1
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Zanchet A, Roncero O, Karabulut E, Solem N, Romanzin C, Thissen R, Alcaraz C. The role of intersystem crossing in the reactive collision of S+(4S) with H2. J Chem Phys 2024; 161:044302. [PMID: 39037135 DOI: 10.1063/5.0214447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Ezman Karabulut
- Vocational School of Health Services, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Nicolas Solem
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Claire Romanzin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Roland Thissen
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Christian Alcaraz
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Zhao R, Chen D, Liu H, Tian H, Li R, Huang Y. FePO 4/WB as an efficient heterogeneous Fenton-like catalyst for rapid removal of neonicotinoid insecticides: ROS quantification, mechanistic insights and degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135068. [PMID: 39002487 DOI: 10.1016/j.jhazmat.2024.135068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024]
Abstract
Iron-based catalysts for peroxymonosulfate (PMS) activation hold considerable potential in water treatment. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, an iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of neonicotinoid insecticides (NEOs). Based on electron paramagnetic resonance (EPR) characterization, scavenging experiments, chemical probe approaches, and quantitative tests, both radicals (HO• and SO4⋅-) and non-radicals (1O2 and Fe(IV)) were produced in the FePO4/WB-PMS system, with relative contributions of 3.02 %, 3.58 %, 6.24 %, and 87.16 % to the degradation of imidacloprid (IMI), respectively. Mechanistic studies revealed that tungsten boride (WB) promoted the reduction of FePO4, and the generated Fe(II) dominantly activated PMS through a two-electron transfer to form Fe(IV), while a minority of Fe(II) engaged in a one-electron transfer with PMS to produce SO4⋅-, HO•, and 1O2. In addition, four degradation pathways of NEOs were proposed by analyzing the byproducts using UPLC-Q-TOF-MS/MS. Besides, seed germination experiments revealed the biotoxicity of NEOs was significantly reduced after degradation via the FePO4/WB-PMS system. Meanwhile, the recycling experiments and continuous flow reactor experiments showed that FePO4/WB exhibited high stability. Overall, this study provided a new perspective on water remediation by Fenton-like reaction. ENVIRONMENTAL IMPLICATION: Neonicotinoids (NEOs) are a type of insecticide used widely around the world. They've been found in many aquatic environments, raising concerns about their possible negative effects on the environment and health. Iron-based catalysts for peroxymonosulfate (PMS) activation hold great promise for water purification. However, the slow conversion of Fe(III) to Fe(II) restricts its large-scale application. Herein, iron phosphate tungsten boride composite (FePO4/WB) was synthesized by a simple hydrothermal method to facilitate the Fe(III)/Fe(II) redox cycle and realize the efficient degradation of NEOs. The excellent stability and reusability provided a great prospect for water remediation.
Collapse
Affiliation(s)
- Rongrong Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Danyi Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Honglin Liu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| | - Hailin Tian
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China; College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
4
|
Liu Y, Li Z, Gao Y, Wang C, Wang X, Wang X, Xue X, Wang K, Cui W, Gao F, He S, Wu Z, Qi F, Gan J, Wang Y, Zheng W, Yang Y, Chen J, Pan H. Recent Advances in Understanding of the Singlet Oxygen in Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311500. [PMID: 38372501 DOI: 10.1002/smll.202311500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Singlet oxygen (term symbol 1Δg, hereafter 1O2), a reactive oxygen species, has recently attracted increasing interest in the field of rechargeable batteries and electrocatalysis and photocatalysis. These sustainable energy conversion and storage technologies are of vital significance to replace fossil fuels and promote carbon neutrality and finally tackle the energy crisis and climate change. Herein, the recent progresses of 1O2 for energy storage and conversion is summarized, including physical and chemical properties, formation mechanisms, detection technologies, side reactions in rechargeable batteries and corresponding inhibition strategies, and applications in electrocatalysis and photocatalysis. The formation mechanisms and inhibition strategies of 1O2 in particular aprotic lithium-oxygen (Li-O2) batteries are highlighted, and the applications of 1O2 in photocatalysis and electrocatalysis is also emphasized. Moreover, the confronting challenges and promising directions of 1O2 in energy conversion and storage systems are discussed.
Collapse
Affiliation(s)
- Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Chenxing Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xin Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xu Xue
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ke Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wengang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhijun Wu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fulai Qi
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jiantuo Gan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yujing Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenjun Zheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
Ihalagedara HB, Xu Q, Greer A, Lyons AM. Singlet oxygen generation on a superhydrophobic surface: Effect of photosensitizer coating and incident wavelength on 1O 2 yields. Photochem Photobiol 2024. [PMID: 38824412 DOI: 10.1111/php.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Photochemical generation of singlet oxygen (1O2) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of 1O2 by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low 1O2 physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on 1O2 yields. We also investigated the effect of incident wavelength on 1O2 yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.
Collapse
Affiliation(s)
- Hasanuwan B Ihalagedara
- The Graduate Center of the City University of New York, New York, New York, USA
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York, USA
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York, USA
- SingletO2 Therapeutics LLC, Newark, New Jersey, USA
| | - Alexander Greer
- The Graduate Center of the City University of New York, New York, New York, USA
- SingletO2 Therapeutics LLC, Newark, New Jersey, USA
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York, USA
| | - Alan M Lyons
- The Graduate Center of the City University of New York, New York, New York, USA
- Department of Chemistry, College of Staten Island, City University of New York, New York, New York, USA
- SingletO2 Therapeutics LLC, Newark, New Jersey, USA
| |
Collapse
|
6
|
Ansari IM, Heller ER, Trenins G, Richardson JO. Heavy-atom tunnelling in singlet oxygen deactivation predicted by instanton theory with branch-point singularities. Nat Commun 2024; 15:4335. [PMID: 38773078 PMCID: PMC11522392 DOI: 10.1038/s41467-024-48463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
The reactive singlet state of oxygen (O2) can decay to the triplet ground state nonradiatively in the presence of a solvent. There is a controversy about whether tunnelling is involved in this nonadiabatic spin-crossover process. Semiclassical instanton theory provides a reliable and practical computational method for elucidating the reaction mechanism and can account for nuclear quantum effects such as zero-point energy and multidimensional tunnelling. However, the previously developed instanton theory is not directly applicable to this system because of a branch-point singularity which appears in the flux correlation function. Here we derive a new instanton theory for cases dominated by the singularity, leading to a new picture of tunnelling in nonadiabatic processes. Together with multireference electronic-structure theory, this provides a rigorous framework based on first principles that we apply to calculate the decay rate of singlet oxygen in water. The results indicate a new reaction mechanism that is 27 orders of magnitude faster at room temperature than the classical process through the minimum-energy crossing point. We find significant heavy-atom tunnelling contributions as well as a large temperature-dependent H2O/D2O kinetic isotope effect of approximately 20, in excellent agreement with experiment.
Collapse
Affiliation(s)
- Imaad M Ansari
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Eric R Heller
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, University of California, Berkeley, 94720, Berkeley, USA
| | - George Trenins
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
7
|
Mishra A, Zorigt M, Kim DO, Rodríguez-López J. Voltammetric Detection of Singlet Oxygen Enabled by Nanogap Scanning Electrochemical Microscopy. J Am Chem Soc 2024; 146:8847-8851. [PMID: 38511940 DOI: 10.1021/jacs.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Despite the significance of singlet oxygen (1O2) in several biological, chemical, and energy storage systems, its voltammetric reduction at an electrode remains unreported. We address this issue using nanogap scanning electrochemical microscopy (SECM) in substrate-generation/tip-collection mode. Our investigation reveals a reductive process on the SECM tip at -1.0 V (vs Fc+/Fc) during the breakdown of the Li2CO3 substrate in deuterated acetonitrile. Notably, this value is approximately 0.9 V more positive than the reduction potential of triplet oxygen (3O2), consistent with thermodynamic estimates for the energy of the formation of 1O2. This finding holds significant implications for understanding the reaction mechanisms involving 1O2 in nonaqueous media.
Collapse
Affiliation(s)
- Abhiroop Mishra
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michelle Zorigt
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dong Ok Kim
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Duan M, Huang C, Zhang G, Shi H, Zhang P, Li L, Xu T, Zhao Z, Fu Z, Han J, Xu Y, Ding X. Spin-state Conversion by Asymmetrical Orbital Hybridization in Ni-doped Co 3 O 4 to Boost Singlet Oxygen Generation for Microbial Disinfection. Angew Chem Int Ed Engl 2024; 63:e202318924. [PMID: 38270897 DOI: 10.1002/anie.202318924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Singlet oxygen (1 O2 ) plays a significant role in environmental and biomedical disinfection fields. Electrocatalytic processes hold great potential for 1 O2 generation, but remain challenging. Herein, a facile Ni doping converted spin-state transition approach is reported for boosting 1 O2 production. Magnetic analysis and theoretical calculations reveal that Ni occupied at the octahedral site of Co3 O4 can effectively induce a low-to-high spin-state transition. The high-spin Ni-Co3 O4 generate appropriate binding strength and enhance electron transfer between the Co centers with oxygen intermediates, thereby improving the catalytic activity of Ni-Co3 O4 for effective generating 1 O2 . In neutral conditions, 1×106 CFU mL-1 Gram-negative ESBL-producing Escherichia coli (E. coli) could be inactivated by Ni-Co3 O4 system within 5 min. Further antibacterial mechanisms indicate that 1 O2 can lead to cell membrane damage and DNA degradation so as to irreversible cell death. Additionally, the developed Ni-Co3 O4 system can effectively inactivate bacteria from wastewater and bioaerosols. This work provides an effective strategy for designing high-spin electrocatalysis to boost 1 O2 generation for disinfection process.
Collapse
Affiliation(s)
- Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Chao Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hao Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Pengfei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, P.R. China
| | - Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Tong Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P.R. China
| | - Zhen Zhao
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Zhujun Fu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Jingrui Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| | - Xiaoteng Ding
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, P.R. China
| |
Collapse
|
9
|
Didarataee S, Suprun A, Joshi N, Scaiano JC. NIR phosphorescence from decatungstate anions allows the conclusive characterization of its elusive excited triplet behaviour and kinetics. Chem Commun (Camb) 2024. [PMID: 38258882 DOI: 10.1039/d3cc06282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The characterization of the triplet state of decatungstate (3DT*) and its NIR phosphorescence with lifetimes ∼100 ns in acetonitrile allow the easy determination of rate constants that are key to understanding its role in catalysis. The absence of oxygen quenching can now be understood as the excitation energy of 3DT* is lower than the energy of singlet oxygen.
Collapse
Affiliation(s)
- Saba Didarataee
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Anastasiia Suprun
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Neeraj Joshi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Juan C Scaiano
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
10
|
Yang L, Zhao M, Chen W, Zhu J, Xu W, Li Q, Pu K, Miao Q. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202313117. [PMID: 38018329 DOI: 10.1002/anie.202313117] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108 p/s/cm2 /sr at a low concentration of 10 μM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weina Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
11
|
Cheng J, Gan G, Zheng S, Zhang G, Zhu C, Liu S, Hu J. Biofilm heterogeneity-adaptive photoredox catalysis enables red light-triggered nitric oxide release for combating drug-resistant infections. Nat Commun 2023; 14:7510. [PMID: 37980361 PMCID: PMC10657346 DOI: 10.1038/s41467-023-43415-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
The formation of biofilms is closely associated with persistent and chronic infections, and physiological heterogeneity such as pH and oxygen gradients renders biofilms highly resistant to conventional antibiotics. To date, effectively treating biofilm infections remains a significant challenge. Herein, we report the fabrication of micellar nanoparticles adapted to heterogeneous biofilm microenvironments, enabling nitric oxide (NO) release through two distinct photoredox catalysis mechanisms. The key design feature involves the use of tertiary amine (TA) moieties, which function as sacrificial agents to avoid the quenching of photocatalysts under normoxic and neutral pH conditions and proton acceptors at acidic pH to allow deep biofilm penetration. This biofilm-adaptive NO-releasing platform shows excellent antibiofilm activity against ciprofloxacin-resistant Pseudomonas aeruginosa (CRPA) biofilms both in vitro and in a mouse skin infection model, providing a strategy for combating biofilm heterogeneity and biofilm-related infections.
Collapse
Affiliation(s)
- Jian Cheng
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China
| | - Guihai Gan
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Shaoqiu Zheng
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Guoying Zhang
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, China.
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), and Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
| |
Collapse
|
12
|
Ortega P, Gil-Guerrero S, González-Sánchez L, Sanz-Sanz C, Jambrina PG. Spin-Forbidden Addition of Molecular Oxygen to Stable Enol Intermediates-Decarboxylation of 2-Methyl-1-tetralone-2-carboxylic Acid. Int J Mol Sci 2023; 24:ijms24087424. [PMID: 37108586 PMCID: PMC10138960 DOI: 10.3390/ijms24087424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The deprotonation of an organic substrate is a common preactivation step for the enzymatic cofactorless addition of O2 to this substrate, as it promotes charge-transfer between the two partners, inducing intersystem crossing between the triplet and singlet states involved in the process. Nevertheless, the spin-forbidden addition of O2 to uncharged ligands has also been observed in the laboratory, and the detailed mechanism of how the system circumvents the spin-forbiddenness of the reaction is still unknown. One of these examples is the cofactorless peroxidation of 2-methyl-3,4-dihydro-1-naphthol, which will be studied computationally using single and multi-reference electronic structure calculations. Our results show that the preferred mechanism is that in which O2 picks a proton from the substrate in the triplet state, and subsequently hops to the singlet state in which the product is stable. For this reaction, the formation of the radical pair is associated with a higher barrier than that associated with the intersystem crossing, even though the absence of the negative charge leads to relatively small values of the spin-orbit coupling.
Collapse
Affiliation(s)
- Pablo Ortega
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Sara Gil-Guerrero
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Cristina Sanz-Sanz
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo G Jambrina
- Departamento de Química-Física, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
13
|
Tasaka T, Matsumoto T, Nagashima U, Nagaoka SI. Potential energy curve for singlet-oxygen quenching reaction by vitamin E. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
15
|
Nascimento RO, Prado FM, de Medeiros MHG, Ronsein GE, Di Mascio P. Singlet Molecular Oxygen Generation in the Reaction of Biological Haloamines of Amino Acids and Polyamines with Hydrogen Peroxide. Photochem Photobiol 2022; 99:661-671. [PMID: 36047912 DOI: 10.1111/php.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Leucocytes generate hypohalous acids (HOCl and HOBr) to defend against pathogens. In cells, hypohalous acids react with amine-containing molecules, such as amino acids and polyamines, producing chloramines and bromamines, reservoirs of oxidizing power that can potentially damage host tissues at sites of inflammation. Hypohalous acids also react with H2 O2 to produce stoichiometric amounts of singlet molecular oxygen (1 O2 ), but its generation in leucocytes is still under debate. Additionally, it is unclear if haloamines generate 1 O2 following a reaction with H2 O2 . Herein, we provide evidence of the generation of 1 O2 in the reactions between amino acid-derived (taurine, N-α-acetyl-Lysine, and glycine) and polyamine-derived (spermine and spermidine) haloamines and H2 O2 in an aqueous solution. The unequivocal formation of 1 O2 was detected by monitoring its characteristic monomol light emission at 1270 nm in the near-infrared region. For amino acid-derived haloamines, the presence of 1 O2 was further confirmed by chemical trapping with anthracene-9,10-divinylsulfonate and HPLC-MS/MS detection. Altogether, photoemission and chemical trapping studies demonstrated that chloramines were less effective at producing 1 O2 than bromamines of amino acids and polyamines. Thus, 1 O2 formation via bromamines and H2 O2 may be a potential source of 1 O2 in non-illuminated biological systems.
Collapse
Affiliation(s)
| | - Fernanda Manso Prado
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | | | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|