1
|
Martin-Aubert S, Avrillon K, Tournier N, Bordat A, Tran VL, Ibrahim N, Kereselidze D, Jego B, Potiron L, Tsapis N, Nicolas J, Boissenot T, Truillet C. Successful repositioning of mertansine for improved chemotherapy by combining a polymer prodrug approach and PET imaging. J Control Release 2024; 378:803-813. [PMID: 39719212 DOI: 10.1016/j.jconrel.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Mertansine (DM1), a potent tumor-killing maytansinoid, requires conjugation to antibodies or incorporation into nanocarriers due to its high toxicity. However, these carriers often result in undesirable biodistribution, leading to rapid and long-term accumulation in the kidneys or liver and potentially increased toxicity. To overcome this limitation, we used the hydrophilic, biocompatible, and stealth properties of polyacrylamide (PAAm) as a scaffold to develop water-soluble PAAm-DM1 polymer prodrugs, leveraging PAAm's previous success in delivering paclitaxel via subcutaneous administration. To monitor distribution and predict efficacy, we have imparted Positron Emission Tomography (PET) imaging capabilities to well-defined PAAm-DM1 polymer prodrugs. Our studies demonstrated the same tumor accumulation and the same distribution of PAAm-DM1 in the main organs such as liver, kidneys muscle, regardless of delivery route (subcutaneous or intravenous). Interestingly, tumor accumulation of PAAm-DM1 was primarily driven by passive accumulation, as indicated by PET imaging, without significantly altering treatment efficacy. This suggests complex mechanisms, possibly involving immune system interactions by influencing notably the metabolism and clearance. To enhance therapeutic outcomes, we combined the polymer prodrug with immunotherapy, specifically anti-CTLA4. Our findings highlight the promising potential of PAAm-DM1, offering a novel formulation strategy for DM1 in cancer therapy.
Collapse
Affiliation(s)
- Soizic Martin-Aubert
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | - Kevin Avrillon
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Nicolas Tournier
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | | | - Vu Long Tran
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Nada Ibrahim
- Imescia, Université Paris-Saclay, 91400 Saclay, France
| | - Dimitri Kereselidze
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France
| | - Benoit Jego
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| | - Léa Potiron
- Imescia, Université Paris-Saclay, 91400 Saclay, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | | | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, Orsay 91401, France..
| |
Collapse
|
2
|
Xiao W, Sun S, Geng R, Bi D, Liu Y, Zhu J. A General "Two-Lock" Strategy to Enhance Drug Loading and Lysosomal Escape in Intelligent Boronate Ester Polymer Nanoparticles for Improved Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68890-68904. [PMID: 39641664 DOI: 10.1021/acsami.4c15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Boronate ester can be used to prepare intelligent polymer nanoparticles (NPs). However, the traditional boronate ester polymer NPs made of boronic acid and diols using a "single-lock" strategy (B-O NPs) exhibit low drug loading capacity (DLC) and insufficient lysosomal escape ability, resulting in limited antitumor efficacy. We develop a "two-lock" strategy that combines dodecanamine and boronic acid using boron-nitrogen (B ← N) coordination to enhance the formation of a boronate ester polymer. Through this strategy, amphiphilic dextran and poly(vinyl alcohol) are synthesized through conjugation with the phenylboronic acid (PBA)/dodecanamine complex. The amphiphilic dextran encapsulates paclitaxel (PTX) to form B-N-O NPs with a higher DLC than their "single-lock" compartments due to enhanced boronate ester stability and improved hydrophobic drug-polymer interactions. Moreover, the B-N-O NPs release more PTX under acidic conditions compared with the B-O NPs. To demonstrate the generality of this "two-lock" strategy, eight polymer prodrug B-N-O NPs employing poly(vinyl alcohol) or dextran, along with PBA-modified gemcitabine, fluorouracil, and 7-ethyl-10-hydroxycamptothecin, or boronic acid-containing bortezomib and dodecanamine, are prepared, showing overall enhanced DLC and higher responsive drug release efficiency compared to B-O NPs. Importantly, B-N-O NPs with a combination of dodecanamine and boronic acid show a better lysosomal escape capability than B-O NPs. Moreover, B-N-O NPs exhibit stronger cytotoxicity compared to B-O NPs and free drugs in vitro. Their enhanced drug loading, responsive drug release, and lysosomal escape abilities contribute to enhanced antitumor efficacy in vivo. This "two-lock" strategy can be a general and convenient method to prepare responsive polymer NPs with enhanced anticancer efficacy.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology; Cancer Clinical Study Center of Hubei Province; Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Newaj SM, Kashem TB, Ferdous J, Jahan I, Rawshan H, Prionty NJ, Rakib R, Sadman MA, Faruk FB, Reza HM, Sharker SM. Skin Cancer Treatment with Subcutaneous Delivery of Doxorubicin-Loaded Gelatin Nanoparticles and NIR Activation. ACS APPLIED BIO MATERIALS 2024; 7:6313-6324. [PMID: 39172138 DOI: 10.1021/acsabm.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Subcutaneous (SC) administration of chemotherapeutics combined with near-infrared (NIR) light activation can effectively target skin tumors by triggering localized drug release and enhancing cytotoxic effects. In this study, we developed NIR-responsive indocyanine green (ICG) and the chemotherapeutic agent doxorubicin (Dox) loaded into gelatin nanoparticles (NPs) for SC delivery in a skin tumor-bearing mouse model. Histological examination (hematoxylin and eosin staining) confirmed the successful delivery and swelling behavior of the Dox/ICG-loaded gelatin NPs at the SC site. In vitro and in vivo experiments demonstrated that NIR activation of the Dox/ICG-loaded gelatin NPs generated significant photothermal heat (48 and 46 °C), leading to targeted drug release and a substantial reduction in skin tumor size (from 15 to 3 mm3). Our findings suggest that this dual-modality approach of SC chemotherapeutic administration and NIR-triggered photothermal therapy can concentrate cytotoxic drugs at the tumor site, offering a promising strategy for improving skin cancer treatment.
Collapse
Affiliation(s)
- Shekh Md Newaj
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tabassum Binte Kashem
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Israt Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Habiba Rawshan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nusrat Jahan Prionty
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Rashedujjaman Rakib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md Annur Sadman
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Forhad Bin Faruk
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
4
|
Li M, Tai Q, Shen S, Gao M, Zhang X. Biomimetic Exosome-Sheathed Magnetic Mesoporous Anchor with Modification of Glucose Oxidase for Synergistic Targeting and Starving Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29634-29644. [PMID: 38822821 DOI: 10.1021/acsami.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
Efficient protection and precise delivery of biomolecules are of critical importance in the intervention and therapy of various diseases. Although diverse specific marker-functionalized drug carriers have been developed rapidly, current approaches still encounter substantial challenges, including strong immunogenicity, limited target availability, and potential side effects. Herein, we developed a biomimetic exosome-sheathed magnetic mesoporous anchor modified with glucose oxidase (MNPs@mSiO2-GOx@EM) to address these challenges and achieve synergistic targeting and starving of tumor cells. The MNPs@mSiO2-GOx@EM anchor integrated the unique characteristics of different components. An external decoration of exosome membrane (EM) with high biocompatibility contributed to increased phagocytosis prevention, prolonged circulation, and enhanced recognition and cellular uptake of loaded particles. An internal coated magnetic mesoporous core with rapid responsiveness by the magnetic field guidance and large surface area facilitated the enrichment of nanoparticles at the specific site and provided enough space for modification of glucose oxidase (GOx). The inclusion of GOx in the middle layer accelerated the energy-depletion process within cells, ultimately leading to the starvation and death of target cells with minimal side effects. With these merits, in vitro study manifested that our nanoplatform not only demonstrated an excellent targeting capability of 94.37% ± 1.3% toward homotypic cells but also revealed a remarkably high catalytical ability and cytotoxicity on tumor cells. Assisted by the magnetic guidance, the utilization of our anchor obviously inhibits the tumor growth in vivo. Together, our study is promising to serve as a versatile method for the highly efficient delivery of various target biomolecules to intended locations due to the fungibility of exosome membranes and provide a potential route for the recognition and starvation of tumor cells.
Collapse
Affiliation(s)
- Mengran Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Qunfei Tai
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shun Shen
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Mingxia Gao
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Pharmacy Department, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiangmin Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Guerassimoff L, Ferrere M, Van Herck S, Dehissi S, Nicolas V, De Geest BG, Nicolas J. Thermosensitive polymer prodrug nanoparticles prepared by an all-aqueous nanoprecipitation process and application to combination therapy. J Control Release 2024; 369:376-393. [PMID: 38554772 DOI: 10.1016/j.jconrel.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Despite their great versatility and ease of functionalization, most polymer-based nanocarriers intended for use in drug delivery often face serious limitations that can prevent their clinical translation, such as uncontrolled drug release and off-target toxicity, which mainly originate from the burst release phenomenon. In addition, residual solvents from the formulation process can induce toxicity, alter the physico-chemical and biological properties and can strongly impair further pharmaceutical development. To address these issues, we report polymer prodrug nanoparticles, which are prepared without organic solvents via an all-aqueous formulation process, and provide sustained drug release. This was achieved by the "drug-initiated" synthesis of well-defined copolymer prodrugs exhibiting a lower critical solution temperature (LCST) and based on the anticancer drug gemcitabine (Gem). After screening for different structural parameters, prodrugs based on amphiphilic diblock copolymers were formulated into stable nanoparticles by all-aqueous nanoprecipitation, with rather narrow particle size distribution and average diameters in the 50-80 nm range. They exhibited sustained Gem release in human serum and acetate buffer, rapid cellular uptake and significant cytotoxicity on A549 and Mia PaCa-2 cancer cells. We also demonstrated the versatility of this approach by formulating Gem-based polymer prodrug nanoparticles loaded with doxorubicin (Dox) for combination therapy. The dual-drug nanoparticles exhibited sustained release of Gem in human serum and acidic release of Dox under accelerated pathophysiological conditions. Importantly, they also induced a synergistic effect on triple-negative breast cancer line MDA-MB-231, which is a relevant cell line to this combination.
Collapse
Affiliation(s)
- Léa Guerassimoff
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Marianne Ferrere
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Simon Van Herck
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Samy Dehissi
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France
| | - Valérie Nicolas
- Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), UMS IPSIT Université Paris-Saclay US 31 INSERM, UMS 3679 CNRS, Microscopy Facility, Orsay 91400, France
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay 91400, France.
| |
Collapse
|
7
|
Pottenger AE, Roy D, Srinivasan S, Chavas TEJ, Vlaskin V, Ho DK, Livingston VC, Maktabi M, Lin H, Zhang J, Pybus B, Kudyba K, Roth A, Senter P, Tyson G, Huber HE, Wesche D, Rochford R, Burke PA, Stayton PS. Liver-targeted polymeric prodrugs delivered subcutaneously improve tafenoquine therapeutic window for malaria radical cure. SCIENCE ADVANCES 2024; 10:eadk4492. [PMID: 38640243 PMCID: PMC11029812 DOI: 10.1126/sciadv.adk4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.
Collapse
Affiliation(s)
- Ayumi E. Pottenger
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas E. J. Chavas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Vladmir Vlaskin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Hsiuling Lin
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jing Zhang
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brandon Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - George Tyson
- George Tyson Consulting, Los Altos Hills, CA 94022, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hans E. Huber
- BioTD Strategies LLC, 213 Abbey Ln., Lansdale, PA 19446, USA
| | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Paul A. Burke
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Burke Bioventures LLC, 1 Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Gao P, Ha-Duong T, Nicolas J. Coarse-Grained Model-Assisted Design of Polymer Prodrug Nanoparticles with Enhanced Cytotoxicity: A Combined Theoretical and Experimental Study. Angew Chem Int Ed Engl 2024; 63:e202316056. [PMID: 38345287 DOI: 10.1002/anie.202316056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 03/12/2024]
Abstract
To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.
Collapse
Affiliation(s)
- Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Orsay, 91400, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, 91400, France
| |
Collapse
|
9
|
Sun XY, Liang YX, Gao YN, Zhang X, Liu R, Tang Q, Lu ZL, Liu Y. [12]aneN 3-modified camptothecin and PEGylated AIEgens co-assembly into core-shell nanoparticles with ROS/NTR dual-response for enhanced cancer therapy. J Mater Chem B 2023; 11:8943-8955. [PMID: 37727888 DOI: 10.1039/d3tb01282d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
A novel dual-responsive nanoparticle (NP) system was aimed to be developed for the co-delivery of camptothecin (CPT) and plasmid encoding TNF-related apoptosis-inducing ligand (pTRAIL) DNA in cancer therapy. The combination of the prodrug CPT and the nucleic acid condensing di-(triazole-[12]aneN3) unit with 4-nitrobenzyl ester through alkyl chains resulted in three nitroreductase (NTR) responsive amphiphiles, CNN1-CNN3 (with 5, 8, and 11 carbon chains, respectively). Among them, CNN2 was the most effective in inhibiting the proliferation of HeLa cells in the presence of fusogenic lipid DOPE. The NPs composed of CNN2, pDNA, and DOPE were further co-assembled with ROS-responsive thioketal-linked amphiphilic polymer (TTP) to afford the core-shell NPs (CNN2-DT/pDNA) with an average size of 118 nm, which exhibited high drug-loading capacity, excellent serum tolerance, and good biocompatibility. In the presence of ROS, NTR, and NADH, the core-shell NPs were decomposed, leading to the efficient release of 80% CPT and abundant pDNA. The self-assembly and delivery process of CNN2-DT NPs and DNA were clearly observed through the AIE fluorescent imaging. In vitro and in vivo results demonstrated that the CNN2-DT/pTRAIL NPs synergistically promoted 68% apoptosis of tumor cells and inhibited tumor growth with negligible toxic side effects. This study showed that the combination of prodrug and nucleic acid through dual-responsive core-shell NPs provide a spatially and temporally-controlled strategy for cancer therapy.
Collapse
Affiliation(s)
- Xue-Yi Sun
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Ya-Xuan Liang
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yi-Nan Gao
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xi Zhang
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Rui Liu
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Quan Tang
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Zhong-Lin Lu
- Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Yang Liu
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing, 100050, China.
| |
Collapse
|
10
|
Ur-Rehman M, Reynaud F, Lepetre S, Abreu S, Chaminade P, Fattal E, Tsapis N. Modulation of release and pharmacokinetics from nanoscale lipid prodrugs of dexamethasone with variable linkage chemistry. J Control Release 2023; 360:293-303. [PMID: 37391032 DOI: 10.1016/j.jconrel.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
In an attempt to tune drug release and subsequent pharmacokinetics once administered intravenously, we have synthesized three lipid-drug conjugates (LDCs) of dexamethasone (DXM) each possessing a different lipid-drug chemical linkage: namely ester, carbamate and carbonate. These LDCs were thoroughly characterized before being turned into nanoscale particles by an emulsion-evaporation process using DSPE-PEG2000 (Distearoyl-sn-Glycero-3-Phosphoethanolamine-N-(methoxy(polyethylene glycol)-2000) as the only excipient. Spherical nanoparticles (NPs) of about 140-170 nm, with a negative zeta potential, were obtained for each LDC and exhibited good stability upon storage at 4 °C for 45 days with no recrystallization of LDCs observed. LDC encapsulation efficacy was above 95% for the three LDCs, leading to a LDC loading of about 90% and an equivalent DXM loading above 50%. Although the ester and carbonate NPs did not exhibit any toxicity up to an equivalent DXM concentration of 100 μg/mL, the carbamate LDC NPs appeared very toxic towards RAW 264.7 macrophages and were discarded. Both ester and carbonate LDC NPs were shown to exert anti-inflammatory activity on LPS-activated macrophages. DXM release from LDC NPs in murine plasma was faster from ester than from carbonate NPs. Finally, pharmacokinetics and biodistribution were conducted, showing a lower exposure to DXM from carbonate LDC NPs than from ester LDC NPs, correlated with the slower DXM release from carbonate LDC NPs. These results outline the need for extended studies to find the best prodrug system for extended drug release.
Collapse
Affiliation(s)
- Mujeeb Ur-Rehman
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; L.E.J. Nanotechnology Center, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Franceline Reynaud
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Université de Lorraine, CITHEFOR EA3452, Faculté de Pharmacie, 54000 Nancy, France
| | - Sinda Lepetre
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Sonia Abreu
- Université Paris-Saclay, Lipides : systèmes analytiques et biologiques, 91400 Orsay, France
| | - Pierre Chaminade
- Université Paris-Saclay, Lipides : systèmes analytiques et biologiques, 91400 Orsay, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France.
| |
Collapse
|
11
|
Ngema LM, Adeyemi SA, Marimuthu T, Ubanako PN, Ngwa W, Choonara YE. Surface Immobilization of Anti-VEGF Peptide on SPIONs for Antiangiogenic and Targeted Delivery of Paclitaxel in Non-Small-Cell Lung Carcinoma. ACS APPLIED BIO MATERIALS 2023. [PMID: 37384895 PMCID: PMC10354746 DOI: 10.1021/acsabm.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
A design has been established for the surface decoration of superparamagnetic iron oxide nanoparticles (SPIONs) with anti-vascular endothelial growth factor peptide, HRH, to formulate a targeted paclitaxel (PTX) delivery nanosystem with notable tumor targetability and antiangiogenic activity. The design methodology included (i) tandem surface functionalization via coupling reactions, (ii) pertinent physicochemical characterization, (iii) in vitro assessment of drug release, anti-proliferative activity, and quantification of vascular endothelial growth factor A (VEGF-A) levels, and (iv) in vivo testing using a lung tumor xenograft mouse model. Formulated CLA-coated PTX-SPIONs@HRH depicted a size and surface charge of 108.5 ± 3.5 nm and -30.4 ± 2.3 mV, respectively, and a quasi-spherical shape relative to pristine SPIONs. Fourier transform infrared (FTIR) analysis and estimation of free carboxylic groups supported the preparation of the CLA-coated PTX-SPIONs@HRH. CLA-coated PTX-SPIONs@HRH exhibited high PTX loading efficiency (98.5%) and sustained release in vitro, with a marked dose dependent anti-proliferative activity in A549 lung adenocarcinoma cells, complimented by an enhanced cellular uptake. CLA-coated PTX-SPIONs@HRH significantly reduced secretion levels of VEGF-A in human dermal microvascular endothelial cells from 46.9 to 35.6 pg/mL compared to untreated control. A 76.6% tumor regression was recorded in a lung tumor xenograft mouse model following intervention with CLA-coated PTX-SPIONs@HRH, demonstrating tumor targetability and angiogenesis inhibition. CLA-coated PTX-SPIONs@HRH enhanced the half-life of PTX by almost 2-folds and demonstrated a prolonged PTX plasma circulation time from a subcutaneous injection (SC). Thus, it is suggested that CLA-coated PTX-SPIONs@HRH could provide a potential effective treatment modality for non-small-cell lung carcinoma as a nanomedicine.
Collapse
Affiliation(s)
- Lindokuhle M Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Wilfred Ngwa
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
12
|
Rama B, Ribeiro AJ. Role of nanotechnology in the prolonged release of drugs by the subcutaneous route. Expert Opin Drug Deliv 2023; 20:559-577. [PMID: 37305971 DOI: 10.1080/17425247.2023.2214362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Subcutaneous physiology is distinct from other parenteral routes that benefit the administration of prolonged-release formulations. A prolonged-release effect is particularly convenient for treating chronic diseases because it is associated with complex and often prolonged posologies. Therefore, drug-delivery systems focused on nanotechnology are proposed as alternatives that can overcome the limitations of current therapeutic regimens and improve therapeutic efficacy. AREAS COVERED This review presents an updated systematization of nanosystems, focusing on their applications in highly prevalent chronic diseases. Subcutaneous-delivered nanosystem-based therapies comprehensively summarize nanosystems, drugs, and diseases and their advantages, limitations, and strategies to increase their translation into clinical applications. An outline of the potential contribution of quality-by-design (QbD) and artificial intelligence (AI) to the pharmaceutical development of nanosystems is presented. EXPERT OPINION Although recent academic research and development (R&D) advances in the subcutaneous delivery of nanosystems have exhibited promising results, pharmaceutical industries and regulatory agencies need to catch up. The lack of standardized methodologies for analyzing in vitro data from nanosystems for subcutaneous administration and subsequent in vivo correlation limits their access to clinical trials. There is an urgent need for regulatory agencies to develop methods that faithfully mimic subcutaneous administration and specific guidelines for evaluating nanosystems.
Collapse
Affiliation(s)
- B Rama
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - A J Ribeiro
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
- Genetics of Cognitive Disfunction, i3S, IBMC, Porto, Portugal
| |
Collapse
|
13
|
Xiao T, Liu K, Gao Q, Chen M, Kim YS, Jin S, Ding Y, Huigens RW. Design, Synthesis, and Evaluation of Carbonate-Linked Halogenated Phenazine-Quinone Prodrugs with Improved Water-Solubility and Potent Antibacterial Profiles. ACS Infect Dis 2023; 9:899-915. [PMID: 36867688 PMCID: PMC10551733 DOI: 10.1021/acsinfecdis.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Pathogenic bacteria have devastating impacts on human health as a result of acquired antibiotic resistance and innate tolerance. Every class of our current antibiotic arsenal was initially discovered as growth-inhibiting agents that target actively replicating (individual, free-floating) planktonic bacteria. Bacteria are notorious for utilizing a diversity of resistance mechanisms to overcome the action of conventional antibiotic therapies and forming surface-attached biofilm communities enriched in (non-replicating) persister cells. To address problems associated with pathogenic bacteria, our group is developing halogenated phenazine (HP) molecules that demonstrate potent antibacterial and biofilm-eradicating activities through a unique iron starvation mode of action. In this study, we designed, synthesized, and investigated a focused collection of carbonate-linked HP prodrugs bearing a quinone trigger to target the reductive cytoplasm of bacteria for bioactivation and subsequent HP release. The quinone moiety also contains a polyethylene glycol group, which dramatically enhances the water-solubility properties of the HP-quinone prodrugs reported herein. We found carbonate-linked HP-quinone prodrugs 11, 21-23 to demonstrate good linker stability, rapid release of the active HP warhead following dithiothreitol (reductive) treatment, and potent antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis, and Enterococcus faecalis. In addition, HP-quinone prodrug 21 induced rapid iron starvation in MRSA and S. epidermidis biofilms, illustrating prodrug action within these surface-attached communities. Overall, we are highly encouraged by these findings and believe that HP prodrugs have the potential to address antibiotic resistant and tolerant bacterial infections.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Ke Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Qiwen Gao
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Young S Kim
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Shouguang Jin
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|