1
|
Li Q, Wang W, Yin H, Zou K, Jiao Y, Zhang Y. One-Dimensional Implantable Sensors for Accurately Monitoring Physiological and Biochemical Signals. RESEARCH (WASHINGTON, D.C.) 2024; 7:0507. [PMID: 39417041 PMCID: PMC11480832 DOI: 10.34133/research.0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
In recent years, one-dimensional (1D) implantable sensors have received considerable attention and rapid development in the biomedical field due to their unique structural characteristics and high integration capability. These sensors can be implanted into the human body with minimal invasiveness, facilitating real-time and accurate monitoring of various physiological and pathological parameters. This review examines the latest advancements in 1D implantable sensors, focusing on the material design of sensors, device integration, implantation methods, and the construction of the stable sensor-tissue interface. Furthermore, a comprehensive overview is provided regarding the applications and future research directions for 1D implantable sensors with an ultimate aim to promote their utilization in personalized healthcare and precision medicine.
Collapse
Affiliation(s)
| | | | | | - Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences,
Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zheng Z, Liu N, Lu J, Zhou X, Song Z, An Y, Lu L, Zhao P, Tao J. Hydrogen-Bonded Organic Framework Enhanced Antifouling Property for Efficient In Situ Electrochemical Assay of Cerebral Ascorbic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407101. [PMID: 39396376 DOI: 10.1002/smll.202407101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Accurate determination of cerebral ascorbic acid (AA) is crucial for understanding ischemic stroke (IS) related pathological events. Carbon fiber microelectrodes (CFEs) have proven to be robust tools with high sensitivity toward AA, however, they face ongoing challenges for in situ measurement due to the non-specific adsorption of proteins in brain tissue. In this study, the hydrogen-bonded organic framework PFC-71 is synthesized and modified on CFEs through π-π stacking interactions with carboxylated carbon nanotubes (CNT-COOH). It is found that the gating effect and hydrophilicity of PFC-71 provided the CFE with excellent antibiofouling properties. As a result, AA exhibited a low oxidation potential of -30 mV on the CFE/CNT-COOH/PFC-71, even in the presence of 20 mg mL-1 bovine serum albumin. Given the structural advantages of CFE/CNT-COOH/PFC-71, a ratiometric electrochemical strategy for AA is established, enabling the in situ assay of cerebral AA in a middle cerebral artery occlusion (MCAO) model with high accuracy and stability.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ningxuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zibin Song
- Neurosurgery Center, Department of Functional Neurosurgery, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
3
|
Yi W, Xiao J, Shi Z, Zhang C, Yi L, Lu Y, Wang X. Glass nano/micron pipette-based ion current rectification sensing technology for single cell/ in vivo analysis. Analyst 2024; 149:4981-4996. [PMID: 39311536 DOI: 10.1039/d4an00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glass nano/micron pipettes, owing to their easy preparation, unique confined space at the tip, and modifiable inner surface of the tip, can capture the ion current signal caused by a single entity, making them widely used in the construction of highly sensitive and highly selective electrochemical sensors for single entity analysis. Compared with other solid-state nanopores, their conical nano-tip causes less damage to cells when inserted into them, thereby becoming a powerful tool for the in situ analysis of important substances in cells. However, glass nanopipettes have some shortcomings, such as poor mechanical properties, difficulty in precise preparation (aperture less than 50 nm), and easy blockage during complex real sample detection, limiting their practicability. Therefore, in recent years, researchers have conducted a series of studies on glass micropipettes. Ionic current rectification technology is a novel electrochemical analysis technique. Compared with traditional electrochemical analysis methods, it does not generate redox products during the detection process; therefore, it can not only be used for the determination of non-electrochemically active substances, but also causes less damage to the cell/living body in situ analysis, becoming a powerful analysis technology for the in situ analysis of cells/in vivo in recent years. In this review, we summarize the preparation and functionalization of glass nano/micron pipettes and introduce the sensing mechanisms of two electrochemical sensing platforms constructed using glass nano/micron pipette-based ion current rectification sensing technology as well as their applications in single cell/in vivo analysis, existing problems, and future prospects.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, P. R. China
| | - Zhenyu Shi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Xingzhu Wang
- The Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, P. R. China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
4
|
Qi Z, Chen X, Zhu Y, Yue Q, Ji W. Electrochemical sensing of transient ascorbate fluctuation under hypoxic stress in live rat brain. Talanta 2024; 282:126996. [PMID: 39383720 DOI: 10.1016/j.talanta.2024.126996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Hypoxia, a common cause of programmed cell death or apoptosis, represents a neuropathological process. Although certain response proteins to hypoxic stress and their effects on cell status and fate have been identified, the real-time quantification of smaller neurochemicals to understand pathogenic mechanism in live rat brain during such stress remains unexplored. In this study, by employing a cutting-edge electrochemical tool developed with carbon nanotube-sheathed carbon fiber microelectrode that offers remarkable selectivity and temporal/spatial resolution for monitoring ascorbate, we observed a substantial efflux of ascorbate in response to hypoxic stress in live rat brain. Furthermore, using a small molecule compound as channel inhibitor to investigate the behavior of ascorbate efflux, we found that this efflux is closely correlated with N-methyl-D-aspartic acid receptor-induced neuronal excitability. Notably, antagonistic actions on volume-sensitive anion channel can suppress ascorbate efflux evoked by hypoxic stress, further revealing that ascorbate fluctuation is volume-sensitive anion channel-dependent. This research not only facilitates a greater understanding of the neurochemical mechanism in hypoxia but also uncovers a potential biomarker for future closed-loop therapies.
Collapse
Affiliation(s)
- Ziyang Qi
- School of Education and Psychology, University of Jinan, Jinan, 250022, China
| | - Xingshuai Chen
- School of Physical Education, University of Jinan, Jinan, 250022, China
| | - Ye Zhu
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
| | - Qingwei Yue
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Wenliang Ji
- School of Physical Education, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
5
|
Wang J, Hong R, Yang Z, Meng X, Wu R, Liu Z, Li C. Ultrasensitive Electrochemiluminescence Biosensor with ZIF-67@MXene as an Efficient Co-Reaction Accelerator and Plasmonic Nanozyme as a Smart Signal Amplification Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404330. [PMID: 39291922 DOI: 10.1002/smll.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Exploring novel electrochemiluminescence (ECL) co-reaction accelerators to construct ultrasensitive sensing systems is a prominent focus for developing advanced ECL sensors. However, challenges still remain in finding highly efficient accelerators and understanding their promoting mechanisms. In this paper, ZIF-67@MXene nanosheet composites, with highly conductive in-plane structure and confined-stable pore/channel, are designed to act as high-efficient co-reaction accelerators and achieve a significant enhancement in the luminol-H2O2 based ECL system. Mechanism investigation suggests that hydroxyl radicals (·OH) and singlet oxygen (1O2) can be selectively and preferentially generated on ZIF-67@MXene due to the stable and efficient absorption of ·OH and 1O2, leading to a remarkable enhancement in the ECL efficiency of luminol (830%). Finally, by designing a plasmonic NH2-MIL-88@Pd nanozyme, an "on-off" switch immunosensor is constructed for the detection of prostate-specific antigen (PSA). Based on the multiple signal amplification effect, the linear detection range for PSA is expanded by three orders of magnitude. The detection limit is also improved from 1.44 × 10-11 to 9.1 × 10-13 g mL-1. This work proposes an effective method for the preparation of highly efficient co-reaction accelerators and provides a new strategy for the sensitive detection of cancer markers.
Collapse
Affiliation(s)
- Jing Wang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Ran Hong
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection, Suzhou, 215123, P. R. China
| | - Zhen Yang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Rui Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Zhiguo Liu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
6
|
Qin M, Ji W, Huang P, Wu FY, Mao L. Confining Thiolysis of Dinitrophenyl Ether to a Luminescent Metal-Organic Framework with a Large Stokes Shift for Highly Efficient Detection of Hydrogen Sulfide in Rat Brain. Anal Chem 2024; 96:14697-14705. [PMID: 39194639 DOI: 10.1021/acs.analchem.4c03929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule that regulates various physiological and pathological processes in the central nervous system. It is vital to develop an effective method to detect H2S in vivo to elucidate its critical role. However, current fluorescent probes for accurate quantification of H2S still face big challenges due to complicated fabrication, small Stokes shift, unsatisfactory selectivity, and especially delayed response time. Herein, based on simple postsynthetic modification, we present an innovative strategy by confining H2S-triggered thiolysis of dinitrophenyl (DNP) ether within a luminescent metal-organic framework (MOF) to address those issues. Due to the cleavage of the DNP moiety by H2S, the nanoprobe gives rise to a remarkable fluorescence turn-on signal with a large Stokes shift of 190 nm and also provides high selectivity to H2S against various interferents including competing biothiols. In particular, by virtue of the unique structural property of the MOF, it exhibits an ultrafast sensing ability for H2S (only 5 s). Moreover, the fluorescence enhancement efficiency displays a good linear correlation with H2S concentration in the range of 0-160 μM with a detection limit of 0.29 μM. Importantly, these superior sensing performances enable the nanoprobe to measure the basal value and monitor the change of H2S level in the rat brain.
Collapse
Affiliation(s)
- Mengxia Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han YK. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Krishan Kumar
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Muhammad Umer
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| |
Collapse
|
8
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Liu H, Yu B, Zhou C, Deng Z, Wang H, Zhang X, Wang K. Nickel atom-clusters nanozyme for boosting ferroptosis tumor therapy. Mater Today Bio 2024; 27:101137. [PMID: 39040221 PMCID: PMC11260854 DOI: 10.1016/j.mtbio.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
The translation of Fe-based agents for ferroptosis tumor therapy is restricted by the unstable iron valence state, the harsh catalytic environment, and the complex tumor self-protection mechanism. Herein, we developed a stable nickel-based single-atom-metal-clusters (NSAMCs) biocatalyst for efficient tumor ferroptosis therapy. NSAMCs with a nanowire-like nanostructure and hydrophilic functional groups exhibit good water-solubility, colloidal stability, negligible systemic toxicity, and target specificity. In particular, NSAMCs possess excellent peroxidase-like and glutathione oxidase-like activities through the synergistic influence between metal clusters and single atoms. The dual-enzymatic performance enables NSAMCs to synergistically promote efficient ferroptosis of cancer cells through lipid peroxidization aggregation and glutathione peroxidase 4 inactivation. Importantly, NSAMCs highlight the boost of ferroptosis tumor therapy via the synergistic effect between single-atoms and metal clusters, providing a practical and feasible paradigm for further improving the efficiency of ferroptosis tumor treatment.
Collapse
Affiliation(s)
- Hongji Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Can Zhou
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, PR China
| | - Zhiming Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Kai Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
| |
Collapse
|
10
|
Zhou Y, Abdurexit A, Jamal R, Abdiryim T, Liu X, Liu F, Xu F, Zhang Y, Wang Z. Highly sensitive electrochemical sensing of norfloxacin by molecularly imprinted composite hollow spheres. Biosens Bioelectron 2024; 251:116119. [PMID: 38342057 DOI: 10.1016/j.bios.2024.116119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT)-based molecularly imprinted electrochemical sensors have attracted widespread attention for monitoring contaminants in food and the environment. However, there are still problems such as poor hydrophilicity, easy agglomeration, and low selectivity in its preparation. In this work, a novel molecularly imprinted composite hollow sphere was prepared by a molecular imprinting technique using nitrogen-doped hollow carbon spheres as matrix material, and PEDOT and poly(methacrylic acid) as monomers. The selective binding capabilities and mechanism of the material to norfloxacin (NOR) were systematically investigated. Then the material-based sensor was constructed, and its electrochemical detection performance toward NOR was thoroughly studied. The sensor exhibited a wide linear range (0.0005-31 μM), a low detection limit (0.061 nM), satisfactory immunity to interference and stability. Besides, the sensor displayed better sensitivity and reliability (spiked recoveries of 98.0-105.2%, relative standard deviation of 3.45-5.69%) for detecting NOR in lake water, honey, and milk than high-performance liquid chromatography. This work provides a new strategy for developing poly(3,4-ethylenedioxythiophene)-based molecularly imprinted electrochemical sensors.
Collapse
Affiliation(s)
- Yanqiang Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering Technology, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemical Engineering Technology, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Feng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Yaolong Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Zhigang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| |
Collapse
|
11
|
Mao L. Sensing at the single atom. ACS Sens 2024; 9:1620-1621. [PMID: 38666312 DOI: 10.1021/acssensors.4c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
|
12
|
Ma T, Liu X, Wang X, Ma JG, Cheng P. Bottom-Up Construction of Rhombic Lamellar CoNi-MOFs for the Electrochemical Sensing of H 2S. Inorg Chem 2024; 63:7504-7511. [PMID: 38598777 DOI: 10.1021/acs.inorgchem.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Lamellar metal-organic frameworks (MOFs) have attracted significant attention in the field of electrochemical sensing due to their abundant open active sites and specific electron conductivity. Herein, by employing a bottom-up synthesis strategy, rhombic lamellar heterometallic CoNi-MOFs with varying thicknesses are constructed. This is achieved by using 4-methylpyridine as a capping agent based on the (4,6)-linked Co2(azpy)2(bptc) (azpy = 4,4'-azopyridine, bptc = 3,3',5,5'-biphenyltetracarboxylic acid) structure with a fsc topology and by introducing Ni species simultaneously. To mitigate sulfur deposition on electrodes, the triple pulse amperometry (TPA) method is employed. Among the synthesized lamellar CoNi-MOFs, lamellar CoNi-MOF-3 with the minimum thickness exhibits an optimal electrochemical sensing performance toward hydrogen sulfide, with a sensitivity of 119.3 μA·mM-1·cm-2 in the linear range of 2-2000 μM. This study pioneers a new approach to the controlled construction and electrochemical activity modification of lamellar MOF materials.
Collapse
Affiliation(s)
- Teng Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao Liu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaowen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian-Gong Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Frontiers Science Center for New Organic Matter, and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Liu R, Zhang S, Zeng H, Gao N, Yin Y, Zhang M, Mao L. A Potentiometric Dual-Channel Microsensor Reveals that Fluctuation of H 2 S is Less pH-Dependent During Spreading Depolarization in the Rat Brain. Angew Chem Int Ed Engl 2024; 63:e202318973. [PMID: 38272831 DOI: 10.1002/anie.202318973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
Spreading depolarization (SD) is one of the most common neuropathologic phenomena in the nervous system, relating to numerous diseases. However, real-time monitoring the rapid chemical changes during SD to probe the molecular mechanism remains a great challenge. We develop a potentiometric dual-channel microsensor for simultaneous monitoring of H2 S and pH featuring excellent selectivity and spatiotemporal resolution. Using this microsensor we first observe real time changes of H2 S and pH in the rat brain induced by SD. This changes of H2 S are completely suppressed when the rat pre-treats with aminooxyacetic acid (AOAA), a blocker to inhibit the H2 S-producing enzyme, indicating H2 S fluctuation might be related to enzyme-dependent pathway during SD and less pH-dependent. This study provides a new perspective for studying the function of H2 S and the molecular basis of SD-associated diseases.
Collapse
Affiliation(s)
- Rantong Liu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
- College of Petroleum and Environment Engineering, Yan'an University, Shaanxi Yan'an, 716000, China
| | - Shuai Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Hui Zeng
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Nan Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Yongyue Yin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Meining Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
14
|
Zhang M, Wang Y, Jiang J, Jiang Y, Song D. The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review. Crit Rev Anal Chem 2024:1-22. [PMID: 38462811 DOI: 10.1080/10408347.2024.2324460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Lu J, Zhuang X, Wei H, Liu R, Ji W, Yu P, Ma W, Mao L. Enzymatic Galvanic Redox Potentiometry for In Vivo Biosensing. Anal Chem 2024; 96:3672-3678. [PMID: 38361229 DOI: 10.1021/acs.analchem.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Redox potentiometry has emerged as a new platform for in vivo sensing, with improved neuronal compatibility and strong tolerance against sensitivity variation caused by protein fouling. Although enzymes show great possibilities in the fabrication of selective redox potentiometry, the fabrication of an enzyme electrode to output open-circuit voltage (EOC) with fast response remains challenging. Herein, we report a concept of novel enzymatic galvanic redox potentiometry (GRP) with improved time response coupling the merits of the high selectivity of enzyme electrodes with the excellent biocompatibility and reliability of GRP sensors. With a glucose biosensor as an illustration, we use flavin adenine dinucleotide-dependent glucose dehydrogenase as the recognition element and carbon black as the potential relay station to improve the response time. We find that the enzymatic GRP biosensor rapidly responds to glucose with a good linear relationship between EOC and the logarithm of glucose concentration within a range from 100 μM to 2.65 mM. The GRP biosensor shows high selectivity over O2 and coexisting neurochemicals, good reversibility, and sensitivity and can in vivo monitor glucose dynamics in rat brain. We believe that this study will pave a new platform for the in vivo potentiometric biosensing of chemical events with high reliability.
Collapse
Affiliation(s)
- Jiaojiao Lu
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Huan Wei
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Ran Liu
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China
| |
Collapse
|
16
|
Liu J, Lu J, Ji W, Lu G, Wang J, Ye T, Jiang Y, Zheng J, Yu P, Liu N, Jiang Y, Mao L. Ion-Selective Micropipette Sensor for In Vivo Monitoring of Sodium Ion with Crown Ether-Encapsulated Metal-Organic Framework Subnanopores. Anal Chem 2024; 96:2651-2657. [PMID: 38306178 DOI: 10.1021/acs.analchem.3c05366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Chen J, Ding X, Zhang D. Challenges and strategies faced in the electrochemical biosensing analysis of neurochemicals in vivo: A review. Talanta 2024; 266:124933. [PMID: 37506520 DOI: 10.1016/j.talanta.2023.124933] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Our brain is an intricate neuromodulatory network, and various neurochemicals, including neurotransmitters, neuromodulators, gases, ions, and energy metabolites, play important roles in regulating normal brain function. Abnormal release or imbalance of these substances will lead to various diseases such as Parkinson's and Alzheimer's diseases, therefore, in situ and real-time analysis of neurochemical interactions in pathophysiological conditions is beneficial to facilitate our understanding of brain function. Implantable electrochemical biosensors are capable of monitoring neurochemical signals in real time in extracellular fluid of specific brain regions because they can provide excellent temporal and spatial resolution. However, in vivo electrochemical biosensing analysis mainly faces the following challenges: First, foreign body reactions induced by microelectrode implantation, non-specific adsorption of proteins and redox products, and aggregation of glial cells, which will cause irreversible degradation of performance such as stability and sensitivity of the microsensor and eventually lead to signal loss; Second, various neurochemicals coexist in the complex brain environment, and electroactive substances with similar formal potentials interfere with each other. Therefore, it is a great challenge to design recognition molecules and tailor functional surfaces to develop in vivo electrochemical biosensors with high selectivity. Here, we take the above challenges as a starting point and detail the basic design principles for improving in vivo stability, selectivity and sensitivity of microsensors through some specific functionalized surface strategies as case studies. At the same time, we summarize surface modification strategies for in vivo electrochemical biosensing analysis of some important neurochemicals for researchers' reference. In addition, we also focus on the electrochemical detection of low basal concentrations of neurochemicals in vivo via amperometric waveform techniques, as well as the stability and biocompatibility of reference electrodes during long-term sensing, and provide an outlook on the future direction of in vivo electrochemical neurosensing.
Collapse
Affiliation(s)
- Jiatao Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiuting Ding
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
18
|
Zheng Z, Liu L, Ouyang S, Chen Y, Lin P, Chen H, You Y, Zhao P, Huang K, Tao J. In Situ Ratiometric Determination of Cerebral Ascorbic Acid after Ischemia Reperfusion. ACS Sens 2023; 8:4587-4596. [PMID: 38038440 DOI: 10.1021/acssensors.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ascorbic acid (AA) is significant in protecting the brain from further damage and maintaining brain homeostasis after ischemia stroke (IS); however, the dynamic change of cerebral AA content after different degrees of ischemic stroke is still unclear. Herein, carboxylated single-walled carbon nanotube (CNT-COOH)- and polyethylenedioxythiophene (PEDOT)-modified carbon fiber microelectrodes (CFEs) were proposed to detect in situ cerebral AA with sensitivity, selectivity, and stability. Under differential pulse voltammetry scanning, the CFE/CNT-COOH/PEDOT gave a ratiometric, electrochemically responsive signal. The internal standard peak at -310 mV was from the reversible peak of O2 reduction and the deprotonation and protonation of quinone groups, while AA was oxidized at -70 mV. In vivo experimental results indicated that the cerebral AA level gradually increased with the ischemic time increasing in different middle cerebral artery occlusion (MCAO) model mice. This work implies that the increasing cerebral AA level may be highly related to the glutamate excitotoxicity and ROS-led cell apoptosis and paves a new way for further understanding the release and metabolic mechanisms of AA during ischemia reperfusion and IS.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Lina Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
19
|
Zhao T, Chen YP, Xie YL, Luo Y, Tang H, Jiang JH. In situ monitoring of ROS secretion from single cells with a dual-nanopore biosensor. Chem Commun (Camb) 2023; 59:14463-14466. [PMID: 37982751 DOI: 10.1039/d3cc04657e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report here a dual-nanopore biosensor based on modulation of surface charge density coupled with a microwell array chip for in situ monitoring of ROS secretion from single MCF-7 cells.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Yi-Ping Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ya-Li Xie
- Hunan Changsha Ecological Environment Monitoring Center, Changsha 410000, P. R. China
| | - Yang Luo
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
20
|
Li M, Wang G, Dai J, Zhao Z, Zhe Y, Yang H, Lin Y. Bioinspired CuZn-N/C Single-Atom Nanozyme with High Substrate Specificity for Selective Online Monitoring of Epinephrine in Living Brain. Anal Chem 2023; 95:14365-14374. [PMID: 37712586 DOI: 10.1021/acs.analchem.3c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Though many elegant laccase mimics have emerged, these mimics generally have no substrate selectivity as well as low activity, making it difficult to fulfill the demand for monitoring in physiological conditions. Herein, inspired by the Cu-N ligand structure in the active site of natural laccase, we revealed that a carbon nanomaterial with atomically dispersed Cu and Zn atoms (CuZn-N/C) and a well-defined ligand structure could function as an effective laccase mimic for selectively catalyzing epinephrine (EP) oxidation. Catalytic activity of the CuZn-N/C nanozyme was superior to those of Cu-N/C and Zn-N/C and featured a Km value nearly 3-fold lower than that of natural laccase, which indicated that CuZn-N/C has a better affinity for EP. Density functional theory (DFT) revealed the mechanism of the superior catalytic ability of dual-metal CuZn-N/C as follows: (1) the exact distance of the two metal atoms in the CuZn-N/C catalyst makes it suitable for adsorption of the EP molecule, and the CuZn-N/C catalyst can offer the second hydrogen bond that stabilizes the adsorption; (2) molecular orbitals and density of states indicate that the strong interaction between the EP molecule and CuZn-N/C is important for EP catalytic oxidization. Furthermore, a sensitive and selective online optical detection platform (OODP) is constructed for determining EP with a low limit of detection (LOD) of 0.235 μM and a linear range of 0.2-20 μM. The system allows real-time measurement of EP release in the rat brain in vivo following ischemia with dexmedetomidine administration. This work not only provides an idea of designing efficient laccase mimics but also builds a promising chemical platform for better understanding EP-related drug action for ischemic cerebrovascular illnesses and opens up possibilities to explore brain function.
Collapse
Affiliation(s)
- Mengying Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing Dai
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Huan Yang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
21
|
Nie Y, Yu Z, Li Y. First-Principles Investigation of Nucleobase Detection by Tetranitrogen Coordinated Transition Metal Doped Graphene Nanoribbons. J Phys Chem B 2023; 127:7899-7906. [PMID: 37682659 DOI: 10.1021/acs.jpcb.3c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Detection of nucleobases is of great significance in DNA sequencing, which is one of the main goals of the Human Genome Project. By employing the nonequilibrium Green function method combined with density functional theory, we proposed a biosensor based on the TMN4 (TM = Ni, Cu) embedded graphene nanoribbons for nucleobase detection. The adsorption energy calculations show that all five nucleobases are physisorbed on the TMN4-doped graphene nanoribbons. Utilizing the distinction of current, the bases T, C, and U can be gradually detected at the biases of 0.4, 0.6, and 0.8 V by NiN4-doped graphene nanoribbons, respectively. The bases A and G can be finally distinguished by CuN4-doped graphene nanoribbons under an external bias of not less than 0.8 V. The identification of individual nucleobases at specific biases could provide a novel mechanism for the further development of biosensors in rapid genome sequencing applications.
Collapse
Affiliation(s)
- Yuxuan Nie
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhizhou Yu
- Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
22
|
Wu F, Yu P, Mao L. New Opportunities of Electrochemistry for Monitoring, Modulating, and Mimicking the Brain Signals. JACS AU 2023; 3:2062-2072. [PMID: 37654584 PMCID: PMC10466370 DOI: 10.1021/jacsau.3c00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
In vivo electrochemistry is a powerful key for unlocking the chemical consequences in neural networks of the brain. The past half-century has witnessed the technology revolutionization in this field along with innovations in electrochemical concepts, principles, methods, and devices. Present applications of electrochemical approaches have extended from measuring neurochemical concentrations to modulating and mimicking brain signals. In this Perspective, newly reported strategies for tackling long-standing challenges of in vivo electrochemical brain monitoring (i.e., basal level measurement, electroactivity dependence, in vivo stability, neuron compatibility, multiplexity, and implantable device fabrication) are highlighted. Moreover, recent progress on neuromodulation tools and neuromorphic devices in electrochemical frameworks is introduced. A glimpse of future opportunities for electrochemistry in brain research is offered at last.
Collapse
Affiliation(s)
- Fei Wu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lanqun Mao
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Gao Y, Wang J, Yang Y, Wang J, Zhang C, Wang X, Yao J. Engineering Spin States of Isolated Copper Species in a Metal-Organic Framework Improves Urea Electrosynthesis. NANO-MICRO LETTERS 2023; 15:158. [PMID: 37341868 PMCID: PMC10284786 DOI: 10.1007/s40820-023-01127-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/14/2023] [Indexed: 06/22/2023]
Abstract
The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal-organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h-1 g-1 and an enhanced Faradaic efficiency of 23.09% at - 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty [Formula: see text] orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C-N coupling process, while CuII with a single-spin state ([Formula: see text]) in CuII-HHTP undergoes a two-electron migration pathway.
Collapse
Affiliation(s)
- Yuhang Gao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jingnan Wang
- Molecular Plus and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yijun Yang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jian Wang
- Research Center for Magnetic and Spintronic Materials National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
24
|
Sun J, Wang Z, Guan J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem 2023; 425:136518. [PMID: 37290237 DOI: 10.1016/j.foodchem.2023.136518] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including H2O2, dopamine (DA), uric acid (UA), glucose, H2S, NO, and O2. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.
Collapse
Affiliation(s)
- Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
25
|
Wei H, Li L, Xue Y, Yu P, Mao L. Stability Enhancement of Galvanic Redox Potentiometry by Optimizing the Redox Couple in Counterpart Poles. Anal Chem 2023; 95:8232-8238. [PMID: 37201512 DOI: 10.1021/acs.analchem.3c00110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Potentiometry based on the galvanic cell mechanism, i.e., galvanic redox potentiometry (GRP), has recently emerged as a new tool for in vivo neurochemical sensing with high neuronal compatibility and good sensing property. However, the stability of open circuit voltage (EOC) outputting remains to be further improved for in vivo sensing application. In this study, we find that the EOC stability could be enhanced by adjusting the sort and the concentration ratio of the redox couple in the counterpart pole (i.e., indicating electrode) of GRP. With dopamine (DA) as the sensing target, we construct a spontaneously powered single-electrode-based GRP sensor (GRP2.0) and investigate the correlation between the stability and the redox couple used in the counterpart pole. Theoretical consideration suggests that the EOC drift is minimum when the concentration ratio of the oxidized form (O1) to the reduced form (R1) of the redox species in the backfilled solution is 1:1. The experimental results demonstrate that, compared with other redox species (i.e., dissolved O2 at 3 M KCl, potassium ferricyanide (K3Fe(CN)6), and hexaammineruthenium(III) chloride (Ru(NH3)6Cl3)) used as the counterpart pole, potassium hexachloroiridate(IV) (K2IrCl6) exhibits better chemical stability and outputs more stable EOC. As a result, when IrCl62-/3- with the concentration ratio of 1:1 is used as the counterpart, GRP2.0 displays not only an excellent EOC stability (i.e., 3.8 mV drifting during 2200 s for in vivo recording) but also small electrode-to-electrode variation (i.e., the maximum EOC variation between four electrodes is 2.7 mV). Upon integration with the electrophysiology, GRP2.0 records a robust DA release, accompanied by a burst of neural firing, during the optical stimulation. This study paves a new avenue to stable neurochemical sensing in vivo.
Collapse
Affiliation(s)
- Huan Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lijuan Li
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Cho W, Yoon SH, Chung TD. Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 2023; 14:4463-4479. [PMID: 37152246 PMCID: PMC10155913 DOI: 10.1039/d3sc00338h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Seamless neural interfaces conjoining neurons and electrochemical devices hold great potential for highly efficient signal transmission across neural systems and the external world. Signal transmission through chemical sensing and stimulation via electrochemistry is remarkable because communication occurs through the same chemical language of neurons. Emerging strategies based on synaptic interfaces, iontronics-based neuromodulation, and improvements in selective neurosensing techniques have been explored to achieve seamless integration and efficient neuro-electronics communication. Synaptic interfaces can directly exchange signals to and from neurons, in a similar manner to that of chemical synapses. Hydrogel-based iontronic chemical delivery devices are operationally compatible with neural systems for improved neuromodulation. In this perspective, we explore developments to improve the interface between neurons and electrodes by targeting neurons or sub-neuronal regions including synapses. Furthermore, recent progress in electrochemical neurosensing and iontronics-based chemical delivery is examined.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| |
Collapse
|
27
|
Zuo Y, Wang S, Lin R, Xiao G, Chen S, Zeng R, Gu H. A portable electrochemical microsensor for in-site measurement of dissolved oxygen and hydrogen sulfide in natural water. Talanta 2023; 256:124269. [PMID: 36753888 DOI: 10.1016/j.talanta.2023.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
Dissolved oxygen (O2) and hydrogen sulfide (H2S) are two important indicators of water quality, their levels are of intimate dependence and varying over time. It is of great significance to monitoring of dissolved O2 and H2S simultaneously in natural water, yet has not been reported because of lack of effective approaches. In this work, a portable electrochemical microsensor was developed for simultaneously quantifying dissolved O2 and H2S. Here, Pd@Ni nanoparticles (NPs) were self-assembled onto the microelectrode by MXene titanium carbide (Ti3C2Tx), which were of responsibility towards O2 and H2S detection within single electrochemical reduction process. On this regard, Pd NPs facilitated catalyzing the electrochemical reduction of O2, while Ni NPs were employed as recognition element for H2S detection. With the electrochemical reduction sweep, the initial application of a positive voltage rendered the Ni to be oxidized to be Ni ions, contributing to their following capture of surrounding S2- to form nickel sulfide. Nickel sulfide with highly electrochemical activity were capable of generating detecting reduction current. In consequence, the as-designed microsensor can simultaneously determine O2 concentrations ranging from 36 to 318 μM and H2S levels ranging from 0.1 to 2.5 μM with high selectivity. Finally, the portable microsensor was successfully applied to simultaneous detection dissolved O2 and H2S in natural water in-site, the results of which were comparable to the classical methods.
Collapse
Affiliation(s)
- Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Sisi Wang
- Hunan Institute of Metrology and Test, Changsha, Hunan, 410083, China
| | - Ruizhi Lin
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410014, China.
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, 411201, China.
| |
Collapse
|
28
|
Li R, Guo W, Zhu Z, Zhai Y, Wang G, Liu Z, Jiao L, Zhu C, Lu X. Single-Atom Indium Boosts Electrochemical Dopamine Sensing. Anal Chem 2023; 95:7195-7201. [PMID: 37116176 DOI: 10.1021/acs.analchem.2c05679] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
A rational design of high-efficiency electrocatalysts and thus achieving sensitive electrochemical sensing remains a great challenge. In this work, single-atom indium anchored on nitrogen-doped carbon (In1-N-C) with an In-N4 configuration is prepared successfully through a high-temperature annealing strategy; the product can serve as an advanced electrocatalyst for sensitive electrochemical sensing of dopamine (DA). Compared with In nanoparticle catalysts, In1-N-C exhibits high catalytic performance for DA oxidation. The theoretical calculation reveals that In1-N-C has high adsorption energy for hydroxy groups and a low energy barrier in the process of DA oxidation compared to In nanoparticles, indicating that In1-N-C with atomically dispersed In-N4 sites possesses enhanced intrinsic activity. An electrochemical sensor for DA detection is established as a concept application with high sensitivity and selectivity. Furthermore, we also verify the feasibility of In1-N-C catalysts for the simultaneous detection of uric acid, ascorbic acid, and DA. This work extends the application prospect of p-block metal single-atom catalysts in electrochemical sensing.
Collapse
Affiliation(s)
- Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Weiwei Guo
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Zhijun Zhu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Guanwen Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Zheng Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
29
|
Wang J, Zhe Y, Zhao Z, Zhang S, Wu W, Mao J, Lin Y. Stretchable Oxygen-Tolerant Sensor Based on a Single-Atom Fe-N 4 Electrocatalyst for Observing the Role of Oxidative Stress in Hypertension. Anal Chem 2023; 95:5159-5167. [PMID: 36896726 DOI: 10.1021/acs.analchem.3c00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Oxidative stress and related oxidative damage have a causal relation with the pathogenesis of hypertension. Therefore, it is crucial to determine the mechanism of oxidative stress in hypertension by applying mechanical forces on cells to simulate hypertension while monitoring the release of reactive oxygen species (ROS) from cells under an oxidative stress environment. However, cellular level research has rarely been explored because monitoring the ROS released by cells is still challenging owing to the interference of O2. In this study, an Fe single-atom-site catalyst anchored on N-doped carbon-based materials (Fe SASC/N-C) was synthesized, which exhibits excellent electrocatalytic activity for the reduction of hydrogen peroxide (H2O2) at a peak potential of +0.1 V and can effectively avoid the interference of O2. Furthermore, we constructed a flexible and stretchable electrochemical sensor based on the Fe SASC/N-C catalyst to study the release of cellular H2O2 under simulated hypoxic and hypertension conditions. Density functional theory calculations show that the highest transition state energy barrier from the oxygen reduction reaction (ORR), i.e., O2 to H2O, is 0.38 eV. In comparison, the H2O2 reduction reaction (HPRR) can be completed only by overcoming a lower energy barrier of 0.24 eV, endowing the HPRR to be more favorable on Fe SASC/N-C compared with the ORR. This study provided a reliable electrochemical platform for real-time investigation of H2O2-related underlying mechanisms of the hypertension process.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Sichen Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wenjie Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
30
|
Zhu F, Xue Y, Ji W, Li X, Ma W, Yu P, Jiang Y, Mao L. Galvanic Redox Potentiometry for Fouling-Free and Stable Serotonin Sensing in a Living Animal Brain. Angew Chem Int Ed Engl 2023; 62:e202212458. [PMID: 36688872 DOI: 10.1002/anie.202212458] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Serotonin (5-HT) is a major neurotransmitter broadly involved in many aspects of feeling and behavior. Although its electro-activity makes it a promising candidate for electrochemical sensing, the persistent generation of fouling layers on the electrode by its oxidation products presents a hurdle for reliable sensing. Here, we present a fouling-free 5-HT sensor based on galvanic redox potentiometry. The sensor efficiently minimizes electrode fouling as revealed by in situ Raman spectroscopy, ensuring a less than 3 % signal change in a 2 hour continuous experiment, whereas amperometric sensors losing 90 % within 30 min. Most importantly, the sensor is highly amenable for in vivo studies, permitting real-time 5-HT monitoring, and supporting the mechanism associated with serotonin release in brain. Our system offers an effective way for sensing different neurochemicals having significant fouling issues, thus facilitating the molecular-level understanding of brain function.
Collapse
Affiliation(s)
- Fenghui Zhu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yifei Xue
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xin Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Cheng S, Zhang S, Liu R, Zeng H, Yin Y, Zhang M. Potentiometric nanosensor for real-time measurement of hydrogen sulfide in single cell. Chem Commun (Camb) 2023; 59:1959-1962. [PMID: 36722985 DOI: 10.1039/d2cc06557f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One potentiometric nanosensor for monitoring intracellular hydrogen sulfide (H2S) with fast potential response, high selectivity and excellent antifouling properties was developed. This study constructs a powerful tool to real-time track the changes of intracellular H2S in situ, promoting the future studies of physiologically relevant processes.
Collapse
Affiliation(s)
- Shuwen Cheng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Shuai Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Rantong Liu
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
32
|
Yin Y, Zeng H, Wang HM, Zhang M. Biocompatible Microelectrode for In Vivo Sensing with Improved Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1719-1729. [PMID: 36689914 DOI: 10.1021/acs.langmuir.2c03267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In vivo sensing based on implantable microelectrodes has been widely used to monitor neurochemicals due to its high spatial and temporal resolution and engineering interface designability, which has become a powerful drive to decode the mysteries of degenerative diseases and regulate neural activity. Over the past few decades, with the development of a variety of advanced materials and technologies, encouraging progress has been made in quantifying various neurochemical transients. However, because of the complex chemical atmosphere including thousands of small and large biomolecules and the inherent low mechanical property of brain tissue, the design of a compatible microelectrode for the in vivo electrochemical tracking of neurochemicals with high selectivity and stability still faces great challenges. This Perspective presents a brief account of recent representative progress in the rational regulation of the microelectrode interface to resolve the questions of selectivity and sensitive decrease resulting from antiprotein adsorption, and how to decrease the mechanical mismatch of an implanted electrode with that of brain tissue. Possible future research directions on further addressing the above key issues and a more biocompatible microelectrode for in vivo long-time electrochemical analysis are also discussed.
Collapse
Affiliation(s)
- Yongyue Yin
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hui Zeng
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hui-Ming Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Meining Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
33
|
Tan R, Qin Y, Liu M, Wang H, Li J, Luo Z, Hu L, Gu W, Zhu C. Nickel Single-Atom Catalyst-Mediated Efficient Redox Cycle Enables Self-Checking Photoelectrochemical Biosensing with Dual Photocurrent Readouts. ACS Sens 2023; 8:263-269. [PMID: 36624088 DOI: 10.1021/acssensors.2c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developing a self-checking photoelectrochemical biosensor with dual photocurrent signals could efficiently eliminate false-positive or false-negative signals. Herein, a novel biosensor with dual photocurrent responses was established for the detection of acetylcholinesterase activity. To achieve photocurrent polarity-switchable behavior, the iodide/tri-iodide redox couple was innovatively introduced to simultaneously consume the photoexcited electrons and holes, which circumvents the inconvenience caused by the addition of different hole- and electron-trapping agents in the electrolyte. Importantly, benefiting from the high catalytic activity, the enhanced photoelectric responsivity can be realized after decorating the counter electrode with nickel single-atom catalysts, which promotes a more efficient iodide/tri-iodide redox reaction under low applied voltages. It is envisioned that the proposed photocurrent polarity switching system offers new routes to sensitive and reliable biosensing.
Collapse
Affiliation(s)
- Rong Tan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zhen Luo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, Hubei 430205, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
34
|
Wu F, Yu P, Mao L. Multi-Spatiotemporal Probing of Neurochemical Events by Advanced Electrochemical Sensing Methods. Angew Chem Int Ed Engl 2023; 62:e202208872. [PMID: 36284258 DOI: 10.1002/anie.202208872] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Neurochemical events involving biosignals of different time and space dimensionalities constitute the complex basis of neurological functions and diseases. In view of this fact, electrochemical measurements enabling real-time quantification of neurochemicals at multiple levels of spatiotemporal resolution can provide informative clues to decode the molecular networks bridging vesicles and brains. This Minireview focuses on how scientific questions regarding the properties of single vesicles, neurotransmitter release kinetics, interstitial neurochemical dynamics, and multisignal interconnections in vivo have driven the design of electrochemical nano/microsensors, sensing interface engineering, and signal/data processing. An outlook for the future frontline in this realm will also be provided.
Collapse
Affiliation(s)
- Fei Wu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|