1
|
Schmitz M, Bertrams MS, Sell AC, Glaser F, Kerzig C. Efficient Energy and Electron Transfer Photocatalysis with a Coulombic Dyad. J Am Chem Soc 2024; 146:25799-25812. [PMID: 39227057 DOI: 10.1021/jacs.4c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photocatalysis holds great promise for changing the way value-added molecules are currently prepared. However, many photocatalytic reactions suffer from quantum yields well below 10%, hampering the transition from lab-scale reactions to large-scale or even industrial applications. Molecular dyads can be designed such that the beneficial properties of inorganic and organic chromophores are combined, resulting in milder reaction conditions and improved reaction quantum yields of photocatalytic reactions. We have developed a novel approach for obtaining the advantages of molecular dyads without the time- and resource-consuming synthesis of these tailored photocatalysts. Simply by mixing a cationic ruthenium complex with an anionic pyrene derivative in water a salt bichromophore is produced owing to electrostatic interactions. The long-lived organic triplet state is obtained by static and quantitative energy transfer from the preorganized ruthenium complex. We exploited this so-called Coulombic dyad for energy transfer catalysis with similar reactivity and even higher photostability compared to a molecular dyad and reference photosensitizers in several photooxygenations. In addition, it was shown that this system can also be used to maximize the quantum yield of photoredox reactions. This is due to an intrinsically higher cage escape quantum yield after photoinduced electron transfer for purely organic compounds compared to heavy atom-containing molecules. The combination of laboratory-scale as well as mechanistic irradiation experiments with detailed spectroscopic investigations provided deep mechanistic insights into this easy-to-use photocatalyst class.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Arne C Sell
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
2
|
Wei W, Li C, Fan Y, Chen X, Zhao X, Qiao B, Jiang Z. Catalytic Asymmetric Redox-Neutral [3+2] Photocycloadditions of Cyclopropyl Ketones with Vinylazaarenes Enabled by Consecutive Photoinduced Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202406845. [PMID: 38687326 DOI: 10.1002/anie.202406845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Consecutive photoinduced electron transfer (ConPET) is a powerful and atom-economical protocol to overcome the limitations of the intrinsic redox potential of visible light-absorbing photosensitizers, thereby considerably improving the substrate and reaction types. Likely because such an exothermic single-electron transfer (SET) process usually does not require the aid of chiral catalysts, resulting in an inevitable racemic background reaction, notably, no enantioselective manifolds have been reported. Herein, we report on the viability of cooperative ConPET and chiral hydrogen-bonding catalysis for the [3+2] photocycloaddition of cyclopropyl ketones with vinylazaarenes. In addition to enabling the first use of olefins that preferentially interact with chiral catalysts, this catalysis platform paves the way for the efficient synthesis of pharmaceutically and synthetically important cyclopentyl ketones functionalized by azaarenes with high yields, ees and dr. The robust capacity of the method can be further highlighted by the low loading of the chiral catalyst (1.0 mol %), the good compatibility of both 2-azaarene and 3-pyridine-based olefins, and the successful concurrent construction of three stereocenters on cyclopentane rings involving an elusive but important all-carbon quaternary.
Collapse
Affiliation(s)
- Wenhui Wei
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Chunyang Li
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yifan Fan
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Chen
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Baokun Qiao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhiyong Jiang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, 475004, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
3
|
Pérez-Aguilar MC, Entgelmeier LM, Herrera-Luna JC, Daniliuc CG, Consuelo Jiménez M, Pérez-Ruiz R, García Mancheño O. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis. Chemistry 2024; 30:e202400541. [PMID: 38739757 DOI: 10.1002/chem.202400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.
Collapse
Affiliation(s)
- María C Pérez-Aguilar
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas-M Entgelmeier
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
- Current address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Olga García Mancheño
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
4
|
Zaragoza CAD, Peagno GSG, Minguine AJA, Salles AG. Metal-free synthesis of propargylamines via light-mediated persulfate activation and phase-transfer catalysis. Org Biomol Chem 2024; 22:2359-2364. [PMID: 38415828 DOI: 10.1039/d4ob00218k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We present a metal-free method to synthesize secondary and tertiary propargylamines from primary and secondary amines and alkynes using light-mediated persulfate activation and phase-transfer catalysis. Our method explores a tandem oxidative coupling/alkynylation reaction for the generation of diverse compounds, highlighting the sustainability of the process and its wide scope.
Collapse
Affiliation(s)
- Cesar A D Zaragoza
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| | - Gabriel S G Peagno
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| | - Ana J A Minguine
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| | - Airton G Salles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, SP 13084-862, Brazil.
| |
Collapse
|
5
|
Kong M, Wang Z, Ban X, Zhao X, Yin Y, Zhang J, Jiang Z. Radical Cross Coupling and Enantioselective Protonation through Asymmetric Photoredox Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307773. [PMID: 38233152 DOI: 10.1002/advs.202307773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Indexed: 01/19/2024]
Abstract
An unprecedented enantioselective protonation reaction enabled by photoredox catalytic radical coupling is developed. Under cooperative dicynopyrazine-derived chromophore (DPZ) as a photosensitizer and a chiral phosphoric acid catalyst, and Hantzsch ester as a sacrificial reductant, the transformations between α-substituted enones and cyanoazaarenes or 2-(chloromethyl)azaaren-1-iums can proceed a tandem reduction, radical coupling, and enantioselective protonation process efficiently. Two classes of pharmaceutically important enantioenriched azaarene variants, which contain a synthetically versatile ketone-substituted tertiary carbon stereocenter at the β- or γ-position of the azaarenes, are synthesized with high yields and ees.
Collapse
Affiliation(s)
- Manman Kong
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhuoxi Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhiyong Jiang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
6
|
Iribarren I, Mates-Torres E, Trujillo C. Revisiting ion-pair interactions in phase transfer catalysis: from ionic compounds to real catalyst systems. Dalton Trans 2024; 53:1322-1335. [PMID: 38116737 DOI: 10.1039/d3dt03978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Ion-pairing is a fundamental phenomenon that significantly influences phase-transfer catalysis. In this study, we conduct a comprehensive investigation of ion-pair interactions, aiming to establish a comprehensive understanding of their nature and implications. The study begins with the examination of polar ionic compounds to define the concept of an ion-pair in the context of phase-transfer catalysis. Subsequently, a diverse range of ion-pair catalyst models were explored to gain insight into the factors governing their interactions. Finally, the focus shifts towards the characterisation of real phase-transfer catalysts, bridging the gap between theoretical models and practical applications. Through a combination of computational approaches and theoretical analysis, this work provides valuable insight into the nature of ion-pair interactions within phase-transfer catalysis fields.
Collapse
Affiliation(s)
- Iñigo Iribarren
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590 Dublin, Ireland
| | - Eric Mates-Torres
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590 Dublin, Ireland
| | - Cristina Trujillo
- School of Chemistry, Trinity College Dublin, The University of Dublin, 154-160 Pearse Street, D02 R590 Dublin, Ireland
| |
Collapse
|
7
|
Zhou Y, Liu Z, Yang Z, Zheng Y, Yang M, Feng W, Li X, Yuan L. Pillar[5]arene-segregated ion pairs for enhanced cycloaddition of epoxides with CO 2. Chem Commun (Camb) 2024; 60:300-303. [PMID: 38054763 DOI: 10.1039/d3cc03878e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A supramolecular approach using a polyviologen-pillar[5]arene complex as segregated ion pairs was shown to be highly efficient for the conversion of CO2 with epoxides into cyclic carbonates without the need for metals or solvents. The enhanced catalytic performance was achieved by cooperative ion pair segregation and CO2 fixation.
Collapse
Affiliation(s)
- Yidan Zhou
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zejiang Liu
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Zhiyao Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Yuexuan Zheng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Maoxia Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
8
|
Glaser F, Schmitz M, Kerzig C. Coulomb interactions for mediator-enhanced sensitized triplet-triplet annihilation upconversion in solution. NANOSCALE 2023; 16:123-137. [PMID: 38054748 DOI: 10.1039/d3nr05265f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion offers an attractive possibility to replace a high-energy photon by two photons with lower energy through the combination of a light-harvesting triplet sensitizer and an annihilator for the formation of a fluorescent singlet state. Typically, high annihilator concentrations are required to achieve an efficient initial energy transfer and as a direct consequence the most highly energetic emission is often not detectable due to intrinsic reabsorption by the annihilator itself. Herein, we demonstrate that the addition of a charge-adapted mediator drastically improves the energy transfer efficiency at low annihilator concentrations via an energy transfer cascade. Inspired by molecular dyads and recent developments in nanocrystal-sensitized upconversion, our system exploits a concept to minimize intrinsic filter effects, while boosting the upconversion quantum yield in solution. A sensitizer-annihilator combination consisting of a ruthenium-based complex and 9,10-diphenylanthracene (DPA) is explored as model system and a sulfonated pyrene serves as mediator. The impact of opposite charges between sensitizer and mediator - to induce coulombic attraction and subsequently result in accelerated energy transfer rate constants - is analyzed in detail by different spectroscopic methods. Ion pairing and the resulting static energy transfer in both directions is a minor process, resulting in an improved overall performance. Finally, the more intense upconverted emission in the presence of the mediator is used to drive two catalytic photoreactions in a two-chamber setup, illustrating the advantages of our approach, in particular for photoreactions requiring oxygen that would interfere with the upconversion system.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Yang Z, Xu C, Zhou X, Cheong CB, Kee CW, Tan CH. A chiral pentanidium and pyridinyl-sulphonamide ion pair as an enantioselective organocatalyst for Steglich rearrangement. Chem Sci 2023; 14:13184-13190. [PMID: 38023527 PMCID: PMC10664489 DOI: 10.1039/d3sc04397e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Enantioselective ion pair catalysis has gained significant attention due to its ability to exert selectivity control in various reactions. Achiral counterions have been found to play crucial roles in modulating reactivity and selectivity. The modular nature of an ion pair catalyst allows rapid alterations of the achiral counterion to achieve optimal outcomes, without the need to modify the more onerous chiral component. In this study, we report the successful development of a stable chiral pentanidium pyridinyl-sulphonamide ion pair as a nucleophilic organocatalyst for asymmetric Steglich rearrangement. The ion pair catalyst demonstrated excellent performance, leading to enantioenriched products with up to 99% ee through simple alterations of the achiral anions. We conducted extensive ROESY experiments and concluded that the reactivity and enantioselectivity were correlated to the formation of a tight ion pair in solution. Further computational analyses provided greater clarity to the structure of the ion pair catalyst in solution. Our findings reveal the critical roles of NMR experiments and computational analyses in the design and optimisation of ion pair catalysts.
Collapse
Affiliation(s)
- Ziqi Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Republic of Singapore
| | - Chaoran Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Republic of Singapore
| | - Xianxian Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Republic of Singapore
| | - Choon Boon Cheong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Republic of Singapore
| | - Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) 1 Pesek Road, Jurong Island Singapore 627833 Republic of Singapore
| | - Choon-Hong Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link Singapore 637371 Republic of Singapore
| |
Collapse
|
10
|
Geunes EP, Meinhardt JM, Wu EJ, Knowles RR. Photocatalytic Anti-Markovnikov Hydroamination of Alkenes with Primary Heteroaryl Amines. J Am Chem Soc 2023; 145:21738-21744. [PMID: 37787499 PMCID: PMC10589911 DOI: 10.1021/jacs.3c08428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We report a light-driven method for the intermolecular anti-Markovnikov hydroamination of alkenes with primary heteroaryl amines. In this protocol, electron transfer between an amine substrate and an excited-state iridium photocatalyst affords an aminium radical cation (ARC) intermediate that undergoes C-N bond formation with a nucleophilic alkene. Integral to reaction success is the electronic character of the amine, wherein increasingly electron-deficient heteroaryl amines generate increasingly reactive ARCs. Counteranion-dependent reactivity is observed, and iridium triflate photocatalysts are employed in place of conventional iridium hexafluorophosphate complexes. This method exhibits broad functional group tolerance across 55 examples of N-alkylated products derived from pharmaceutically relevant heteroaryl amines.
Collapse
Affiliation(s)
- Eric P Geunes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jonathan M Meinhardt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Emily J Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Dong C, Huang RW, Sagadevan A, Yuan P, Gutiérrez-Arzaluz L, Ghosh A, Nematulloev S, Alamer B, Mohammed OF, Hussain I, Rueping M, Bakr OM. Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angew Chem Int Ed Engl 2023; 62:e202307140. [PMID: 37471684 DOI: 10.1002/anie.202307140] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Elucidating single-atom effects on the fundamental properties of nanoparticles is challenging because single-atom modifications are typically accompanied by appreciable changes to the overall particle's structure. Herein, we report the synthesis of a [Cu58 H20 PET36 (PPh3 )4 ]2+ (Cu58 ; PET: phenylethanethiolate; PPh3 : triphenylphosphine) nanocluster-an atomically precise nanoparticle-that can be transformed into the surface-defective analog [Cu57 H20 PET36 (PPh3 )4 ]+ (Cu57 ). Both nanoclusters are virtually identical, with five concentric metal shells, save for one missing surface copper atom in Cu57 . Remarkably, the loss of this single surface atom drastically alters the reactivity of the nanocluster. In contrast to Cu58 , Cu57 shows promising activity for click chemistry, particularly photoinduced [3+2] azide-alkyne cycloaddition (AAC), which is attributed to the active catalytic site in Cu57 after the removal of one surface copper atom. Our study not only presents a unique system for uncovering the effect of a single-surface atom modification on nanoparticle properties but also showcases single-atom surface modification as a powerful means for designing nanoparticle catalysts.
Collapse
Affiliation(s)
- Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, 54792, Lahore, Pakistan
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
12
|
Jha RK, Batabyal M, Kumar S. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C( sp2)-H and N-H Bonds: Amination of Naphthoquinones with Amines. J Org Chem 2023. [PMID: 37171187 DOI: 10.1021/acs.joc.3c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Herein, we report a blue-light-driven amination of C(sp2)-H bond of naphthoquinones and quinones with the N-H bond of primary and secondary amines for the synthesis of 2-amino-naphthoquinones and 2-amino-quinones. The coupling of naphthoquinones with a wide array of aliphatic, aromatic, chiral, primary, and secondary amines having electron donating (-CH3, -OCH3, -SCH3), withdrawing (-F, -Cl, -Br, -I), and CO2H, -OH, -NH2 groups with acidic protons selectively occurred to afford C-N coupled 2-amino-naphthoquinones in 60-99% yields and hydrogen gas as a byproduct in methanol solvent without using any additional reagents, additives, and oxidant under the blue light irradiation. Mechanistic insight by DFT computation, controlled experiments, kinetic isotopic effect, and substitution effect of the substrates suggest that the reaction proceeds by radical pathway in which naphthoquinone forms a highly oxidizing naphthoquinonyl biradical upon irradiation of blue light (457 nm). Consequently, electron transfer from electron-rich amine to an oxidizing naphthoquinonyl biradical leads to a naphthoquinonyl radical anion and aminyl radical cation, followed by proton transfer and delocalization leading to a carbon-centered naphthoquinonyl radical. The cross-coupling of naphthoquinonyl carbon-centered and aminyl nitrogen radicals forms a C-N bond, with subsequent elimination of hydrogen gas (which was also confirmed by GC-TCD), affording 2-amino-1,4-naphthoquinone under metal-, reagent-, base-, and oxidant-free conditions.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
13
|
Sorensen CC, Kozuszek CT, Borden MA, Leibfarth FA. Asymmetric Ion-Pairing in Stereoselective Vinyl Polymerization. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Cole C. Sorensen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Caleb T. Kozuszek
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Meredith A. Borden
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|