exhibits versatile applications in multicolor afterglow displays, ultraviolet detection, multilevel information encryption, etc. This study not only provides a strategy for the rational regulation of UOP colors but also expands the application potential of color-tunable UOP materials.
Collapse
Affiliation(s)
- Yanhua Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Kefan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xifang Zheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Shuanma Yan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhaoyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
21
|
Yan Y, Liu C, Fan J, Li Y, Liu H, Wang Q, Li X, Li J, Lai WY. Single-Component Color-Tunable Smart Organic Emitters with Simultaneous Multistage Stimuli-Responsiveness and Multimode Emissions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0241. [PMID: 37779635 PMCID: PMC10539023 DOI: 10.34133/research.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Achieving color-tunable emission in single-component organic emitters with multistage stimuli-responsiveness is of vital significance for intelligent optoelectronic applications, but remains enormously challenging. Herein, we present an unprecedented example of a color-tunable single-component smart organic emitter (DDOP) that simultaneously exhibits multistage stimuli-responsiveness and multimode emissions. DDOP based on a highly twisted amide-bridged donor-acceptor-donor structure has been found to facilitate intersystem crossing, form multimode emissions, and generate multiple emissive species with multistage stimuli-responsiveness. DDOP pristine crystalline powders exhibit abnormal excitation-dependent emissions from a monomer-dominated blue emission centered at 470 nm to a dimer-dominated yellow emission centered at 550 nm through decreasing the ultraviolet (UV) excitation wavelengths, whereas DDOP single crystals show a wide emission band with a main emission peak at 585 nm when excited at different wavelengths. The emission behaviors of pristine crystalline powders and single crystals are different, demonstrating emission features that are closely related to the aggregation states. The work has developed color-tunable single-component organic emitters with simultaneous multistage stimuli-responsiveness and multimode emissions, which is vital for expanding intelligent optoelectronic applications, including multilevel information encryption, multicolor emissive patterns, and visual monitoring of UV wavelengths.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chengfang Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Yusheng Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanling Liu
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qian Wang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiangchun Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID),
Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
22
|
Yang X, Wang S, Sun K, Liu H, Ma M, Zhang ST, Yang B. A Heavy-atom-free Molecular Motif Based on Symmetric Bird-like Structured Tetraphenylenes with Room-Temperature Phosphorescence (RTP) Afterglow over 8 s. Angew Chem Int Ed Engl 2023; 62:e202306475. [PMID: 37367201 DOI: 10.1002/anie.202306475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
In recent years, pure organic room-temperature phosphorescence (RTP) with highly efficient and long-persistent afterglow has drawn substantial awareness. Commonly, spin-orbit coupling can be improved by introducing heavy atoms into pure-organic molecules. However, this strategy will simultaneously increase the radiative and non-radiative transition rate, further resulting in dramatic decreases in the excited state lifetime and afterglow duration. Here in this work, a highly symmetric bird-like structure tetraphenylene (TeP), and its three symmetrical halogenated derivatives (TeP-F, TeP-Cl and TeP-Br) are synthesized, while their RTP properties and mechanisms are systematically investigated by both theoretical and experimental approaches. As the results, the rigid, highly twisted conformation of TeP restricts the non-radiative processes of RTP and gives rise to the enhancement of electron-exchange, which can contribute to the RTP radiation process. Despite the faint RTP of the bromine and chlorine-substituted ones (TeP-Br, TeP-Cl), the fluoro-substituted TeP-F exhibited a long phosphorescent lifetime up to 890 ms, corresponding to an extremely long RTP afterglow over 8 s, which could be incorporated into the best series of non-heavy-atom RTP materials reported in previous literature.
Collapse
Affiliation(s)
- Xinqi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Shiyin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Ke Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, 4089 Shahe West Road, Shenzhen, 518055, China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 (P. R. China)
| |
Collapse
|
23
|
Komura M, Sotome H, Miyasaka H, Ogawa T, Tani Y. Photoinduced crystal melting with luminescence evolution based on conformational isomerisation. Chem Sci 2023; 14:5302-5308. [PMID: 37234907 PMCID: PMC10207888 DOI: 10.1039/d3sc00838j] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation. In particular, one of the diketones demonstrates luminescence evolution prior to crystal melting. Thus, the diketone crystal exhibits dynamic multistep changes in the luminescence colour and intensity during continuous ultraviolet irradiation. This luminescence evolution can be ascribed to the sequential PCLT processes of crystal loosening and conformational isomerisation before macroscopic melting. Single-crystal X-ray structural analysis, thermal analysis, and theoretical calculations of two PCLT-active and one inactive diketones revealed weaker intermolecular interactions for the PCLT-active crystals. In particular, we observed a characteristic packing motif for the PCLT-active crystals, consisting of an ordered layer of diketone core and a disordered layer of triisopropylsilyl moieties. Our results demonstrate the integration of photofunction with PCLT, provide fundamental insights into the melting process of molecular crystals, and will diversify the molecular design of PCLT-active materials beyond classical photochromic scaffolds such as azobenzenes.
Collapse
Affiliation(s)
- Mao Komura
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Takuji Ogawa
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
| | - Yosuke Tani
- Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
24
|
Tu F, Ye Z, Mu Y, Luo X, Liao L, Hu D, Ji S, Yang Z, Chi Z, Huo Y. Photoinduced Radical Persistent Luminescence in Semialiphatic Polyimide System with Temperature and Humidity Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301017. [PMID: 37119475 PMCID: PMC10375117 DOI: 10.1002/advs.202301017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Organic persistent luminescence (pL) systems with photoresponsive dynamic features have valuable applications in the fields of data encryption, anticounterfeiting, and bioimaging. Photoinduced radical luminescent materials have a unique luminous mechanism with the potential to achieve dynamic pL. It is extremely challenging to obtain radical pL under ambient conditions; on account of it, it is unstable in air. Herein, a new semialiphatic polyimide-based polymer (A0) is developed, which can achieve dynamic pL through reversible conversion of radical under photoexcitation. A "joint-donor-spacer-acceptor" molecular design strategy is applied to effectively modulate the intramolecular charge-transfer and charge-transfer complex interactions, resulting in effective protection of the radical generated under photoirradiation. Meanwhile, polyimide-based polymers of A1-A4 are obtained by doping different amine-containing fluorescent dyes to modulate the dynamic afterglow color from green to red via the triplet to singlet Förster resonance energy-transfer pathway. Notably, benefiting from the structural characteristics of the polyimide-based polymer, A0-A4 have excellent processability, thermal stability, and mechanical properties and can be applied directly in extreme environments such as high temperatures and humidity.
Collapse
Affiliation(s)
- Fanlin Tu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zecong Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuwei Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liyun Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dehua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiyong Yang
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenguo Chi
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
- Analytical & Testing Center, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
Jie Y, Wang D, Chen R, Zhang J, Li W, Huang J, Dai P, Gao Y, Li F, Fang J. Deep-blue thermally activated delayed fluorescence carbon dots with ultralong lifetime. NANOSCALE 2023; 15:3337-3344. [PMID: 36722749 DOI: 10.1039/d2nr05104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs) with deep-blue thermally activated delayed fluorescence (TADF) of more than 2 s were developed, exhibiting the longest lifetime to date. In contrast to the established deep-blue TADF systems, this developed CD-based system (BNCDs) could be facilely and effectively synthesized, and more impressively, the emission lasted for more than 16 s (to the naked eye). XRD, TEM, FT-IR, and XPS analyses were conducted, and structural characterizations indicated that the CDs formed hydrogen bonding with B2O3. The temperature-dependent photoluminescence (PL) spectra demonstrated the existence of thermally activated delayed fluorescence in the composite. Further studies revealed that the B2O3 matrix restricted the vibration and rotation of CD chromophores and suppressed the non-radiative recombination of triplet excitons. Last but not least, potential applications in bioimaging, anti-counterfeiting, and information encryption were also explored. This work can provide new insights for developing metal-free and ultralong lifetime afterglow materials.
Collapse
Affiliation(s)
- Yanni Jie
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Dong Wang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Wenqi Li
- National Engineering Research Center for Miniaturized Detection Systems, Shaanxi Lifegene Company, School of Life Sciences, Northwest University, Xi'an, 710021, China
| | - Jianfeng Huang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Penggao Dai
- National Engineering Research Center for Miniaturized Detection Systems, Shaanxi Lifegene Company, School of Life Sciences, Northwest University, Xi'an, 710021, China
| | - Yang Gao
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuchun Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jiawen Fang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
26
|
Li JA, Zhang L, Wu C, Huang Z, Li S, Zhang H, Yang Q, Mao Z, Luo S, Liu C, Shi G, Xu B. Switchable and Highly Robust Ultralong Room-Temperature Phosphorescence from Polymer-Based Transparent Films with Three-Dimensional Covalent Networks for Erasable Light Printing. Angew Chem Int Ed Engl 2023; 62:e202217284. [PMID: 36512442 DOI: 10.1002/anie.202217284] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.
Collapse
Affiliation(s)
- Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Chunlei Wu
- Guangzhou Huifu Research Institute Co., Ltd., Guangzhou, 510663, China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Wang T, Gupta AK, Wu S, Slawin AMZ, Zysman-Colman E. Conjugation-Modulated Excitonic Coupling Brightens Multiple Triplet Excited States. J Am Chem Soc 2023; 145:1945-1954. [PMID: 36638828 PMCID: PMC9880999 DOI: 10.1021/jacs.2c12320] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design and regulation of multiple room-temperature phosphorescence (RTP) processes are formidably challenging due to the restrictions imposed by Kasha's rule. Here, we report a general design principle for materials that show multiple RTP processes, which is informed by our study of four compounds where there is modulation of the linker hybridization between donor (D) and acceptor (A) groups. Theoretical modeling and photophysical experiments demonstrate that multiple RTP processes can be achieved in sp3 C-linked D-A compounds due to the arrest of intramolecular electronic communication between two triplet states (T1H and T1L) localized on the donor and acceptor or between two triplet states, one localized on the donor and one delocalized across aggregated acceptors. However, for the sp2 C-linked D-A counterparts, RTP from one locally excited T1 state is observed because of enhanced excitonic coupling between the two triplet states of molecular subunits. Single-crystal and reduced density gradient analyses reveal the influence of molecular packing on the coincident phosphorescence processes and the origin of the observed aggregate phosphorescence. These findings provide insights into higher-lying triplet excited-state dynamics and into a fundamental design principle for designing compounds that show multiple RTP.
Collapse
|
28
|
Zhang X, Qian C, Ma Z, Fu X, Li Z, Jin H, Chen M, Jiang H, Ma Z. A Class of Organic Units Featuring Matrix-Controlled Color-Tunable Ultralong Organic Room Temperature Phosphorescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206482. [PMID: 36567308 PMCID: PMC9875667 DOI: 10.1002/advs.202206482] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 06/17/2023]
Abstract
A novel class of organic units (N-1 and N-2) and their derivatives (PNNA-1 and PNNA-2) with excellent property of ultralong organic room temperature phosphorescence (UORTP) is reported. In this work, N-1, N-2, and their derivatives function as the guests, while organic powders (PNCz, BBP, DBT) and polymethyl methacrylate (PMMA) serve as the host matrixes. Amazingly, the color of phosphorescence can be tuned in different states or by varying the host matrixes. At 77 K, all molecules show green afterglow in the monomer state but yellow afterglow in the aggregated state because strong intermolecular interactions exist in the self-aggregate and induce a redshift of the afterglow. In particular, PNNA-1 and PNNA-2 demonstrate distinctive photoactivated green UORTP in the PMMA film owing to the generation of their cation radicals. Whereas the PNNA-1@PNCz and PNNA-2@PNCz doping powders give out yellow UORTP, showing matrix-controlled color-tunable UORTP. In PNCz, the cation radicals of PNNA-1 and PNNA-2 can stay stably and form strong intermolecular interactions with PNCz, leading to a redshift of ultralong phosphorescence.
Collapse
Affiliation(s)
- Xue Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Chen Qian
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zhimin Ma
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Xiaohua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Zewei Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Huiwen Jin
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Mingxing Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Hong Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Polymer Chemistry and Physics of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Zhiyong Ma
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringState Key Laboratory of Organic‐Inorganic CompositesCollege of Chemical EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
29
|
Sun C, Lu H, Yue CY, Fei H, Wu S, Wang S, Lei XW. Multiple Light Source-Excited Organic Manganese Halides for Water-Jet Rewritable Luminescent Paper and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56176-56184. [PMID: 36468498 DOI: 10.1021/acsami.2c18363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rewritable luminescent paper is particularly crucial, considering the ultrahigh paper consumption and confidential information security, but a highly desirable stimuli-responsive smart luminescent material with excellent water solubility has rarely been studied. Herein, a new type of rewritable paper made by highly efficient green light emissive zero-dimensional (0D) organic manganese halides is rationally designed by virtue of the reversible photoluminescence (PL) off-on switching. Specifically, the green emission can be linearly quenched by water vapor in a wide humidity range and again recovered in a dry atmosphere, which make it a smart hydrochromic PL off-on switching and humidity sensor. Benefiting from the reversible luminescence off-on switch and excellent water solubility, rewritable luminescent paper is realized through water-jet security printing technology on 0D halide-coated commercial paper with high resolution. The printed/written information can be easily cleaned by slight heating with outstanding "write-erase-write" cycle capabilities. In addition, multiple light source-induced coincident green light emissions further provide convenience to realize anti-counterfeiting, encryption and decryption of confidential information, and so forth. This work highlights the superiority of dynamic ionic-bonded 0D organic manganese halides as reversible PL switching materials in rewritable luminescent paper, high-security-level information printing, storage and protection technologies, and so forth.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Hao Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Shaofan Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Shuaihua Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| |
Collapse
|
30
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
31
|
Li W, Huang Q, Mao Z, He X, Ma D, Zhao J, Lam JWY, Zhang Y, Tang BZ, Chi Z. A dish-like molecular architecture for dynamic ultralong room-temperature phosphorescence through reversible guest accommodation. Nat Commun 2022; 13:7423. [PMID: 36456562 PMCID: PMC9715674 DOI: 10.1038/s41467-022-35155-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Developing dynamic organic ultralong room-temperature phosphorescent (URTP) materials is of practical importance in various applications but remains a challenge due to the difficulty in manipulating aggregate structures. Herein, we report a dish-like molecular architecture via a bottom-up way, featuring guest-responsive dynamic URTP. Through controlling local fragment motions in the molecular architecture, fascinating dynamic URTP performances can be achieved in response to reversible accommodation of various guests, including solvents, alkyl bromides and even carbon dioxide. Large-scale regulations of phosphorescence lifetime (100-fold) and intensity (10-fold) can be realized, presenting a maximum phosphorescence efficiency and lifetime of 78.8% and 483.1 ms, respectively. Moreover, such a dish-like molecular architecture is employed for temperature-dependent multiple information encryption and visual identification of linear alkyl bromides. This work can not only deepen our understanding to construct multifunctional organic aggregates, but also facilitate the design of high-performance dynamic URTP materials and enrich their practical applications.
Collapse
Affiliation(s)
- Wenlang Li
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China ,grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China
| | - Qiuyi Huang
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Zhu Mao
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Xiaoyi He
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Dongyu Ma
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Juan Zhao
- grid.12981.330000 0001 2360 039XSchool of Materials Science and Engineering, Sun Yat-sen University, 510275 Guangzhou, China
| | - Jacky W. Y. Lam
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China
| | - Yi Zhang
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ben Zhong Tang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China ,grid.511521.3School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172 Shenzhen, China
| | - Zhenguo Chi
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
32
|
Xue ZY, Yu JL, Xia QQ, Zhu YQ, Wu MX, Liu X, Wang XH. Color-Tunable Binary Copolymers Manipulated by Intramolecular Aggregation and Hydrogen Bonding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53359-53369. [PMID: 36383092 DOI: 10.1021/acsami.2c17600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Construction of color-tunable luminescent polymeric materials with enhanced emission intensity and room-temperature phosphorescence (RTP) performance regulated by a single chromophore component is highly desirable in the scope of photoluminescent materials. Herein, a set of binary copolymers were facilely synthesized using free radical polymerization by selecting different types of polymer matrix and N-substituted naphthalimides (NPA) as chromophores. Surprisingly, the fluorescence emission of copolymers could be remarkably enhanced, because of the intramolecular aggregation of NPA manipulated by a single polymer chain in both solution and solid state. Moreover, RTP signals of binary copolymers were all clearly observed in the air without any processing procedure, because of the embedding of phosphors into hydrogen bonding networks after copolymerization with vinyl-based acrylamide monomers. Taking advantages of the synergistic effect of copolymerization-induced aggregation and copolymerization-induced rigidification to promote optical performance, UV stimulus-responsive luminescent polymer films with processability, flexibility, and adjustable emission wavelength were simply prepared using a drop-casting method in large scale, the setting of which is the basis for application in the fields of organic optoelectronics, information security, and bioimaging/sensing.
Collapse
Affiliation(s)
- Zhi-Yuan Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Jia-Lin Yu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Qing-Qing Xia
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Yu-Qi Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| | - Xing-Huo Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, People's Republic of China
| |
Collapse
|
33
|
Zhang J, Xu S, Zhang L, Wang X, Bian Y, Tang S, Zhang R, Tao Y, Huang W, Chen R. Highly Efficient and Robust Full-Color Organic Afterglow through 2D Superlattices Embedment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206712. [PMID: 36086873 DOI: 10.1002/adma.202206712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Purely organic afterglow (POA) originating from the slow radiative decay of stabilized triplet excited states has shown amazing potential in many fields. However, achieving highly stable POA with high phosphorescent quantum yield (PhQY) and long lifetime is still a formidable challenge owing to the intrinsically active and sensitive nature of triplet excitons. Here, triplet excitons of phosphors are protected and stabilized by embedding in tricomponent trihapto self-assembled 2D hydrogen-bonded superlattices, which not only enables deep-blue POA with high PhQY (up to 65%), ultralong lifetime (over 1300 ms) and the highest figure-of-merit at room temperature, but also achieves excellent stability capable of resisting quenching effects of oxygen, solvent, pressure, light, and heat. In addition, the POA color is tuned from deep-blue to red via efficient Förster resonance energy transfer from the deep-blue POA emitters to the fluorophores. Moreover, with the high-performance, robust, and full-color POA materials, flexible anti-counterfeit displays and direct-current (DC)-driven lifetime-encrypted color Morse Code applications are facilely realized.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shen Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Longyan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Senlin Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Runqi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
34
|
Yang SY, Feng ZQ, Fu Z, Zhang K, Chen S, Yu YJ, Zou B, Wang K, Liao LS, Jiang ZQ. Highly Efficient Sky-Blue π-Stacked Thermally Activated Delayed Fluorescence Emitter with Multi-Stimulus Response Properties. Angew Chem Int Ed Engl 2022; 61:e202206861. [PMID: 35689409 DOI: 10.1002/anie.202206861] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Organic materials with multi-stimulus response (MSR) properties have demonstrated many potential and practical applications. Herein, a π-stacked thermally activated delayed fluorescence (TADF) material with multi-stimulus response (MSR) properties, named SDMAC, was designed and synthesized using distorted 9,9-dimethyl-10-phenyl-9,10-dihydroacridine as a donor. SDMAC possesses a rigid π-stacked configuration with intramolecular through-space interactions and exhibits aggregation-induced emission enhancement (AIEE), solvatochromic, piezochromic, and circularly polarized luminescence (CPL) under different external stimuli. The rigid molecular structure and efficient TADF properties of SDMAC can be used in displays and lighting. Using SDMAC as an emitter, the maximum external quantum efficiency (EQE) of the fabricated organic light-emitting diodes (OLEDs) is as high as 28.4 %, which make them the most efficient CP-TADF OLEDs based on the through-space charge transfer strategy. The CP organic light-emitting diodes (CP-OLEDs) exhibit circularly polarized electroluminescence (CPEL) signals.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
35
|
Guo Y, Chen K, Hu Z, Lei Y, Liu X, Liu M, Cai Z, Xiao J, Wu H, Huang X. Metal Ions as the Third Component Coordinate with the Guest to Stereoscopically Enhance the Phosphorescence Properties of Doped Materials. J Phys Chem Lett 2022; 13:7607-7617. [PMID: 35950964 DOI: 10.1021/acs.jpclett.2c02057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The construction of multicomponent doped systems is an important direction for the development of phosphorescence materials. Herein, benzophenone is selected as the host, phenylquinoline isomers are designed as guests, and seven metal ions are selected as the third component (Al3+, Cu+/2+, Zn2+, Ga3+, Ag+, Cd2+, and In3+) to construct the three-component doped system. Ag+ and Cd2+ can considerably increase the emission intensity up to 38 times, and the highest phosphorescence quantum efficiency reaches 70%. Al3+, Ga3+, and In3+ can prolong the emission wavelength, and the phosphorescence wavelength can be red-shifted up to 60 nm. Cu2+, Ga3+, and In3+ can extend the phosphorescence lifetime by a maximum of 3.6 times. A series of experiments demonstrated that the coordination of metals and guests is the key to improve the phosphorescence properties. This work presents a simple and effective strategy to enhance the phosphorescence properties of doped materials.
Collapse
Affiliation(s)
- Yan Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Kaijun Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Zechen Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Xiaoqing Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Zhengxu Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, P.R. China
| | - Jiawen Xiao
- Institute of Microstructureand Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P.R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| |
Collapse
|
36
|
Wang T, De J, Wu S, Gupta AK, Zysman‐Colman E. Thermally Activated and Aggregation-Regulated Excitonic Coupling Enable Emissive High-Lying Triplet Excitons. Angew Chem Int Ed Engl 2022; 61:e202206681. [PMID: 35684990 PMCID: PMC9545188 DOI: 10.1002/anie.202206681] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/06/2022]
Abstract
Room-temperature phosphorescence (RTP) originating from higher-lying triplet excitons remains a rather rarely documented occurrence for purely organic molecular systems. Here, we report two naphthalene-based RTP luminophores whose phosphorescence emission is enabled by radiative decay of high-lying triplet excitons. In contrast, upon cooling the dominant phosphorescence originates from the lowest-lying triplet excited state, which is manifested by a red-shifted emission. Photophysical and theoretical studies reveal that the unusual RTP results from thermally activated excitonic coupling between different conformations of the compounds. Aggregation-regulated excitonic coupling is observed when increasing the doping concentration of the emitters in poly(methylmethacrylate) (PMMA). Further, the RTP quantum efficiency improves more than 80-fold in 1,3-bis(N-carbazolyl)benzene (mCP) compared to that in PMMA. This design principle offers important insight into triplet excited state dynamics and has been exploited in afterglow-indicating temperature sensing.
Collapse
Affiliation(s)
- Tao Wang
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Joydip De
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Sen Wu
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Abhishek Kumar Gupta
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| |
Collapse
|
37
|
Yang S, Feng Z, Fu Z, Zhang K, Chen S, Yu Y, Zou B, Wang K, Liao L, Jiang Z. Highly Efficient Sky‐Blue π‐Stacked Thermally Activated Delayed Fluorescence Emitter with Multi‐Stimulus Response Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zi‐Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
38
|
Song J, Wang Y, Qu L, Fang L, Zhou X, Xu ZX, Yang C, Wu P, Xiang H. Room-Temperature Phosphorescence of Pure Axially Chiral Bicarbazoles. J Phys Chem Lett 2022; 13:5838-5844. [PMID: 35727022 DOI: 10.1021/acs.jpclett.2c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultralong room-temperature phosphorescence (RTP) is greatly important in a series of applications, but obtaining RTP from metal-free organic materials is still an enormous challenge due to the spin-forbidden nature of triplet excitons. Because of its electron-rich nature and easy derivatization, carbazole (Cz) is widely used to build organic RTP and thermally activated delayed fluorescence (TADF) materials. However, Liu et al. (Nat. Mater. 2021, 20, 175) recently demonstrated that the RTP of Cz is induced by charge traps of its isomeric impurity in commercial sources. Here, on the basis of the classical El-Sayed rule and the recently discovered intersystem crossing promotion principles (twisted structure and charge transfer), we designed and prepared highly pure (>99.9%) (R/S)-octahydro-binaphthyl-based bicarbazoles (BiCz) for high-performance RTP (ΦP = 23%; τp = 1.09 s). Interestingly, BiCz exhibited photoactivated TADF and RTP in isolated and aggregated states, respectively, and thus would be an efficient tool for rejuvenating Cz-based RTP.
Collapse
Affiliation(s)
- Jintong Song
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Yanying Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Lang Qu
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Lizhi Fang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China
| | - Cheng Yang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu 610041, China
- Analytical & Testing Center, Sichuan University, Chengdu 610041, China
| | - Haifeng Xiang
- College of Chemistry, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Wang T, De J, Wu S, Gupta AK, Zysman-Colman E. Thermally activated and aggregation‐regulated excitonic coupling enable emissive high‐lying triplet excitons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Wang
- University of St Andrews Chemistry UNITED KINGDOM
| | - Joydip De
- University of St Andrews Chemistry UNITED KINGDOM
| | - Sen Wu
- University of St Andrews Chemistry UNITED KINGDOM
| | | | - Eli Zysman-Colman
- University of St Andrews School of Chemistry Purdie BuildingNorth Haugh KY16 9ST St Andrews UNITED KINGDOM
| |
Collapse
|