1
|
Wu J, Li M, Yang Q, Zhang B, Tang J. Two-step spin transition around room temperature in a Fe III complex. Dalton Trans 2025; 54:1231-1238. [PMID: 39618386 DOI: 10.1039/d4dt02736a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Spin-crossover (SCO) at room temperature is a pivotal goal within the field of molecular magnetism. Herein, we attempt to assemble FeIII SCO complexes using a substituted Hqsal ligand, H2L (N-(8-quinolyl)-2,3-dihydroxybenzaldimine). Two complexes [Fe(HL)2]·X·2MeCN (X = BF4- for 1 and X = ClO4- for 2) were obtained and characterized. Single-crystal X-ray diffraction study reveals that the solvent and counteranion contact with the main structure through hydrogen bonding that significantly influences the SCO properties. Magnetic study reveals that both complexes show a one-step reversible spin transition below room temperature with a hysteresis loop width of 10 K for complex 1 and 4 K for complex 2. After removing the solvents, two-step SCO with a hysteresis loop width of 32 and 62 K is observed around room temperature for complex 1, while one-step SCO is found in complex 2. Magneto-structural study reveals that the differences in the SCO properties are related to the hydrogen bonding and solvent effects, which facilitates the spin transition.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Mengtao Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jinkui Tang
- Xi'an Rare Metal Materials Institute Co., Ltd, Xi'an 710016, P. R. China
| |
Collapse
|
2
|
Znovjyak K, Shova S, Panov DM, Kariaka NS, Fritsky IO, Malinkin SO, Seredyuk M. Crystal structure of bis-{5-(4-chloro-phen-yl)-3-[6-(1 H-pyrazol-1-yl)pyridin-2-yl]-1 H-1,2,4-triazol-1-ido}nickel(II) methanol disolvate. Acta Crystallogr E Crystallogr Commun 2024; 80:1235-1239. [PMID: 39712154 PMCID: PMC11660485 DOI: 10.1107/s2056989024010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 12/24/2024]
Abstract
The unit cell of the title compound, [Ni(C16H10ClN6)2]·2CH3OH, consists of a neutral complex and two methanol mol-ecules. In the complex, the two tridentate 2-(3-(4-chloro-phen-yl)-1H-1,2,4-triazol-5-yl)-6-(1H-pyrazol-1-yl)pyridine ligands coordinate to the central NiII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere. Neighbouring tapered mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into monoperiodic chains, which are further linked through weak C-H⋯N/C inter-actions into diperiodic layers. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.8%, C⋯H/H⋯C 27.5%, N⋯H/H⋯N 15.1%, and Cl⋯H/H⋯Cl 14.0%. The average Ni-N bond distance is 2.095 Å. Energy framework analysis at the HF/3-21 G theory level was performed to qu-antify the inter-action energies in the crystal structure.
Collapse
Affiliation(s)
- Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergiu Shova
- Department of Inorganic Polymers "Petru Poni" Institute of Macromolecular Chemistry Romanian Academy of Science Aleea Grigore Ghica Voda 41-A Iasi 700487 Romania
| | - Dmitriy M. Panov
- ChemBioCenter Kyiv National Taras Shevchenko University Kyiv 02094 61 Winston Churchill Street Ukraine
| | - Nataliia S. Kariaka
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergey O. Malinkin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| |
Collapse
|
3
|
Xie KP, Peng ZZ, Ruan ZY, Fan WD, Chen YR, Zheng XD, Zou YB, Wu SG, Xiao ZC. Two 2D spin-crossover coordination polymers constructed by [Pd(SCN) 4] 2- building blocks. Dalton Trans 2024; 53:15681-15687. [PMID: 39248579 DOI: 10.1039/d4dt02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 2-methoxypyrazine, 1; and L2 = (E)-3-(phenyldiazenyl)pyridine, 2), were successfully constructed by using square-planar [Pd(SCN)4]2- building blocks. Complex 1 exhibits complete and one-step spin-crossover (SCO) behavior, while 2 exhibits incomplete and two-step SCO behavior. Further structural insight into this synergy reveals that the flat/flexing [Fe{Pd(SCN)4}]∞ sheets in 1 and 2 are stabilized by interlayered/intralayered supramolecular interactions.
Collapse
Affiliation(s)
- Kai-Ping Xie
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Zhi-Zhen Peng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Wei-Ding Fan
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xiao-Dan Zheng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yu-Bo Zou
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zi-Cheng Xiao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| |
Collapse
|
4
|
Ikeda T, Huang YB, Wu SQ, Zheng W, Xu WH, Zhang X, Ji T, Uematsu M, Kanegawa S, Su SQ, Sato O. Four-step electron transfer coupled spin transition in a cyano-bridged [Fe 2Co 2] square complex. Dalton Trans 2024; 53:15465-15470. [PMID: 39239808 DOI: 10.1039/d4dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.
Collapse
Affiliation(s)
- Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
5
|
Orellana-Silla A, Turo-Cortés R, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Thermal and Light-Induced Spin Transitions in 3D Hofmann-type Frameworks Built on Nonlinear 3-Substituted Pyridine and Pyrimidine Pillaring Ligands. Inorg Chem 2024; 63:17305-17315. [PMID: 39235325 DOI: 10.1021/acs.inorgchem.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Integration of spin crossover (SCO) properties in 3D frameworks made up of cyano-bimetallic layers connected through pillaring organic ligands, the so-called Hofmann-type coordination polymers (HCPs)- represents an important source of multifunctional advanced materials. Typically, these 3D structures are constituted by 4-substituted pyridine-based linear pillars which afford HCPs with regular pcu topology. Here, we have investigated the suitability of the 3-substituted pyridine and pyrimidine bis-monodentate ligands 2,5-di(pyridin-3-yl)aniline (3-dpyan) and 2,5-di(pyrimidin-5-yl)aniline (bpmdan) as alternative building blocks to explore new structural topologies and functionalities. In this context, we have prepared the compounds Fe(3-dpyan)[Ag(CN)2]2·2MeOH (1Ag·2MeOH), Fe(3-dpyan)[Ag(CN)2]2···0.35NO2Bz·MeOH (1Ag·0.35NO2Bz·MeOH), Fe(3-dpyan)[Au(CN)2]2·NO2Bz (1Au·NO2Bz), and Fe(bpmdan)[Ag(CN)2]2·CH3Bz (2Ag·CH3Bz) (MeOH = methanol, NO2Bz = nitrobenzene, CH3Bz = toluene). Our structural studies have revealed that 1Ag·2MeOH and 1Ag·0.35NO2Bz·MeOH exhibit isomorphous doubly interpenetrated 3D structures strongly differing from the unusual noninterpenetrated ones exhibited by 1Au·NO2Bz and 2Ag·CH3Bz. Temperature-dependent magnetic susceptibility measurements have shown that all the reported compounds exhibit thermal-induced SCO properties, and moreover, three of them display Light Induced Excited Spin State Trapping at low temperatures (LIESST effect). The studied compounds show a wide diversity of SCO behaviors, ranging from abrupt complete one-step SCO centered at 253 K (1Au·NO2Bz) to gradual and incomplete multistepped SCO centered at 120 K (1Ag·0.35NO2Bz·MeOH). This assorted SCO properties are discussed and correlated to the acquired chemical and structural information.
Collapse
Affiliation(s)
- Alejandro Orellana-Silla
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Rubén Turo-Cortés
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - Manuel Meneses-Sánchez
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera S/N, Valencia 46022, Spain
| | - Carlos Bartual-Murgui
- Departamento de Química Física, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | - José Antonio Real
- Instituto de Ciencia Molecular/Departamento de Química Inorganica, Universidad de Valencia, Catedratico Beltrán Martínez 2, Paterna, València E-46980, Spain
| |
Collapse
|
6
|
Luo Y, Zhou RH, Shao Z, Liu D, Lu HH, Shang MJ, Zhao L, Liu T, Meng YS. Effects of mono- or di-fluoro-substitution on spin crossover behavior in a pair of Schiff base-like Fe II-coordination polymers. Dalton Trans 2024; 53:14692-14700. [PMID: 39157994 DOI: 10.1039/d4dt01103a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Spin crossover (SCO) has long been a hot topic in the field of molecular magnetism owing to its unique bistability character. Rational control of thermal hysteresis and transition temperature (T1/2) is crucial for their practical applications, which rely on precise manipulation of the substituents of SCO coordinating ligands and molecular packing interactions. In this study, we designed two different bridging ligands (2-FDPB: 4,4'-(2-fluoro-1,4-phenylene)dipyridine; 2,3-FDPB: 4,4'-(2,3-difluoro-1,4-phenylene)dipyridine) featuring one and two fluoro substitution on the central benzene ring and applied a Schiff base-like equatorial tetradentate ligand {diethyl(E,E)-2,2'-[4,5-difluoro-1,2-phenyl-bis(iminomethylidyne)]bis(3-oxobutanoate)-(2-)-N,N',O3,O3'} (H2L) to coordinate with the FeII ion. Two FeII-coordination chain polymers [FeII(L)(2,3-FDPB)]·0.25CH2Cl2 (1) and [FeII(L)(2-FDPB)]·0.5CH3OH (2) were obtained. 1 crystallizes in the monoclinic P21/n space group with only one FeII center, while 2 crystallizes in the triclinic P1̄ space group with two independent FeII centers. Unlike the identical 2D layer stacking in 1, 2 exhibited alternating stacking of the extending 2D layers and meshed chains. Magnetic measurements revealed the typical thermally induced spin crossover behavior (SCO): 1 exhibited a 41 K-wide thermal hysteresis with transition temperatures of T1/2↑ = 245 K and T1/2↓ = 204 K, while 2 showed a higher transition temperature (T1/2 = 330 K) with no thermal hysteresis. Magneto-structural correlation studies suggest that the electron-withdrawing effect present in the fluoro substituents does not have a significant impact on the SCO behaviors. Despite the fluoro substituents having a similar atomic radius of hydrogen atoms, variations in the number of these substituents can alter the crystallization behavior of these complexes, which in turn affects the solvents, molecular stacking patterns, and intermolecular interactions, ultimately influencing the SCO behaviors.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Ren-He Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Zhen Shao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Dan Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Han-Han Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Meng-Jia Shang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
7
|
Davenport AM, Marshall CR, Nishiguchi T, Kadota K, Andreeva AB, Horike S, Brozek CK. Size-Dependent Spin Crossover and Bond Flexibility in Metal-Organic Framework Nanoparticles. J Am Chem Soc 2024; 146:23692-23698. [PMID: 39145699 DOI: 10.1021/jacs.4c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Size reduction offers a synthetic route to tunable phase change behavior. Preparing materials as nanoparticles causes drastic modulations to critical temperatures (Tc), hysteresis widths, and the "sharpness" of first-order versus second-order phase transitions. A microscopic picture of the chemistry underlying this size dependence in phenomena ranging from melting to superconductivity remains debated. As a case study with broad implications, we report that size-dependent spin crossover (SCO) in nanocrystals of the metal-organic framework (MOF) Fe(1,2,3-triazolate)2 arises from metal-linker bonds becoming more labile in smaller particles. In comparison to the bulk material, differential scanning calorimetry indicates a ∼ 30-40% reduction in Tc and ΔH in the smallest particles. Variable-temperature vibrational spectroscopy reveals a diminished long-range structural cooperativity, while X-ray diffraction evidence an over 3-fold increase in the thermal expansion coefficients. This "phonon softening" provides a molecular mechanism for designing size-dependent behavior in framework materials and for understanding phase changes in general.
Collapse
Affiliation(s)
- Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Checkers R Marshall
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kentaro Kadota
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Anastasia B Andreeva
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Satoshi Horike
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
8
|
Zhang Y, Torres-Cavanillas R, Yan X, Zeng Y, Jiang M, Clemente-León M, Coronado E, Shi S. Spin crossover iron complexes with spin transition near room temperature based on nitrogen ligands containing aromatic rings: from molecular design to functional devices. Chem Soc Rev 2024; 53:8764-8789. [PMID: 39072682 DOI: 10.1039/d3cs00688c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
During last decades, significant advances have been made in iron-based spin crossover (SCO) complexes, with a particular emphasis on achieving reversible and reproducible thermal hysteresis at room temperature (RT). This pursuit represents a pivotal goal within the field of molecular magnetism, aiming to create molecular devices capable of operating in ambient conditions. Here, we summarize the recent progress of iron complexes with spin transition near RT based on nitrogen ligands containing aromatic rings from molecular design to functional devices. Specifically, we discuss the various factors, including supramolecular interactions, crystal packing, guest molecules and pressure effects, that could influence its cooperativity and the spin transition temperature. Furthermore, the most recent advances in their implementation as mechanical actuators, switching/memories, sensors, and other devices, have been introduced as well. Finally, we give a perspective on current challenges and future directions in SCO community.
Collapse
Affiliation(s)
- Yongjie Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Xinxin Yan
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yixun Zeng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Mengyun Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Shengwei Shi
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), Jianghan University, Wuhan, 430056, China
| |
Collapse
|
9
|
Mondal DJ, Kumar B, Shome S, Konar S. Observation of TLIESST above Liquid Nitrogen Temperature and Disclosure of Hidden Hysteresis in Multiresponsive Hofmann-type Coordination Polymers. Inorg Chem 2024; 63:15752-15761. [PMID: 39145691 DOI: 10.1021/acs.inorgchem.4c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Photoresponsive spin-crossover (SCO) molecules are an important class of bistable magnetic molecules with intriguing potential in device applications. The light-induced excited spin state trapping (LIESST) and the combined application of light and temperature can provide access to the metastable region of the SCO profile. The primary obstacle in utilizing light stimuli is the manifestation of light-induced trappings at extremely low temperatures. Herein, we report two novel multiresponsive 2D Hofmann-type coordination polymers exhibiting light-induced excited spin state trapping above liquid nitrogen temperature (TLIESST = 82 and 81 K). Stimulating the samples in conjugation with light and temperature successfully unveils hysteresis, which is otherwise concealed. Apart from light and temperature, we found that the SCO phenomenon is also responsive to external hydrostatic pressure and exhibits modulation of the hysteresis width and transition temperature shifts with changes in pressure.
Collapse
Affiliation(s)
- Dibya Jyoti Mondal
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Bhart Kumar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Shraoshee Shome
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Molecular Magnetism Lab, Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
10
|
Šagátová A, Kotrle K, Brachňaková B, Havlíček L, Nemec I, Herchel R, Hofbauerova M, Halahovets Y, Šiffalovič P, Čižmár E, Fellner OF, Šalitroš I. Above room temperature spin crossover in mononuclear iron(II) complexes featuring pyridyl-benzimidazole bidentate ligands adorned with aliphatic chains. Dalton Trans 2024; 53:14037-14045. [PMID: 39105652 DOI: 10.1039/d4dt01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two bidentate ligands (L1 = 1-pentyl-2-(pyridin-2-yl)-1H-benzimidazole and L2 = 1-heptyl-2-(pyridin-2-yl)-1H-benzimidazole) were employed for the synthesis of five mononuclear Fe(II) coordination compounds 1-5 containing perchlorate, tetrafluoroborate and triflate counterions. Single-crystal X-ray diffraction analysis confirmed the expected molecular structures of all the reported compounds, revealing a moderately distorted octahedral geometry of {FeN6} coordination chromophores. All five compounds exhibit thermal spin crossover with T1/2 temperatures allocated above 400 K. The theoretical calculations supported the experimental magnetic investigation and helped to explain the electronic structures of the reported complexes with respect to the occurrence of thermal spin state switching. In addition, compound 4 was employed for the preparation of Langmuir-Blodgett films and fabrication of molecular films using the method of spontaneous evaporation of the subphase. While the formation of Langmuir-Blodgett films was unsuccessful due to the instability of the compound at the water/air interface, the latter technique allowed the formation of molecular films of 4 with well-defined thickness and homogeneity.
Collapse
Affiliation(s)
- Alexandra Šagátová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Kamil Kotrle
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Lubomír Havlíček
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Monika Hofbauerova
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Yuriy Halahovets
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
- Centre of Excellence for Advanced Materials Application, 84511 Bratislava, Slovakia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice, Slovakia
| | - Ondřej F Fellner
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
11
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
12
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Seredyuk M, Znovjyak K, Valverde-Muñoz FJ, Muñoz MC, Fritsky IO, Real JA. Rotational order-disorder and spin crossover behaviour in a neutral iron(II) complex based on asymmetrically substituted large planar ionogenic ligand. Dalton Trans 2024; 53:8041-8049. [PMID: 38652019 DOI: 10.1039/d4dt00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Octahedrally coordinated spin crossover (SCO) FeII complexes represent an important class of switchable molecular materials. This study presents the synthesis and characterisation of a novel complex, [FeII(ppt-2Fph)2]0·2MeOH, where ppt-2Fph is a new asymmetric ionogenic tridentate planar ligand 2-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl)pyridine. The complex exhibits a hysteretic thermally induced SCO transition at 285 K on cooling and at 293 K on heating, as well as light induced excited spin state trapping (LIESST) at lower temperatures with a relaxation T(LIESST) temperature of 73 K. Single crystal analysis in both spin states shows that the compound undergoes an unusual partial (25%) reversible order-disorder of the asymmetrically substituted phenyl group coupled to the thermal SCO. The highly cooperative SCO transition, analysed by structural energy framework analysis at the B3LYP/6-31G(d,p) theory level, revealed the co-existence of stabilising and destabilising energy variations in the lattice. The observed antagonism of intermolecular interactions and synchronous rotational disorder, which contributes to the overall entropy change, is suggested to be at the origin of the cooperative SCO transition.
Collapse
Affiliation(s)
- Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
- Enamine Ltd., Winston Churchill Str. 78, 02094 Kyiv, Ukraine
| | - Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
| | - Francisco Javier Valverde-Muñoz
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| | - M Carmen Muñoz
- Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, E-46022, Valencia, Spain
| | - Igor O Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine.
| | - José Antonio Real
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
14
|
Kaushik K, Mehta S, Das M, Ghosh S, Kamilya S, Mondal A. Stimuli-responsive magnetic materials: impact of spin and electronic modulation. Chem Commun (Camb) 2023; 59:13107-13124. [PMID: 37846652 DOI: 10.1039/d3cc04268e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Addressing molecular bistability as a function of external stimuli, especially in spin-crossover (SCO) and metal-to-metal electron transfer (MMET) systems, has seen a surge of interest in the field of molecule-based magnetic materials due to their enormous potential in various technological applications such as molecular spintronics, memory and electronic devices, switches, sensors, and many more. The fine-tuning of molecular components allow the design and synthesis of materials with tailored properties for these vast applications. In this Feature Article, we discuss a part of our research work into this broad topic, pertaining to the recent discoveries in the field of switchable molecular magnetic materials based on SCO and MMET systems, along with some historical background of the area and related accomplishments made in recent years.
Collapse
Affiliation(s)
- Krishna Kaushik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sounak Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
15
|
Znovjyak K, Fritsky IO, Sliva TY, Amirkhanov VM, Malinkin SO, Shova S, Seredyuk M. Crystal structure of bis-{3-(3,4-di-meth-oxy-phen-yl)-5-[6-(pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}iron(II)-methanol-chloro-form (1/2/2). Acta Crystallogr E Crystallogr Commun 2023; 79:962-966. [PMID: 37817956 PMCID: PMC10561207 DOI: 10.1107/s2056989023008423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023]
Abstract
The unit cell of the title compound, [Fe(C18H15N6O2)2]·2CH3OH·2CHCl3, consists of a charge-neutral complex mol-ecule, two methanol and two chloro-form mol-ecules. In the complex, the two tridentate 2-(5-(3,4-di-meth-oxy-phen-yl)-1,2,4-triazol-3-yl)-6-(pyrazol-1-yl)pyridine ligands coordinate to the central FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere. Neighbouring tapered mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into one-dimensional chains, which are joined into two-dimensional layers through weak C-H⋯N/C/O inter-actions. Furthermore, the layers stack in a three-dimensional network linked by weak inter-layer C-H⋯π inter-actions of the meth-oxy and phenyl groups. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.0%, H⋯C/C⋯H 26.3%, H⋯N/N⋯H 13.8%, and H⋯O/O⋯H 7.5%. The average Fe-N bond distance is 2.185 Å, indicating the high-spin state of the FeII ion. Energy framework analysis at the HF/3-21 G theory level was performed to qu-antify the inter-action energies in the crystal structure.
Collapse
Affiliation(s)
- Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Tatiana Y. Sliva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Vladimir M. Amirkhanov
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergey O. Malinkin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular, Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi, 700487, Romania
| | - Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| |
Collapse
|
16
|
Iron(II) Mediated Supramolecular Architectures with Schiff Bases and Their Spin-Crossover Properties. Molecules 2023; 28:molecules28031012. [PMID: 36770685 PMCID: PMC9919814 DOI: 10.3390/molecules28031012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Supramolecular architectures, which are formed through the combination of inorganic metal cations and organic ligands by self-assembly, are one of the techniques in modern chemical science. This kind of multi-nuclear system in various dimensionalities can be implemented in various applications such as sensing, storage/cargo, display and molecular switching. Iron(II) mediated spin-crossover (SCO) supramolecular architectures with Schiff bases have attracted the attention of many investigators due to their structural novelty as well as their potential application possibilities. In this paper, we review a number of supramolecular SCO architectures of iron(II) with Schiff base ligands exhibiting varying geometrical possibilities. The structural and SCO behavior of these complexes are also discussed in detail.
Collapse
|
17
|
Znovjyak K, Fritsky IO, Sliva TY, Amirkhanov VM, Malinkin SO, Shova S, Seredyuk M. Crystal structure of bis-{3-(3-bromo-4-methoxyphenyl)-5-[6-(1 H-pyrazol-1-yl)pyridin-2-yl]-1,2,4-triazol-3-ato}-iron(II) methano-l disolvate. Acta Crystallogr E Crystallogr Commun 2022; 78:1138-1142. [PMID: 36380908 PMCID: PMC9638973 DOI: 10.1107/s2056989022010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The unit cell of the title compound, [FeII(C17H12BrN6O)2]·2MeOH, consists of a charge-neutral complex mol-ecule and two independent mol-ecules of methanol. In the complex mol-ecule, the two tridentate ligand mol-ecules 2-[5-(3-bromo-4-meth-oxy-phen-yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine coordinate to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere around the central ion. In the crystal, neighbouring asymmetric mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into chains, which are then linked into layers by weak C-H⋯N/C inter-actions. Finally, the layers stack into a three-dimensional network linked by weak inter-layer C-H⋯π inter-actions between the meth-oxy groups and the phenyl rings. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 34.2%, H⋯C/C⋯H 25.2%, H⋯Br/Br⋯H 13.2%, H⋯N/N⋯H 12.2% and H⋯O/O⋯H 4.0%. The average Fe-N bond distance is 1.949 Å, indicating the low-spin state of the FeII ion. Energy framework analysis at the HF/3-21 G theory level was performed to qu-antify the inter-action energies in the crystal structure.
Collapse
Affiliation(s)
- Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Tatiana Y. Sliva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Vladimir M. Amirkhanov
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergey O. Malinkin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| |
Collapse
|
18
|
Znovjyak K, Fritsky IO, Sliva TY, Amirkhanov VM, Malinkin SO, Shova S, Seredyuk M. Crystal structure of bis-{3-(3,4-di-methyl-phen-yl)-5-[6-(1 H-pyrazol-1-yl)pyridin-2-yl]-4 H-1,2,4-triazol-4-ido}iron(II) methanol disolvate. Acta Crystallogr E Crystallogr Commun 2022; 78:1107-1112. [PMID: 36380912 PMCID: PMC9638982 DOI: 10.1107/s2056989022009744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
As a result of the high symmetry of the Aea2 structure, the asymmetric unit of the title compound, [FeII(C18H15N6)2]·2MeOH, consists of half of a charge-neutral complex mol-ecule and a discrete methanol mol-ecule. The planar anionic tridentate ligand 2-[5-(3,4-di-methyl-phen-yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates the FeII ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere of the central ion. The average Fe-N bond distance is 1.955 Å, indicating a low-spin state of the FeII ion. Neighbouring cone-shaped mol-ecules, nested into each other, are linked through double weak C-H(pz)⋯π(ph') inter-actions into mono-periodic columns, which are further linked through weak C-H⋯N'/C' inter-actions into di-periodic layers. No inter-actions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6-31 G(d,p) theory level, performed to qu-antify the inter-molecular inter-action energies, reproduces the weak inter-layer inter-actions in contrast to the strong inter-action within the layers. Inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H⋯H 48.5%, H⋯C/C⋯H 28.9%, H⋯N/N⋯H 16.2% and C⋯C 2.4%.
Collapse
Affiliation(s)
- Kateryna Znovjyak
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Igor O. Fritsky
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Tatiana Y. Sliva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Vladimir M. Amirkhanov
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergey O. Malinkin
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni", Institute of Macromolecular Chemistry, Romanian Academy of Science, Aleea Grigore Ghica Voda 41-A, Iasi 700487, Romania
| | - Maksym Seredyuk
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
| |
Collapse
|