1
|
Lu J, Yao D, Tang S, Cai X, Ding W, Zhu Y. Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime over a Cu 12Ag 17(SR) 12(PPh 3) 4 cluster catalyst. Chem Commun (Camb) 2025. [PMID: 39957540 DOI: 10.1039/d4cc06745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Atomically precise metal cluster catalysts with crystallographically solved structures have been documented to be promising alternatives to tackle the challenge of selective hydrogenation of organics into high value products. Here we report that a Cu12Ag17(SR)12(PPh3)4 (SR = 1,3-benzenedithiol) cluster as a heterogeneous catalyst can achieve a highly catalytic selectivity of cyclohexanone oxime in catalytic hydrogenation of nitrocyclohexane, due to the unique synergy in the bimetallic cluster.
Collapse
Affiliation(s)
- Jinzhi Lu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Danyun Yao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Shisi Tang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Weiping Ding
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Suzuki R, Chen Y, Ogawa Y, Enokido M, Kitagawa Y, Hasegawa Y, Konishi K, Shichibu Y. Theory-Directed Ligand-Shell Engineering of Ultrasmall Gold Clusters: Remarkable Effects of Ligand Arrangement on Optical Properties. J Phys Chem Lett 2025; 16:1432-1439. [PMID: 39887033 DOI: 10.1021/acs.jpclett.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Ligand-shell engineering of ultrasmall metal clusters is a burgeoning research field aiming to develop cluster-specific properties. However, predicting these properties prior to synthesis is challenging due to their high sensitivity to geometric and/or electronic variations in ultrasmall metal cores, hindering further exploration. In this study, we present a theory-directed ligand-shell design and significant red-shift in absorption of a prolate-shaped [Au8(diphosphine)4Cl2]2+ cluster by synthesizing and characterizing enantiopure octagold clusters bearing chiral BINAP-type ligands [BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl]. Crystallographic analysis reveals the predesigned ligand arrangement and twisted gold-core framework. The enantiomeric clusters show significant changes in both absorption and photoluminescence compared with a previous Au8 analogue and exhibit chiroptical signals. Furthermore, theoretical calculations visually unveil the atomic level origins of their optical and chiroptical absorption characteristics. This work not only highlights the effectiveness of ligand-shell engineering in creating unique photophysical properties but also offers a viable, theory-guided strategy for designing and functionalizing ligated metal clusters.
Collapse
Affiliation(s)
- Rintaro Suzuki
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yuxiang Chen
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yuri Ogawa
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Masaki Enokido
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, North 21 West 10, Sapporo 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, North 13 West 8, Sapporo 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, North 21 West 10, Sapporo 001-0021, Japan
| | - Katsuaki Konishi
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| | - Yukatsu Shichibu
- Graduate School of Environmental Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, North 10 West 5, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Banu R, Loxha A, Müller N, Spyroglou S, Rosenberg EE, Palomares AE, Rey F, Marini C, Barrabés N. Synergistic effect of ligand-cluster structure and support in gold nanocluster catalysts for selective hydrogenation of alkynes. NANOSCALE 2025. [PMID: 39840924 PMCID: PMC11753004 DOI: 10.1039/d4nr03865g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
In the field of nanocluster catalysis, it is crucial to understand the interplay of different parameters, such as ligands, support and pretreatment and their effect on the catalytic process. In this study, we chose the selective hydrogenation of phenylacetylene as a model reaction and employed two gold nanoclusters as catalysts, the phosphine protected Au11 and the thiolate protected Au25, each with different binding motifs. They were supported on MgO, Al2O3 and a hydrotalcite (HT), chosen for their different acidity. We found that while in the case of the Au11 MgO was the preferred support and the pretreatment had a positive impact on the catalysis. For the Au25 the HT performed best and pretreating had negative effects, indicating that the bonding motif of the ligands and their interaction with the support is crucial for the catalytic process. Using X-ray absorption spectroscopy we could trace these phenomena to changes in the cluster-ligand interface, which seem to impact the stability of the catalysts.
Collapse
Affiliation(s)
- Rareṣ Banu
- Institue of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria.
| | - Adea Loxha
- Institue of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria.
| | - Nicole Müller
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, 1060 Vienna, Austria
| | - Stylianos Spyroglou
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/E166, 1060 Vienna, Austria
| | - Egon Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/E164, 1060 Vienna, Austria
| | - A Eduardo Palomares
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Valencia, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politécnica de Valéncia - Consejo Superior de Investigaciones Científicas (UPV-CSIC), Valencia, Spain
| | - Carlo Marini
- ALBA Synchrotron Light Facility, Carrer de la Llum 2-26, 08290, Cerdanyola del Valles, Barcelona, Spain
| | - Noelia Barrabés
- Institue of Materials Chemistry, TU Wien, Getreidemarkt 9/E165, 1060 Vienna, Austria.
| |
Collapse
|
5
|
Cai X, Tian Y, Wang H, Huang S, Liu X, Li G, Ding W, Zhu Y. Catalytic N-Formylation of CO 2 by Atomically Precise Au 8Pd 1(DPPF) 4 2+ Clusters into a Two-Dimensional Metal-Organic Framework. Angew Chem Int Ed Engl 2025; 64:e202414030. [PMID: 39267329 DOI: 10.1002/anie.202414030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
By highly efficient ligand-exchange strategy, atomically precise Au8Pd1(PPh3)8 2+ (PPh3=triphenylphosphine) cluster can be transformed into a Au8Pd1(DPPF)4 2+ (DPPF=1,1'-bis(diphenylphosphino)ferrocene) cluster that can maintain the atomic-packing structure but overcome the lability of Au8Pd1(PPh3)8 2+. Catalytic evaluation for the CO2 hydrogenation coupled with o-phenylenediamine demonstrates that the Au8Pd1(DPPF)4 2+ catalyst can remarkably enhance both activity and stability compared to the Au8Pd1(PPh3)8 2+ catalyst. More notably, the direct construction of a two-dimensional metal-organic framework (2D MOF) can be elaborately accomplished in the formylation process of o-phenylenediamine, CO2 and H2 with zinc nitrate enabled by the Au8Pd1(DPPF)4 2+ catalyst. The 2D MOF further enables the capture and transformation of CO2 to combine in the organic synthesis with epoxides under mild conditions. This work provides opportunities for creating highly active cluster sites for the chemical recycling of CO2.
Collapse
Affiliation(s)
- Xiao Cai
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yiqi Tian
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Hao Wang
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuangshuang Huang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Xu Liu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guangjun Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yan Zhu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Lab of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
6
|
Qian J, Yang Z, Lyu J, Yao Q, Xie J. Molecular Interactions in Atomically Precise Metal Nanoclusters. PRECISION CHEMISTRY 2024; 2:495-517. [PMID: 39483272 PMCID: PMC11522999 DOI: 10.1021/prechem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
For nanochemistry, precise manipulation of nanoscale structures and the accompanying chemical properties at atomic precision is one of the greatest challenges today. The scientific community strives to develop and design customized nanomaterials, while molecular interactions often serve as key tools or probes for this atomically precise undertaking. In this Perspective, metal nanoclusters, especially gold nanoclusters, serve as a good platform for understanding such nanoscale interactions. These nanoclusters often have a core size of about 2 nm, a defined number of core metal atoms, and protecting ligands with known crystal structure. The atomically precise structure of metal nanoclusters allows us to discuss how the molecular interactions facilitate the systematic modification and functionalization of nanoclusters from their inner core, through the ligand shell, to the external assembly. Interestingly, the atomic packing structure of the nanocluster core can be affected by forces on the surface. After discussing the core structure, we examine various atomic-level strategies to enhance their photoluminescent quantum yield and improve nanoclusters' catalytic performance. Beyond the single cluster level, various attractive or repulsive molecular interactions have been employed to engineer the self-assembly behavior and thus packing morphology of metal nanoclusters. The methodological and fundamental insights systemized in this review should be useful for customizing the cluster structure and assembly patterns at the atomic level.
Collapse
Affiliation(s)
- Jing Qian
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhucheng Yang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingkuan Lyu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key
Laboratory of Organic Integrated Circuits, Ministry of Education &
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department
of Chemistry, School of Science, Tianjin
University, Tianjin 300072, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Jianping Xie
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
7
|
Deng G, Malola S, Ki T, Liu X, Yoo S, Lee K, Bootharaju MS, Häkkinen H, Hyeon T. Structural Isomerism in Bimetallic Ag 20Cu 12 Nanoclusters. J Am Chem Soc 2024; 146:26751-26758. [PMID: 39292876 DOI: 10.1021/jacs.4c06832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Structural isomers of atomically precise metal nanoclusters are highly sought after for investigating structure-property relationships in nanostructured materials. However, they are extremely rare, particularly those of alloys, primarily due to the challenges in their synthesis and structural characterization. Herein, for the first time, a pair of bimetallic isomeric AgCu nanoclusters has been controllably synthesized and structurally characterized. These two isomers share an identical molecular formula, Ag20Cu12(C≡CR)24 (denoted as Ag20Cu12-1 and Ag20Cu12-2; HC≡CR is 3,5-bis(trifluoromethyl)phenylacetylene). Single-crystal X-ray diffraction data analysis revealed that Ag20Cu12-1 possesses an Ag17Cu4 core composed of two interpenetrating hollow Ag11Cu2 structures. This core is stabilized by four different types of surface motifs: eight -C≡CR, one Cu(C≡CR)2, one Ag3Cu3(C≡CR)6, and two Cu2(C≡CR)4 units. Ag20Cu12-2 features a bitetrahedron Ag14 core, which is stabilized by three Ag2Cu4(C≡CR)8 units. Interestingly, Ag20Cu12-2 undergoes spontaneous transformation to Ag20Cu12-1 in the solution-state. Density functional theory calculations explain the electronic and optical properties and confirm the higher relative stability of Ag20Cu12-1 compared to Ag20Cu12-2. The controlled synthesis and structural isomerism of alloy nanoclusters presented in this work will stimulate and broaden research on nanoscale isomerism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeyoung Ki
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Sun J, Wu Q, Yan X, Li L, Tang X, Gong X, Yan B, Xu Q, Guo Q, He J, Shen H. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS AU 2024; 4:3427-3435. [PMID: 39328750 PMCID: PMC11423317 DOI: 10.1021/jacsau.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
The utilization of structure distortion to modulate the electronic structure and alter catalytic properties of metallic nanomaterials is a well-established practice, but accurately identifying and comprehensively understanding these distortions present significant challenges. Ligand-stabilized metal nanoclusters with well-defined structures serve as exemplary model systems to illustrate the structure chemistry of nanomaterials, among which few studies have investigated nanocluster models that incorporate structural distortions. In this work, a novel copper hydride nanocluster, Cu42(PPh3)8(RS)4(CF3COO)10(CH3O)4H10 (Cu42; PPh3 is triphenylphosphine and RSH is 2,4-dichlorophenylthiol), with a highly twisted structure has been synthesized in a simple way. Structural analysis reveals Cu42 comprises two Cu25 units that are conjoined in a nearly orthogonal manner. The dramatic distortion in the metal framework, which is driven by multiple interactions from the surface ligands, endows the cluster with a rich array of uncoordinated metal sites on the surface. The resulting cluster, as envisioned, exhibits remarkable activity in catalyzing carbonylation of anilines. The findings from this study not only provides atomically precise insights into the structural distortions that are pertinent to nanoparticle catalysts but also underscores the potential of structurally distorted NCs as a burgeoning generation of catalysts with precise structures and outstanding performances that can be tailored for specific functions.
Collapse
Affiliation(s)
- Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Lei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuekun Gong
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Bingzheng Yan
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qinghua Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Qingxiang Guo
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
9
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
10
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
11
|
Deng G, Yun H, Bootharaju MS, Sun F, Lee K, Liu X, Yoo S, Tang Q, Hwang YJ, Hyeon T. Copper Doping Boosts Electrocatalytic CO 2 Reduction of Atomically Precise Gold Nanoclusters. J Am Chem Soc 2023; 145:27407-27414. [PMID: 38055351 DOI: 10.1021/jacs.3c08438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Unraveling the atomistic synergistic effects of nanoalloys on the electrocatalytic CO2 reduction reaction (eCO2RR), especially in the presence of copper, is of paramount importance. However, this endeavor encounters significant challenges due to the lack of the crystallographically determined atomic-level structure of appropriate monometallic and bimetallic analogues. Herein, we report a one-pot synthesis and structure characterization of a AuCu nanoalloy cluster catalyst, [Au15Cu4(DPPM)6Cl4(C≡CR)1]2+ (denoted as Au15Cu4). Single-crystal X-ray diffraction analysis reveals that Au15Cu4 comprises two interpenetrating incomplete, centered icosahedra (Au9Cu2 and Au8Cu3) and is protected by six DPPM, four halide, and one alkynyl ligand. The Au15Cu4 cluster and its closest monometal structural analogue, [Au18(DPPM)6Br4]2+ (denoted as Au18), as model systems, enable the elucidation of the atomistic synergistic effects of Au and Cu on eCO2RR. The results reveal that Au15Cu4 is an excellent eCO2RR catalyst in a gas diffusion electrode-based membrane electrode assembly (MEA) cell, exhibiting a high CO Faradaic efficiency (FECO) of >90%, and this efficiency is substantially higher than that of the undoped Au18 (FECO: 60% at -3.75 V). Au15Cu4 exhibits an industrial-level CO partial current density of up to -413 mA/cm2 at -3.75 V with the gas CO2-fed MEA, which is 2-fold higher than that of Au18. The density functional theory (DFT) calculations demonstrate that the synergistic effects are induced by Cu doping, where the exposed pair of AuCu dual sites was suggested for launching the eCO2RR process. Besides, DFT simulations reveal that these special dual sites synergistically coordinate a moderate shift in the d-state, thus enhancing its overall catalytic performance.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Wang M, Wang L, Wu H, Sun J, Xu X, Guo S, Jia Y, Li S, Guan ZJ, Shen H. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. NANOSCALE 2023; 15:17818-17824. [PMID: 37668358 DOI: 10.1039/d3nr02196c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Reported herein is the facial synthesis, molecular structure, and catalysis of a Pt/Ag nanocluster costabilized by organic ligands of phosphines and inorganic ligands of chlorides. The nanocluster with molecular formula of [PtAg18(dppp)6Cl8](SbF6)2 has been obtained facilely by the one pot method. The structure of the cluster could be anatomized as the stabilizaiton of PtAg12-centered icosahedral core by the metalloligand of dppp-Ag-Cl, in which Cl- not only caps the surface Ag atoms but also binds the core and surface motifs. Featuring eight free electrons in its structure, the cluster exhibits high stability. More interestingly, the exposure of surface metal sites endows the cluster with counterintutively high catalytic activity in hydrogenation reactions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lin Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Haoyuan Wu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiaoxuan Xu
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Wang M, Li S, Tang X, Zuo D, Jia Y, Guo S, Guan ZJ, Shen H. One-step preparation of Pt/Ag nanoclusters for CO 2 transformation. Phys Chem Chem Phys 2023; 25:30373-30380. [PMID: 37909301 DOI: 10.1039/d3cp02736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongjie Zuo
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
14
|
Yuan J, Huang X, Zhang W, Zhou M, Li G, Tian F, Chen R. Catalytic Hydrogenation of Nitroarenes over Ag 33 Nanoclusters: The Ligand Effect. Inorg Chem 2023; 62:17668-17677. [PMID: 37847070 DOI: 10.1021/acs.inorgchem.3c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Using ligand-protected metallic nanoclusters with atomic precision as catalysts and elucidating its ligand effect in the catalysis are the prerequisites to deepen the structure-catalysis relationship of nanoclusters at the molecular level. Herein, a series of Ag33 nanoclusters protected with different thiolate ligands (2-phenylethanethiol, 4-chlorobenzyl mercaptan, and 4-methoxybenzyl mercaptan as precursors) were synthesized and used as heterogeneous catalysts for the conversion of nitroarenes to arylamine with NaBH4 as reductant. The obtained nanoclusters exhibited ligand-dependent catalytic activity, with benzyl thiolate ligands distinctly superior to the phenethyl thiolate ligands. DFT calculations revealed that the ligand regulated catalytic activity of the nanoclusters was ascribed to the H-π and π-π interactions between the ligands and the substrates, owing to the presence of phenyl rings in these structures. This work highlighted the importance of the ligands on the metallic nanoclusters in catalysis and provides a strategy to regulate the catalytic activity by utilizing weak interactions between the catalysts and the substrates.
Collapse
Affiliation(s)
- Jianglu Yuan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiaofei Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Weihua Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Mengting Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fan Tian
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
15
|
Wang M, Chen Y, Tang C. Recent Advances in Ligand Engineering for Gold Nanocluster Catalysis: Ligand Library, Ligand Effects and Strategies. Chem Asian J 2023; 18:e202300463. [PMID: 37552000 DOI: 10.1002/asia.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Indexed: 08/09/2023]
Abstract
Advances in new ligands in the last decade facilitated in-depth studies on the property-relationship of gold nanoclusters and promoted the rational synthesis and related applications of such materials. Currently, more and more new ligands are being explored; thus, the ligand library of AuNCs is being expanded fast, which also enables investigation of ligand effects of AuNCs via direct comparison of different ligating shell with the identical gold core. It is now widely accepted that ligands influence the properties of AuNCs enormously including stability, catalysis, photoluminescence among others. These studies inspired ligand engineering of AuNCs. One of the goals for ligand engineering is to develop ligated AuNC catalysts in which the ligands are able to exert big-enough influence on electronic and steric control over catalysis as in a transition-metal or an enzyme system. Although increasing attention is paid to the further expansion of ligand library, the investigation of design principles and strategies regarding ligands are still in their infant stage. This review summarizes the ligands for AuNC synthesis, the ligand effects on stability and catalysis, and recently developed strategies in promoting AuNC catalytic performance via ligand manipulation.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yu Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Medicinal Chemistry, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Cen Tang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Hernández HM, Sun Q, Rosati M, Gieseking RLM, Johnson CJ. Bonding and Acidity of the Formal Hydride in the Prototypical Au 9 (PPh 3 ) 8 H 2+ Nanocluster. Angew Chem Int Ed Engl 2023; 62:e202307723. [PMID: 37419865 DOI: 10.1002/anie.202307723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
The role of hydrogen atoms as surface ligands on metal nanoclusters is of profound importance but remains difficult to directly study. While hydrogen atoms often appear to be incorporated formally as hydrides, evidence suggests that they donate electrons to the cluster's delocalized superatomic orbitals and may consequently behave as acidic protons that play key roles in synthetic or catalytic mechanisms. Here we directly test this assertion for the prototypical Au9 (PPh3 )8 H2+ nanocluster, formed by addition of a hydride to the well-characterized Au9 (PPh3 )8 3+ . Using gas-phase infrared spectroscopy, we were able to unambiguously isolate Au9 (PPh3 )8 H2+ and Au9 (PPh3 )8 D2+ , revealing an Au-H stretching mode at 1528 cm-1 that shifts to 1038 cm-1 upon deuteration. This shift is greater than the maximum expected for a typical harmonic potential, suggesting a potential governing cluster-H bonding that has some square-well character consistent with the hydrogen nucleus behaving as a metal atom in the cluster core. Complexing this cluster with very weak bases reveals a redshift of 37 cm-1 in the Au-H vibration, consistent with those typically seen for moderately acidic groups in gas phase molecules and providing an estimate of the acidity of Au9 (PPh3 )8 H2+ , at least with regard to its surface reactivity.
Collapse
Affiliation(s)
- Hanna Morales Hernández
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | - Qiwei Sun
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Matthew Rosati
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| | | | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA
| |
Collapse
|
17
|
Wang M, Li S, Chen H, Sun X, Sun J, Jia Y, Guo S, Sun C, Shen H. DppfCuBH 4: new reducing agents for the synthesis of ferrocene-functionalized metal nanoclusters. Dalton Trans 2023. [PMID: 37449919 DOI: 10.1039/d3dt01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A facile synthesis of atomically precise metal nanoclusters, especially those decorated with functional groups, is the prerequisite for finding applications in special fields and studying structure-and-property relationships. The exploration of simple and efficient synthetic prototypes for introducing functional ligands (such as ferrocene) into cluster moieties is thus of high interest. In this work, a type of reducing agent of dppfCuBH4 (dppf is 1,1'-bis(diphenyphosphino)ferrocene) is introduced for the first time to prepare ferrocene-functionalized metal nanoclusters. Two new clusters of [Ag25Cu4(dppf)6(3-F-PhCC)12Cl6]3+ (1) and [Ag4(dppf)5Cl2]2+ (2) have been obtained from the simple synthetic method. The two compounds have been fully characterized by advanced techniques of electrospray ionization mass spectroscopy (ESI-MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectroscopy (UV-Vis). The total structure of the clusters, as determined by X-ray single-crystal diffraction, describes the Ag13@Ag12Cu4(dppf)6(3-F-PhCC)12Cl6 core-shell structure of 1 and [Ag2Cl(dppf)2]+-dppf-[Ag2Cl(dppf)2]+ polymeric structure of 2. This work opens the door to employing dppfCuBH4 as a functional reducing agent to discover many underlying metal nanoclusters and even other nanomaterials which feature ferrocene-groups.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huijun Chen
- College of Food Science and Pharmaceutical Engineering, Wuzhou University, Guangxi, 543000, China
| | - Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Cunfa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
18
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
19
|
Zhang Y, He SR, Yang Y, Zhang TS, Zhu ZM, Fei W, Li MB. Preorganized Nitrogen Sites for Au 11 Amidation: A Generalizable Strategy toward Precision Functionalization of Metal Nanoclusters. J Am Chem Soc 2023. [PMID: 37235477 DOI: 10.1021/jacs.3c01961] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Atomically precise metal nanoclusters have received tremendous attention due to their unique structures and properties. Although synthetic approaches to this kind of nanomaterial have been well developed, methods toward precision functionalization of the as-synthesized metal nanoclusters are extremely limited, hindering their interfacial modification and related performance improvement. Herein, an amidation strategy has been developed for the precision functionalization of the Au11 nanocluster based on preorganized nitrogen sites. The nanocluster amidation did not change the number of gold atoms in the Au11 kernel and their bonding mode to the surface ligands but slightly modified the arrangement of gold atoms with the introduction of functionality and chirality, thus representing a relatively mild method for the modification of metal nanoclusters. The stability and oxidation barrier of the Au11 nanocluster are also improved accordingly. The method developed here would be a generalizable strategy for the precision functionalization of metal nanoclusters.
Collapse
Affiliation(s)
- Ying Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Sheng-Rong He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P. R. China
| | - Tai-Song Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ze-Min Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
20
|
Non-enzymatic electrochemiluminescence biosensor for ultrasensitive detection of ochratoxin A based on efficient DNA walker. Food Chem 2023; 407:135113. [PMID: 36493484 DOI: 10.1016/j.foodchem.2022.135113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Ochratoxin A (OTA) with high toxicity represents a serious threat to the agriculture and food chain, consequently to human health. Herein, a simple electrochemiluminescence (ECL) biosensor was constructed for ultrasensitive detection of OTA based on mercaptopropionic acid templated Au nanoclusters (Au NCs) as intensive signal probe and a non-enzymatic 2D DNA walking machine as the effective amplification strategy. Specifically, the target related bipedal DNA walker efficiently moved along 2D DNA tracks through toehold-mediated DNA strand displacement, which triggered abundant signal probes for combining to the DNA tracks. Moreover, the Au NCs could exhibit strong ECL emission due to fast electron transfer from massive Au-S electronic pathways under the electrochemical excitation. Thus, the biosensor possessed significant ECL response for achieving ultrasensitive detection toward OTA with low detection limit of 3.19 fg/mL. Impressively, the sensing platform was also applied to detect OTA from edible oils, exhibiting great application potential in food analysis.
Collapse
|
21
|
Tang C, Jiang XL, Chen S, Hong W, Li J, Xia H. Stereoelectronic Modulation of a Single-Molecule Junction through a Tunable Metal-Carbon dπ-pπ Hyperconjugation. J Am Chem Soc 2023; 145:10404-10410. [PMID: 37121913 DOI: 10.1021/jacs.3c02733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Conjugated molecules play a critical role in the construction of single-molecule devices. However, most conventional conjugated molecules, such as hydrocarbons, involve only a pπ-pπ conjugation of light elements. While the metal d-orbitals can introduce abundant electronic effects to achieve novel electronic properties, it is very scarce for the charge transport study of dπ-pπ conjugated pathways with a metal involved. Here, we employed the single-molecule break junction technique to investigate the charge transport through dπ-pπ conjugated backbones with metal-carbon multiple bonds integrated into the alternative conjugated pathways. The involved dπ-pπ conjugation not only supports high conductivity comparable to that of conjugated hydrocarbons but also significantly enhances the tunable diversity in electronic properties through the metal-induced secondary interaction. Specifically, the introduction of the metal brings an unconventionally stereoelectronic effect triggered by metal-carbon dπ-pπ hyperconjugation, which can be tuned by protonation taking place on the metal-carbon multiple bonds, collectively modulating the single-molecule rectification feature and transmission mechanism. This work demonstrates the promise of utilizing the diverse electronic effect of metals to design molecular devices.
Collapse
Affiliation(s)
- Chun Tang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue-Lian Jiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiyan Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Size Effects of Atomically Precise Gold Nanoclusters in Catalysis. PRECISION CHEMISTRY 2023; 1:14-28. [PMID: 37025974 PMCID: PMC10069034 DOI: 10.1021/prechem.3c00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
The emergence of ligand-protected, atomically precise gold nanoclusters (NCs) in recent years has attracted broad interest in catalysis due to their well-defined atomic structures and intriguing properties. Especially, the precise formulas of NCs provide an opportunity to study the size effects at the atomic level without complications by the polydispersity in conventional nanoparticles that obscures the relationship between the size/structure and properties. Herein, we summarize the catalytic size effects of atomically precise, thioate-protected gold NCs in the range of tens to hundreds of metal atoms. The catalytic reactions include electrochemical catalysis, photocatalysis, and thermocatalysis. With the precise sizes and structures, the fundamentals underlying the size effects are analyzed, such as the surface area, electronic properties, and active sites. In the catalytic reactions, one or more factors may exert catalytic effects simultaneously, hence leading to different catalytic-activity trends with the size change of NCs. The summary of literature work disentangles the underlying fundamental mechanisms and provides insights into the size effects. Future studies will lead to further understanding of the size effects and shed light on the catalytic active sites and ultimately promote catalyst design at the atomic level.
Collapse
Affiliation(s)
- Site Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yucai Shao
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Deng G, Kim J, Bootharaju MS, Sun F, Lee K, Tang Q, Hwang YJ, Hyeon T. Body-Centered-Cubic-Kernelled Ag 15Cu 6 Nanocluster with Alkynyl Protection: Synthesis, Total Structure, and CO 2 Electroreduction. J Am Chem Soc 2023; 145:3401-3407. [PMID: 36541445 DOI: 10.1021/jacs.2c10338] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While atomically monodisperse nanostructured materials are highly desirable to unravel the size- and structure-catalysis relationships, their controlled synthesis and the atomic-level structure determination pose challenges. Particularly, copper-containing atomically precise alloy nanoclusters are potential catalyst candidates for the electrochemical CO2 reduction reaction (eCO2RR) due to high abundance and tunable catalytic activity of copper. Herein, we report the synthesis and total structure of an alkynyl-protected 21-atom AgCu alloy nanocluster [Ag15Cu6(C≡CR)18(DPPE)2]-, denoted as Ag15Cu6 (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene; DPPE: 1,2-bis(diphenylphosphino)ethane). The single-crystal X-ray diffraction reveals that Ag15Cu6 consists of an Ag11Cu4 metal core exhibiting a body-centered cubic (bcc) structure, which is capped by 2 Cu atoms, 2 Ag2DPPE motifs, and 18 alkynyl ligands. Interestingly, the Ag15Cu6 cluster exhibits excellent catalytic activity for eCO2RR with a CO faradaic efficiency (FECO) of 91.3% at -0.81 V (vs the reversible hydrogen electrode, RHE), which is much higher than that (FECO: 48.5% at -0.89 V vs RHE) of Ag9Cu6 with bcc structure. Furthermore, Ag15Cu6 shows superior stability with no significant decay in the current density and FECO during a long-term operation of 145 h. Density functional theory calculations reveal that the de-ligated Ag15Cu6 cluster can expose more space at the pair of AgCu dual metals as the efficient active sites for CO formation.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Fan JQ, Yang Y, Tao CB, Li MB. Cadmium-Doped and Pincer Ligand-Modified Gold Nanocluster for Catalytic KA 2 Reaction. Angew Chem Int Ed Engl 2023; 62:e202215741. [PMID: 36478512 DOI: 10.1002/anie.202215741] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
A gold nanocluster Au17 Cd2 (PNP)2 (SR)12 (PNP=2,6-bis(diphenylphosphinomethyl)pyridine, SR=4-MeOPhS) consisting of an icosahedral Au13 kernel, two Au2 CdS6 staple motifs, and two PNP pincer ligands has been designed, synthesized and well characterized. This cadmium and PNP pincer ligand co-modified gold nanocluster showed high catalytic efficiency in the KA2 reaction, featuring high TON, mild reaction conditions, broad substrate scope as well as catalyst recyclability. Comparison of the catalytic performance between Au17 Cd2 (PNP)2 (SR)12 and the structurally similar single cadmium (or PNP) modified gold nanoclusters demonstrates that the co-existence of the cadmium and PNP on the surface is crucial for the high catalytic activity of the gold nanocluster. This work would be enlightening for developing efficient catalysts for cascade reactions and discovering the catalytic potential of metal nanoclusters in organic transformations.
Collapse
Affiliation(s)
- Ji-Qiang Fan
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237015, P. R. China
| | - Cheng-Bo Tao
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
25
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
26
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|