1
|
Hu Z, Gao F, Qin H, Cui X, Wang L, Yang W, Lu C, Zhang B, Sun L. Bright Nanocomposites based on Quantum Dot-Initiated Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202415645. [PMID: 39352463 DOI: 10.1002/anie.202415645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/07/2024]
Abstract
Integrating quantum dots (QDs) into polymer matrix to form nanocomposites without compromising the QD photoluminescence (PL) is crucial to emerging QD light-emitting and solar energy conversion fields. However, the most widely-used bulk polymerization technique, where monomers serve as the QD solvent, usually leads to QD PL quenching caused by radical initiators. Here we demonstrate high-brightness nanocomposites with near-unity PL quantum yield (QY), through a novel QDs-catalyzed (-initiated) bulk polymerization without using any radical initiators. Different from previous reports where QDs were designed as photo-sensitizers/catalysts (always with cocatalysts) and hence non-emissive in catalytic conditions, our QDs combine high brightness with highly effective catalysis, a combination that was previously considered to be hardly possible. In our case, apart from emitting light (at a large probability), the photoexcited QDs act as 'overall reaction' catalysts by simultaneously employing photoexcited electrons and holes to produce active radicals without the need of any sacrificial agents. These active radicals, though with a small amount, are sufficient to initiate effective chain reaction-dominated bulk polymerization, eliminating the requirement of extra radical initiators. This study provides new insights for understanding and development of QDs for energy applications.
Collapse
Affiliation(s)
- Zhuang Hu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Feng Gao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xin Cui
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Chunyuan Lu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030
- ChinaInstitute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024
- ChinaDivision of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, China
| |
Collapse
|
2
|
Shen N, Bu J, Liu X, Xu W. Soft optical materials based on the integration of perovskite nanostructures and block copolymers. Chem Commun (Camb) 2024; 60:14703-14716. [PMID: 39607458 DOI: 10.1039/d4cc05181e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Metal halide perovskites and their nanostructures have efficient optical absorption and emission in the visible range with high external quantum efficiency. They have been at the forefront of next-generation photovoltaics and optoelectronics applications. But several intrinsic limitations of perovskites including low stability and incompatibility with lithography-based patterning constrains their broader applications. In recent years, the integration of perovskites with polymers especially multifunctional block copolymers (BCPs) has provided a new approach to overcome those issues. The chemical composition and chain architecture of BCPs are critical for achieving synergistic effects with perovskites in their hybrid systems. In this Highlight review article, we provide an overview and critical summary of the recent progress in the creation of perovskite-BCP hybrid structures, with a focus on the different roles of BCPs. The major categories include: (i) BCPs act as the nanopattern template for the spatial control and patterning of perovskite; (ii) BCP micelles or stars act as the template for perovskite nanostructure crystallization; (iii) BCPs act as the macromolecular ligands for perovskite NCs during its solution synthesis; (iv) BCP encapsulation of perovskite NCs into hierarchical composite particles; and (v) BCP incorporation into bulk perovskite and forming bulk composite films. The applications of perovskite-BCP hybrid structures in various fields and the major current challenges are also identified and discussed.
Collapse
Affiliation(s)
- Naifu Shen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Jinyu Bu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Xun Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
3
|
Zhang S, Chen R, Kong D, Chen Y, Liu W, Jiang D, Zhao W, Chang C, Yang Y, Liu Y, Wei D. Photovoltaic nanocells for high-performance large-scale-integrated organic phototransistors. NATURE NANOTECHNOLOGY 2024; 19:1323-1332. [PMID: 38965348 DOI: 10.1038/s41565-024-01707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
A high-performance large-scale-integrated organic phototransistor needs a semiconductor layer that maintains its photoelectric conversion ability well during high-resolution pixelization. However, lacking a precise design for the nanoscale structure, a trade-off between photoelectric performance and device miniaturization greatly limits the success in commercial application. Here we demonstrate a photovoltaic-nanocell enhancement strategy, which overcomes the trade-off and enables high-performance organic phototransistors at a level beyond large-scale integration. Embedding a core-shell photovoltaic nanocell based on perovskite quantum dots in a photocrosslinkable organic semiconductor, ultralarge-scale-integrated (>221 units) imaging chips are manufactured using photolithography. 27 million pixels are interconnected and the pixel density is 3.1 × 106 units cm-2, at least two orders of magnitude higher than in existing organic imaging chips and equivalent to the latest commercial full-frame complementary metal-oxide-semiconductor camera chips. The embedded photovoltaic nanocells induce an in situ photogating modulation and enable photoresponsivity and detectivity of 6.8 × 106 A W-1 and 1.1 × 1013 Jones (at 1 Hz), respectively, achieving the highest values of organic imaging chips at large-scale or higher integration. In addition, a very-large-scale-integrated (>216 units) stretchable biomimetic retina based on photovoltaic nanocells is manufactured for neuromorphic imaging recognition with not only resolution but also photoresponsivity and power consumption approaching those of the biological counterpart.
Collapse
Affiliation(s)
- Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dingding Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Weiyu Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Cheng Chang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
- Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Cai YJ, Luo QX, Jiang QQ, Liu X, Chen XJ, Liu JL, Mao XL, Qi JX, Liang RP, Qiu JD. Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310672. [PMID: 38229539 DOI: 10.1002/smll.202310672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Indexed: 01/18/2024]
Abstract
At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.
Collapse
Affiliation(s)
- Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiao-Juan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jin-Lan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jia-Xin Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
5
|
Huang Y, Lin F, Li F, Jin J, Guo Z, Tian D, Xie R, Chen X. Photoluminescence Enhancement in Silica-Confined Ligand-Free Perovskite Nanocrystals by Suppression of Silanol-Induced Traps and Phase Impurities. Angew Chem Int Ed Engl 2024; 63:e202402520. [PMID: 38400810 DOI: 10.1002/anie.202402520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
The detriments of intrinsic silanol groups in mesoporous silica to the photoluminescence (PL) of lead halide perovskite nanocrystals (LHP NCs) confined in the template have never been determined and clearly elucidated. Here, we disclose that silanol-induced Cs+ and Br- deficiencies prompt the generation of traps and CsPb2Br5 impurities. The temperature-dependent PL spectra verify the higher energetic barrier of trap states in CsPbBr3 NCs confined in silanol-rich mesoporous silica. Femtosecond transient absorption spectra reveal the trapped state mediates a broadband photoinduced absorption and long-lived decay pathway of CsPbBr3 NCs in silanol-rich templates. A remarkable improvement (up to 160-fold) in PL quantum yields is realized by simple silanol elimination. This work demonstrates the detrimental effects of silanol sites on the PL properties of LHP NCs impregnated in mesoporous silica and provides a new perspective for the ligand-free synthesis of high-quality LHP NCs in mesoporous templates by facile impregnation for practical applications.
Collapse
Affiliation(s)
- Yipeng Huang
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Current Address: College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi, 541004, China
| | - Fangyuan Lin
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Jinwen Jin
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China
| | - Zhiyong Guo
- Institute of Analytical Technology and Smart Instruments and College of Environment and Public Healthy, Xiamen Huaxia University, Xiamen, 361024, China
| | - Dongjie Tian
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rongjun Xie
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xi Chen
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Zhu Y, Zhang J. Antimony-Based Halide Perovskite Nanoparticles as Lead-Free Photocatalysts for Controlled Radical Polymerization. Macromol Rapid Commun 2024; 45:e2300695. [PMID: 38350418 DOI: 10.1002/marc.202300695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Metal halide perovskites have emerged as versatile photocatalysts to convert solar energy for chemical processes. Perovskite photocatalyzed polymerization draws special attention due to its straightforward synthesis process and the ability to create advanced perovskite-polymer nanocomposites. Herein, this work employs Cs3Sb2Br9 perovskite nanoparticles (NPs) as a lead-free photocatalyst for light-controlled atom transfer radical polymerization (ATRP). Cs3Sb2Br9 NPs exhibit high reduction potential and interact with electronegative bromide initiator with Lewis acid Sb sites, enabling efficient photoinduced reduction of initiators and controlled polymerization under blue light irradiation. Methacrylate monomers with various functional groups are successfully polymerized, and the resulting polymer showcased a dispersity (Đ) as small as 1.27. The living nature of polymerization is confirmed by high chain end fidelity and kinetic studies. Moreover, Cs3Sb2Br9 NPs serve as heterogeneous photocatalysts, demonstrating recyclability and reusability for up to four cycles. This work presents a promising approach to overcome the limitations of lead-based perovskites in photoinduced controlled radical polymerization, offering a sustainable and efficient alternative for the synthesis of well-defined polymeric materials.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas, 77005, USA
| | - Jiahui Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
7
|
Xie C, Zhang X, Chen HS, Yang P. Synthesis-Kinetics of Violet- and Blue-Emitting Perovskite Nanocrystals with High Brightness and Superior Stability toward Flexible Conversion Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308896. [PMID: 38057136 DOI: 10.1002/smll.202308896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Indexed: 12/08/2023]
Abstract
The low photoluminescence (PL) efficiency and unstable features of small blue-emitting CsPbX3 nanocrystals (NCs) greatly limit their applications in optoelectronics field. Herein, the synergistic and post-treatment kinetics are studied to create highly bright and anomalous stable violet (peak position of ≈408 nm) and blue (peak position of ∼ 466 nm) emitting perovskite NCs. Ligand and ion exchange mechanism are systematic studied by the evolution of absorption, PL, and fluorescence lifetime to evaluate ligand bonding, defect engineering, and non-radiative recombination. Didodecyl dimethyl mmonium chloride (DDAC) and CuX2 post-synergistic treatment created DDAC-CsPbCl3-CuCl2 and DDAC-CsPbCl3-CuBr2 NCs that remained the phase composition, morphology, and size of CsPbCl3 NCs. The PL efficiencies are drastically increased to 42 and 85% for violet- and blue-emitting NCs, respectively. The stability test indicated that the NCs enable against various harsh conditions (e.g., ultraviolet light irradiation and heat-treatment). The NCs retained their initial PL efficiency after 2 months under ambient conditions and UV light irradiation. These NCs also exhibited high stability after heat-treatment at 120 °C. The emitting NCs embedded in flexible films still revealed bright PL and high stability, suggesting current results provide a new avenue for the application in the field of optoelectronics.
Collapse
Affiliation(s)
- Cong Xie
- School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xiao Zhang
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St., Krakow, 31-155, Poland
| | - Hsueh Shih Chen
- Department of Materials Science & Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Ping Yang
- School of Material Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
8
|
Lee HC, Park JH, In SI, Yang J. Recent advances in photoelectrochemical hydrogen production using I-III-VI quantum dots. NANOSCALE 2024. [PMID: 38683106 DOI: 10.1039/d4nr01040j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photoelectrochemical (PEC) water splitting, recognized for its potential in producing solar hydrogen through clean and sustainable methods, has gained considerable interest, particularly with the utilization of semiconductor nanocrystal quantum dots (QDs). This minireview focuses on recent advances in PEC hydrogen production using I-III-VI semiconductor QDs. The outstanding optical and electrical properties of I-III-VI QDs, which can be readily tuned by modifying their size, composition, and shape, along with an inherent non-toxic nature, make them highly promising for PEC applications. The performance of PEC devices using these QDs can be enhanced by various strategies, including ligand modification, defect engineering, doping, alloying, and core/shell heterostructure engineering. These approaches have notably improved the photocurrent densities for hydrogen production, achieving levels comparable to those of conventional heavy-metal-based counterparts. Finally, this review concludes by addressing the present challenges and future prospects of these QDs, underlining crucial steps for their practical applications in solar hydrogen production.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Ji Hye Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Su-Il In
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
9
|
Cueto C, Hu M, Russell TP, Emrick T. Conjugated Zwitterionic Oligomers as Ligands on Perovskite Nanocrystals: Hybrid Structures with Tunable Interparticle Spacing. J Am Chem Soc 2024; 146:8189-8197. [PMID: 38471087 DOI: 10.1021/jacs.3c12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Conventional ligands for CsPbBr3 perovskite nanocrystals (NCs), composed of polar, coordinating head groups (e.g., ammonium or zwitterionic) and aliphatic tails, are instrumental in stabilizing the NCs against sintering and aggregation. Nonetheless, the aliphatic (insulating) nature of these ligands represents drawbacks with respect to objectives in optoelectronics, and yet removing these ligands typically leads to a loss of colloidal stability. In this paper, we describe the preparation of CsPbBr3 NCs in the presence of discrete conjugated oligomers that were prepared by an iterative synthetic approach and capped at their chain ends with sulfobetaine zwitterions for perovskite coordination. Notably, these zwitterionic oligofluorenes are compatible with the hot injection and ligand exchange conditions used to prepare CsPbBr3 NCs, yielding stable NC dispersions with high photoluminescence quantum yields (PLQY, >90%) and spectral features representative of both the perovskite core and conjugated ligand shell. Controlling the chain length of these capping ligands effectively regulated inter-NC spacing and packing geometry when cast into solid films, with evidence derived from both transmission electron microscopy (TEM) and grazing incidence X-ray scattering measurements.
Collapse
Affiliation(s)
- Christopher Cueto
- Department of Polymer Science & Engineering, University of Massachusetts, Conte Center for Polymer Research, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Department of Polymer Science & Engineering, University of Massachusetts, Conte Center for Polymer Research, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Department of Polymer Science & Engineering, University of Massachusetts, Conte Center for Polymer Research, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, University of Massachusetts, Conte Center for Polymer Research, 120 Governors Dr, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Li SS, Cheng P, Liu H, Li J, Wang S, Xiao C, Liu J, Chen J, Wu K. Polymeric Metal Halides with Bright Luminescence and Versatile Processability. Angew Chem Int Ed Engl 2024; 63:e202319969. [PMID: 38179817 DOI: 10.1002/anie.202319969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Most of current metal halide materials, including all inorganic and organic-inorganic hybrids, are crystalline materials with poor workability and plasticity that limit their application scope. Here, we develop a novel class of materials termed polymeric metal halides (PMHs) through introducing polycations into antimony-based metal halide materials as A-site cations. A series of PMHs with orange-yellow broadband emission and large Stokes shift originating from inorganic self-trapped excitons are successfully prepared, which meanwhile exhibit the excellent processability and formability of polymers. The versatility of these PMHs is manifested as the broad choices of polycations, the ready extension to manganese- and copper-based halides, and the tolerance to molar ratios between polycations and metal halides in the formation of PMHs. The merger of polymer chemistry and inorganic chemistry thus provides a novel generic platform for the development of metal halide functional materials.
Collapse
Affiliation(s)
- Shun-Shun Li
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Pengfei Cheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Huaxin Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Juntao Li
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Sijia Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Chunlei Xiao
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Jianyong Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Kaifeng Wu
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| |
Collapse
|
11
|
Liang S, Hao J, Gu Z, Pang X, He Y. Regulating Charge Carrier Dynamics in Stable Perovskite Nanorods for Photo-Induced Atom Transfer Radical Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306506. [PMID: 37803459 DOI: 10.1002/smll.202306506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Semiconducting nanocrystals have attracted world-wide research interest in artificial photosynthesis due to their appealing properties and enticing potentials in converting solar energy into valuable chemicals. Compared to 0D nanoparticles, 1D nanorods afford long-distance charge carriers separation and extended charge carriers lifetime due to the release of quantum confinement in axial direction. Herein, stable CsPbBr3 nanorods of distinctive dimensions are crafted without altering their properties and morphology via grafting hydrophobic polystyrene (PS) chains through a post-synthesis ligand exchange process. The resulting PS-capped CsPbBr3 nanorods exhibit a series of enhanced stabilities against UV irradiation, elevated temperature, and polar solvent, making them promising candidates for photo-induced atom transfer radical polymerization (ATRP). Tailoring the surface chemistry and dimension of the PS-capped CsPbBr3 nanorods endows stable, but variable reaction kinetics in the photo-induced ATRP of methyl methacrylate. The trapping-detrapping process of photogenerated charge carriers lead to extended lifetime of charge carriers in lengthened CsPbBr3 nanorods, contributing to a facilitated reaction kinetics of photo-induced ATRP. Therefore, by leveraging such stable PS-capped CsPbBr3 nanorods, the effects of surface chemistry and charge carriers dynamics on its photocatalytic performance are scrutinized, providing fundamental understandings for designing next-generation efficient nanostructured photocatalyst in artificial photosynthesis and solar energy conversion.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55415-4310, United States
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongheng Gu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
12
|
Xia Z, Liu B, Xiao Y, Hu W, Deng M, Lü C. Integrating Hybrid Perovskite Nanocrystals into Metal-Organic Framework as Efficient S-Scheme Heterojunction Photocatalyst for Synergistically Boosting Controlled Radical Photopolymerization under 980 nm NIR Light. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032100 DOI: 10.1021/acsami.3c13496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
S-scheme heterojunction photocatalyst MAPbI3@PCN-222 with light absorption extending to the NIR region is constructed by embedding organic-inorganic hybrid perovskite (MAPbI3) into porphyrinic Zr-MOF (PCN-222). Both in situ X-ray photoelectron spectroscopy, ultraviolet photoelectron spectral characterization, and photocatalytic polymerization experiment prove the formation of S-scheme heterojunction. MAPbI3@PCN-222 with a low dosage (90 ppm) displays an impressive photocatalytic ability for 980 nm light-mediated photoinduced electron/energy-transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization in air. The well-defined controllable-molecular weight polymers including block copolymers and ultrahigh-molecular weight polymers can be achieved with narrow distributions (Mw/Mn < 1.20) via rapid photopolymerization. The industrial application potential of the photocatalyst also has been proved by scale-up synthesis of polymers with low polydispersity under NIR light-induced photopolymerization in a large-volume reaction system (200 mL) with high monomer conversion up to 99%. The penetration photopolymerization through the 5 mm polytetrafluoroethylene plate and excellent photocontrollable behavior illustrate the existence of long-term photogenerated electron transfer of heterojunction and abundant free radicals in photopolymerization. The photocatalyst still retains high catalytic activity after 10 cycles of photopolymerization in air. It is revealed for the first time that the special PET-RAFT polymerization pathway is initiated by the aldehyde-bearing α-aminoalkyl radical derived from the oxidization of triethanolamine (TEOA) by the heterojunction photocatalyst. This research offers a new insight into understanding the NIR-light-activated PET-RAFT polymerization mechanism in the presence of TEOA.
Collapse
Affiliation(s)
- Zhinan Xia
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Bei Liu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yang Xiao
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Wanchao Hu
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mingxiao Deng
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
13
|
Cao Y, Wang X, Sun J, Xiang L, Li D, He L, Gao F, Chen C, Li S. Synergistic Ion-Anchoring Passivation for Perovskite Solar Cells with Efficiency Exceeding 24% and Ultra-Ambient Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40032-40041. [PMID: 37556164 DOI: 10.1021/acsami.3c07422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The high-density defect states existing at the grain boundaries and heterojunction interfaces induce nonradiative charge recombination and ion migration processes within perovskite film, which seriously impair the device efficiency and stability. Here, we propose a novel synergistic ion-anchoring passivation (SIP) strategy for high-performance perovskite solar cells, by designing a multifunctional molecule to heal the charged defects via electrostatic interactions. The anion and cation species of the multifunctional molecule are rationally screened via high-throughput DFT simulation and experimental verification, which act as efficient surface passivation agents to heal the lead- and iodine-related defects. As a result, the defect-less perovskite films deliver encouraging device power conversion efficiency >24% with negligible hysteresis. A remarkable open-circuit voltage (Voc) of 1.17 V was obtained with a Voc deficit of 370 mV, featuring the outstanding defect-passivation capability of the SIP strategy. Moreover, the SIP-treated devices show exceptional ambient stability and maintain 70% of the initial efficiency after 150 h of high humidity exposure (relative humidity 70%-80%). Our results highlight the importance of the rational design of passivation agents to realize high-performance perovskite electronics.
Collapse
Affiliation(s)
- Yunxuan Cao
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
| | - Xingfu Wang
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
| | - Juanjuan Sun
- College of Chemistry and Materials, Ningde Normal University, Fujian 352100, China
| | - Ling Xiang
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
| | - Dongyang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, 999077 Hong Kong, China
| | - Longfei He
- Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangliang Gao
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
| | - Changsong Chen
- College of Chemistry and Materials, Ningde Normal University, Fujian 352100, China
| | - Shuti Li
- Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Zhang M, Bi C, Xia Y, Sun X, Wang X, Liu A, Tian S, Liu X, de Leeuw NH, Tian J. Water-Driven Synthesis of Deep-Blue Perovskite Colloidal Quantum Wells for Electroluminescent Devices. Angew Chem Int Ed Engl 2023; 62:e202300149. [PMID: 36692366 DOI: 10.1002/anie.202300149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Perovskite colloidal quantum wells (QWs) are promising to realize narrow deep-blue emission, but the poor optical performance and stability suppress their practical application. Here, we creatively propose a water-driven synthesis strategy to obtain size-homogenized and strongly confined deep-blue CsPbBr3 QWs, corresponding to three monolayers, which emit at the deep-blue wavelength of 456 nm. The water controls the orientation and distribution of the ligands on the surface of the nanocrystals, thus inducing orientated growth through the Ostwald ripening process by phagocytizing unstable nanocrystals to form well-crystallized QWs. These QWs present remarkable stability and high photoluminescence quantum yield of 94 %. Furthermore, we have prepared light-emitting diodes based on the QWs via the all-solution fabrication strategy, achieving an external quantum efficiency of 1 % and luminance of 2946 cd m-2 , demonstrating state-of-the-art brightness for perovskite QW-based LEDs.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Sun
- Institute of Semiconductors Chinese Academy of Sciences, Beijing, 100083, China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Shuyu Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| |
Collapse
|
15
|
Li C, Rafique S, Zhan Y. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. J Phys Chem Lett 2022; 13:11610-11621. [PMID: 36484617 DOI: 10.1021/acs.jpclett.2c02983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Block copolymers (BCPs) have been widely used as templates to prepare nanostructures over the past few decades. Ordered nanostructures can be formed after microphase segregation of BCPs. In this context, the newly emerging BCP-templated perovskites, in which the perovskite crystal growth has been confined within a self-assembled BCP nanostructure due to the interaction between the polymer block and the cation of the perovskite, have shown profound optical performance and environmental stability. Considering the promising performance of BCP-templated perovskites, this Perspective comprehensively reviews recent works in which BCPs are used as templates with three-dimensional perovskites and perovskite quantum dots, and their performance and stability are thoroughly discussed. Lastly, their potential applications in optoelectronics and biology are discussed.
Collapse
Affiliation(s)
- Chongyuan Li
- Centre of Micro Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Saqib Rafique
- Centre of Micro Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yiqiang Zhan
- Centre of Micro Nano System, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
A dual-stimuli responsive electrochemiluminescence biosensor for pathogenic bacterial sensing and killing in foods. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Jin X, Ma K, Gao H. Tunable Luminescence and Enhanced Polar Solvent Resistance of Perovskite Nanocrystals Achieved by Surface-Initiated Photopolymerization. J Am Chem Soc 2022; 144:20411-20420. [DOI: 10.1021/jacs.2c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kangling Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|